Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (18): 3894-3900.doi: 10.3864/j.issn.0578-1752.2013.18.020
• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles Next Articles
WANG Hai-Yang, ZHENG Yue, LI Hui-Xia, HAN Zhao-Yu, WANG Gen-Lin
[1]Nishimura T, Hattori A, Takahashi K. Structural changes in intramuscular connective tissue during the fattening of Japanese black cattle: effect of marbling on beef tenderization. Journal of Animal Science, 1999, 77(1): 93-104. [2]Ambros V. The functions of animal microRNAs. Nature, 2004, 431(7006): 350-355. [3]Esau C, Kang X, Peralta E, Hanson E, Marcusson E G, Ravichandran L V, Sun Y, Koo S, Perera R J, Jain R, Dean N M, Freier S M, Bennett C F, Lollo B, Griffey R. MicroRNA-143 regulates adipocyte differentiation. Journal of Biological Chemistry, 2004, 279(50): 52361-52365. [4]Kajimoto K, Naraba H, Iwai N. MicroRNA and 3T3-L1 pre-adipocyte differentiation. RNA-A Publication of The RNA Society, 2006, 12(9): 1626-1632. [5]Tam Tam S, Bastian I, Zhou XF, Vander Hoek M, Michael MZ, Gibbins IL, Haberberger RV. MicroRNA-143 expression in dorsal root ganglion neurons. Cell Tissue Research, 2011, 346(2): 163-173. [6]Jin W, Dodson M V, Moore SS, Basarab J A, Guan L L. Characterization of microRNA expression in bovine adipose tissues: a potential regulatory mechanism of subcutaneous adipose tissue development. BMC Molecular Biology, 2010, 11: 29. [7]Li H Y, Xi Q Y, Xiong Y Y, Liu X L, Cheng X, Shu G, Wang S B, Wang L N, Gao P, Zhu X T, Jiang Q Y, Yuan L, Zhang Y L. Identification and comparison of microRNAs from skeletal muscle and adipose tissues from two porcine breeds. Animal Genetics, 2012, 43(6): 704-713. [8]Klöting N, Berthold S, Kovacs P, Schön M R, Fasshauer M, Ruschke K, Stumvoll M, Blüher M. MicroRNA expression in human omental and subcutaneous adipose tissue. PloS One, 2009, 4(3): 4699-4703. [9]Guo Y, Chen Y, Zhang Y, Zhang Y, Chen L, Mo D. Up-regulated miR-145 expression inhibits porcine preadipocytes differentiation by targeting IRS1. International Journal of Biological Macromolecules, 2012, 8(10): 1408-1417. [10]Li H, Zhang Z, Zhou X, Wang Z, Wang G, Han Z. Effects of MicroRNA-143 in the differentiation and proliferation of bovine intramuscular preadipocytes. Molecul Biology Reporter, 2011, 38(7): 4273-4280. [11]Qin L, Chen Y, Niu Y, Chen W, Wang Q, Xiao S, Li A, Xie Y, Li J, Zhao X, He Z, Mo D. A deep investigation into the adipogenesis mechanism: profile of microRNAs regulating adipogenesis by modulating the canonical Wnt/beta-catenin signaling pathway. BMC Genomics, 2010, 11: 320. [12]Gu Z, Eleswarapu S, Jiang H. Identification and characterization of microRNAs from the bovine adipose tissue and mammary gland. Febs Letters, 2007, 581(5): 981-988. [13]Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science, 2004, 303(5654): 83-86. [14]Lin Q, Gao Z, Alarcon RM, Ye J, Yun Z. A role of miR-27 in the regulation of adipogenesis. Febs Journal, 2009, 276(8): 2348-2358. [15]Wang T, Li M, Guan J, Li P, Wang H, Guo Y, Shuai S, Li X. MicroRNAs miR-27a and miR-143 regulate porcine adipocyte lipid metabolism. International Journal of Molecular Sciences, 2011, 12(11): 7950-7959. [16]Ji J, Zhang J, Huang G,Qian J, Wang X, Mei S. Over-expressed microRNA-27a and 27b influence fat accumulation and cell proliferation during rat hepatic stellate cell activation. Febs Letters, 2009, 583(4): 759-766. [17]Karbiener M, Fischer C, Nowitsch S, Opriessnig P, Papak C, Ailhaud G, Dani C, Amri EZ, Scheideler M. microRNA miR-27b impairs human adipocyte differentiation and targets PPARγ. Biochemical and Biophysical Research Communications, 2009, 390(2): 247-251. [18]Kimura I, Konishi M, Asaki T, Furukawa N, Ukai K, Mori M, Hirasawa A, Tsujimoto G, Ohta M, Itoh N, Fujimoto M. Neudesin, an extracellular heme-binding protein, suppresses adipogenesis in 3T3-L1 cells via the MAPK cascade. Biochemical and Biophysical Research Communications, 2009, 381(1): 75-80. [19]Wang M, Wang JJ, Li J, Park K, Qian X, Ma JX, Zhang SX. Pigment epithelium-derived factor suppresses adipogenesis via inhibition of the MAPK/ERK pathway in 3T3-L1 preadipocytes. American Journal of Physiology-Endocrinology and Metabolism, 2009, 297(6): E1378-1387. [20]Bowers RR, Lane MD. Wnt signaling and adipocyte lineage commitment. Cell Cycle, 2008, 7(9): 1191-1196. [21]Prestwich TC, Macdougald OA. Wnt/beta-catenin signaling in adipogenesis and metabolism. Current Opinion in Cell Biology, 2007, 19(6): 612-617. [22]Kennell JA, MacDougald OA. Wnt signaling inhibits adipogenesis through beta-catenin-dependent and-independent mechanisms. Journal of Biological Chemistry, 2005, 280(25): 24004-24010. [23]Li HX, Luo X, Liu RX, Yang YJ, Yang GS. Roles of Wnt/β-catenin signaling in adipogenic differentiation potential of adipose-derived mesenchymal stem cells. Molecular and Cellular Endocrinology, 2008, 291(1-2): 116-124. [24]Suh JM, Gao X, McKay J, McKay R, Salo Z, Graff JM. Hedgehog signaling plays a conserved role in inhibiting fat formation. Cell Metabolism, 2006, 3(1): 25-34. [25]Li G, Li Y, Li X, Ning X, Li M, Yang G. MicroRNA Identity and Abundance in Developing Swine Adipose Tissue as Determined by Solexa Sequencing. Journal of Cellular Biochemistry, 2011, 112(5): 1318-1328. [26]Takanabe R, Ono K, Abe Y, Takaya T, Horie T, Wada H, Kita T, Satoh N, Shimatsu A, Hasegawa K. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet. Biochemical and Biophysical Research Communications, 2008, 376(4): 728-732. |
[1] | PAN DaoXing, WANG Zhen, YANG MaoLin, LIAO QiaoPing, YANG ChangPing, WU YuPing, WANG JinZhou, LIU RuoYu. Association of the PPARγ and C/EBPα Gene Expression with Intramuscular Fat Content in Different Varieties of Pig [J]. Scientia Agricultura Sinica, 2017, 50(1): 171-182. |
[2] | ZHANG Xin-chen, ZHAO Qi-ling, CHEN Meng-meng, SUN Jia-rui, BAO En-dong, ZHANG Shu-xia, Lü Ying-jun. Signal Pathway of Interferon-β Induced by Porcine Circovirus Type 2 in PK-15 Cells [J]. Scientia Agricultura Sinica, 2016, 49(10): 2008-2016. |
[3] | ZHAO Jing-xian, LI Juan, YAN Xing-rong, NI He-min, CHEN Yan, ZHANG Lu-pei, GAO Hui-jiang, XU Shang-zhong, LI Jun-ya1, GAO Xue. The Biological Identification of FABP4 Transgenic Cattle [J]. Scientia Agricultura Sinica, 2014, 47(24): 4895-4903. |
[4] | LI Guo-Xi, WANG Le-Le, SUN Gui-Rong, KANG Xiang-Tao. Tissue Expression Profile and Bioinformatics Analysis of Abundance miR-101 from the Hypothalamus of Chicken [J]. Scientia Agricultura Sinica, 2013, 46(6): 1247-1255. |
[5] | CHEN Yang, HUANG Zheng-Yang, ZHANG Yang, LI Xin-Yu, ZHEN Ting, WU Ning-Zhao, XU Qi, CHEN Guo-Hong. Molecular Cloning and Preliminary Functional Analysis of Domains of Duck Retinoic Acid Inducible Gene I [J]. Scientia Agricultura Sinica, 2013, 46(10): 2094-2102. |
[6] | LIAO Fang-Fang, YUAN Si-Chun, ZHANG Zhong-Wen, WU Guo-Juan. Constructions of Arkadia and UCH37 Expression Vectors and Effects on TGF-β1/Smad7 Signal Pathway [J]. Scientia Agricultura Sinica, 2012, 45(9): 1848-1856. |
[7] | FENG Shao-Zhen, LI Jiao, WU Xiao-Chan, CAO Wei-Sheng, LIAO Ming. The Function of PI3K/Akt Signal Pathway During ALV-J Infection in DF-1 Cells [J]. Scientia Agricultura Sinica, 2011, 44(16): 3446-3453. |
[8] | HUANG Ye-Chuan, HE Zhi-Fei, LI Hong-Jun, QIN Gang, WANG Ting, MA Ming-Hui. The Flavor Contribution of Subcutaneous and Intramuscular Fat to Pork [J]. Scientia Agricultura Sinica, 2011, 44(10): 2118-2130. |
[9] |
ZHANG Hong-yu,SHAN An-shan,XU Lin,LI Jian-ping,CHENG Bao-jing . Effects of Protein Restriction in Sows During Lactation on Serum Lipids, the Content of Intramuscular Fat, and H-FABP mRNA Expression in the Filial Pigs#br# [J]. Scientia Agricultura Sinica, 2010, 43(6): 1229-1234 . |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 330
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 218
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|