Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (8): 1530-1539.doi: 10.3864/j.issn.0578-1752.2016.08.010

• HORTICULTURE • Previous Articles     Next Articles

Identification and Analysis of Phosphoproteins in Red and Non-Red Apple Cultivars

YUAN Ke-jun, CHENG Lai-liang, NIU Qing-lin, WANG Jiang-yong   

  1. Shandong Institute of Pomology, Tai’an 271000, Shandong
  • Received:2015-12-23 Online:2016-04-16 Published:2016-04-16

Abstract: 【Objective】Apple skin color is an important fruit quality factor. In order to make clear whether there is phosphorylation during apple fruit pigmentation, large scale identification of phosphoproteins and phosphopeptides was conducted. 【Method】The fruit peels of red skinned apple cultivar ‘Gala’ and non-red skinned apple cultivar ‘Golden Delicious’ were used to extract protein. Fruit protein was digested with trypsin, the resulting peptides were subjected to a step of TiO2 beads enrichment to obtain phosphopeptides, and a step of HPLC separation.Q-Exactive mass spectrometer was used to identify phosphopeptides. The software Mascot 2.2 and Proteome Discoverer1.4 (thermo) were used to identify proteins in the database Uniprot_Maloideae.fasta. Then data analysis was performed to provide information of identified phosphorylation sites in red and non-red apple cultivars.【Result】 1 323 proteins, 3 339 peptides, 225 phosphopeptides were identified and about 200-225 phosphoproteins were found in the red apple cultivars, 569 proteins, 1 152 peptides, 128 phosphopeptides were identified and about 117-128 phosphoproteins were found in the non-red apple cultivars.Comparative analysis indicated that 43 phosphopeptides were only found in non-red apple cultivars, 139 phosphopeptides were only discovered in red apple cultivars, which proved that more phosphoproteins produced in red apple cultivars, including plasma membrane H+-ATPase with two phosphorylation sites in serine, a major allergen and two protein kinases with phosphorylation site in threonine, three transcription factors, a potassium transporter and a putative protein receptor kinase. Among the identified proteins in the red and non-red apple cultivars, the phosphorylation sites were mainly found in threonine, some in serine, seldom in tyrosine. There was no phosphorylation site in the C4H, 4CL, CHS, CHI, F3′H, FLS, LDOX and UFGT proteins of anthocyanin synthesis pathway and protein WD40, the MYBR transcription factor with phosphorylation site was found in both red and non-red apple cultivars. 【Conclusion】 Some phosphoproteins only produced in red apple cultivars, including plasma membrane H+-ATPase related to apple pigmentation. Apple fruit pigmentation is possibly influenced by protein phosphorylation.

Key words: apple, phosphorylation, proteome, protein kinase, pigmentation

[1]    林丛, 任亮亮, 姜颖, 贺福初. 小鼠肝脏磷酸化蛋白质组鉴定及磷酸化修饰激酶的分析. 军事医学, 2015, 39(6): 407-412.
Lin C, Ren L L, Jiang Y, He F C. Mouse liver phosphoproteome methodology optimization and kinase analysis. Military Medical Science, 2015, 39(6): 407-412. (in Chinese)
[2]    甄艳, 李春映, 陆叶, 施季森. 植物磷酸化蛋白质组研究进展. 基因组学与应用生物学, 2014, 33(6): 1405-1414.
Zhen Y, Li C Y, Lu Y, Shi J S. Research progresses on phosphorylation of plant phosphoproteome. Genomics and Applied Biology, 2015, 39(6): 407-412. (in Chinese)
[3]    刘秋林, 钟月仙, 万伟峰, 田甜, 林授楷, 黄健, 薛李春, 艾玉芳, 柯玉琴, 何华勤. 植物磷酸化蛋白质组学研究进展. 福建农林大学学报 (自然科学版), 2015, 44(3): 225-231.
Liu Q L, Zhong Y X, Wan W F, Tian T, Lin S K, Huang J, Xue LC, Ai Y F, Ke Y Q, He H Q. New advance in the research of plant phosphoproteome. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2015, 44(3): 225-231. (in Chinese)
[4]    Taylor S S, Kornev A P. Protein kinases: evolution of dynamic regulatory proteins. Trends in Biochemical Sciences, 2011, 36(2): 65-77.
[5]    Lim Y P. Mining the tumor phosphoproteome for cancer markers. Clinical Cancer Research, 2005, 11(9): 3163-3169.
[6]    苑克俊, 张毅, 孙瑞红, 张振成. 苹果、葡萄花色苷生物合成研究进展. 山东农业科学, 1998(6): 46-49.
Yuan K J, Zhang Y, Sun R H, Zhang ZC. Research advancement of anthocyanin biosynthesis in apple and grape. Journal of Shandong Agricultural Science, 1998(6): 46-49. (in Chinese)
[7]    张学英, 张上隆, 骆军, 叶正文, 李世诚. 果实花色素苷合成研究进展. 果树学报, 2004, 21(5): 456-460.
Zhang X Y, Zhang S L, Luo J, Ye Z W, Li S C. Advances in research on fruit anthocyanin synthesis. Journal of Fruit Sciences, 2004, 21(5): 456-460. (in Chinese)
[8]    吴江, 程建徽, 杨夫臣. 植物花色素苷生物合成的转录调控. 细胞生物学杂志, 2006, 28(3): 453-456.
Wu J, Cheng J H, Yang F C. Transcriptional regulation of anthocyanin biosynthesis in plants. Chinese Journal of Cell Biology, 2006, 28(3): 453-456. (in Chinese)
[9]    Takos A M, Jaffe F W, Jacob S R, Bogs J, Robinson S P, Walker A  R. Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiology, 2006, 142(3): 1216-1232.
[10]   Zhu Y M, Evans K, Peace C. Utility testing of an apple skin color MdMYB1 marker in two progenies. Molecular Breeding, 2011, 27(1): 525-532.
[11]   Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, Moriguchi T. Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiology, 2007, 48(7): 958-970.
[12]   Yuan K J, Wang C J, Wang J H, Xin L, Zhou G F, Li L G, Shen G N. Analysis of the MdMYB1 gene sequence and development of new molecular markers related to apple skin color and fruit-bearing traits. Molecular Genetics and Genomics, 2014, 289(6): 1257-1265.
[13]   Espley R V, Hellens R P, Putterill J, Stevenson D E, Kutty-Amma S, Allan A C. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. The Plant Journal, 2007, 49: 414-427.
[14]   Li Y Y, Mao K, Zhao C, Zhao X Y, Zhang H L, Shu H R, Hao Y J. MdCOP1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynthesis and red fruit coloration in apple. Plant Physiology, 2012, 160(2): 1011-1022.
[15]   Sharma S B, Dixon R A. Metabolic engineering of proanthocyanidins by ectopic expression of transcription factors in Arabidopsis thaliana. The Plant Journal, 2005, 44: 62-75.
[16]   赵文军, 张迪, 马丽娟, 柴友荣. 原花青素的生物合成途径、功能基因和代谢工程. 植物生理学通讯, 2009, 45(5): 509-519.
Zhao W J, Zhang D, Ma L J, Chai Y R. Biosynthetic pathway, functional genes and metabolic engineering of proanthocyanidins. Plant Physiology Communications, 2009, 45(5): 509-519. (in Chinese)
[17]   An X H, Tian Y, Chen K Q, Wang X F, Hao Y J. The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation. Journal of Plant Physiology, 2012, 169(7): 710-717.
[18]   Agrawal G K, Thelen J J. Large scale identification and quantitative profiling of phosphoproteins expressed during seed filling in oilseed rape. Molecular and Cellular Proteomics, 2006, 5: 2044-2059.
[19]   周天娥, 房宇, 冯毛, 韩宾, 张兰, 李荣丽, 李建科. 中华蜜蜂与意大利蜜蜂雄蜂胚胎发育差异蛋白质组与磷酸化蛋白质组分析. 中国农业科学, 2013, 46(2): 394-408.
Zhou T E, Fang Y, Feng M, Han B, Zhang L, Li R L, Li J K. Comparative analysis of proteome and phosphoproteome of drone embryos between Apis cerana and A. mellifera ligustica. Scientia Agricultura Sinica, 2013, 46(2): 394-408. (in Chinese)
[20]   鲁小山, 韩宾, 张兰, 冯毛, 房宇, 李荣丽, 周天娥, 李建科. 王浆高产蜜蜂咽下腺磷酸化蛋白质组分析. 中国农业科学, 2013, 46(23): 5050-5057.
Lu X S, Han B, Zhang L, Feng M, Fang Y, Li R L, Zhou T E, Li J K. Phosphoproteome analysis of hypopharyngeal glands of high royal jelly producing bee (Apis mellifera L.). Scientia Agricultura Sinica, 2013, 46(23): 5050-5057. (in Chinese)
[21]   Nguyen T H N, Brechenmacher L, Aldrich J T, Clauss T R, Gritsenko M A, Hixson K K, Libault M, Tanaka K, Yang F, Yao Q, Pasa-Tolic L, Xu D, Nguyen H T, Stacey G. Quantitative phosphoproteomic analysis of soybean root hairs inoculated with Bradyrhizobium japonicum. Molecular and Cellular Proteomics, 2012, 11: 1140-1155.
[22]   Medzihradszky M, Bindics J, Ádám É, Viczián A, Klement É, Lorrain S, Gyula P, Mérai Z, Fankhauser C, Medzihradszky K F, Kunkel T, Schäfer E, Nagy F. Phosphorylation of phytochrome B inhibits light-induced signaling via accelerated dark reversion in Arabidopsis. Plant Cell, 2013, 25(2): 535-544.
[23]   Chao Q, Liu X Y, Mei Y C, Gao Z F, Chen Y B, Qian C R, Hao Y B, Wang B C. Light-regulated phosphorylation of maize phosphoenolpyruvate carboxykinase plays a vital role in its activity. Plant Molecular Biology, 2014, 85(1/2): 95-105.
[24]   张凌云, 张娜, 潘秋红, 段长青, 张大鹏. 苹果果实中蛋白质磷酸化对淀粉酶的激活. 园艺学报, 2002, 30(4): 455-458.
Zhang L Y, Zhang N, Pan Q H, Duan C Q, Zhang D P. Amylase activities are stimulated by protein phosphorylation in apple fruit. Acta Horticulturae Sinica, 2002, 30(4): 455-458. (in Chinese)
[25]   Larsen M R, Thingholm T E, Jensen O N, Roepstorff P, Jørgensen T  J. Highly selective enrichment of phosphorylated peptides from mixtures using titanium dioxide microcolumns. Molecular and Cellular Proteomics, 2005, 47: 873-886.
[26]   倪俊霞, 严学兵, 王成章, 吴鹏举. 植物光受体分子生物学研究进展. 草业科学, 2010, 27(7): 94-104.
Ni J X, Yan X B, Wang C Z, Wu P J. Research progress of light receptors in plants. Pratacultural Science, 2010, 27(7): 94-104. (in Chinese)
[27]   Sharma R. Phytochrome: A serine kinase illuminates the nucleus. Current Science, 2001, 80(2): 178-188.
[28]   Kinoshita T, Emi T, Tominaga M. Blue-light and phosphorylation- dependent binding of a 14-3-3 protein to photropins in stomatal guard cells of broad bean. Plant Physiology, 2003, 133: 1453-1463.
[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] ZHANG YeJun,ZHANG DeQuan,HOU ChengLi,BAI YuQiang,REN Chi,WANG Xu,LI Xin. Effects of Protein Phosphorylation on the Dissociation and Acetylation Level of Actomyosin [J]. Scientia Agricultura Sinica, 2022, 55(7): 1433-1444.
[3] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[4] LU Xiang, GAO Yuan, WANG Kun, SUN SiMiao, LI LianWen, LI HaiFei, LI QingShan, FENG JianRong, WANG DaJiang. Analysis of Aroma Characteristics in Different Cultivated Apple Strains [J]. Scientia Agricultura Sinica, 2022, 55(3): 543-557.
[5] GAO XiaoQin,NIE JiYun,CHEN QiuSheng,HAN LingXi,LIU Lu,CHENG Yang,LIU MingYu. Geographical Origin Tracing of Fuji Apple Based on Mineral Element Fingerprinting Technology [J]. Scientia Agricultura Sinica, 2022, 55(21): 4252-4264.
[6] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[7] XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency [J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612.
[8] WANG RongHua,MENG LiFeng,FENG Mao,FANG Yu,WEI QiaoHong,MA BeiBei,ZHONG WeiLai,LI JianKe. Proteome Analysis of the Salivary Gland of Nurse Bee from High Royal Jelly Producing Bees and Italian Bees [J]. Scientia Agricultura Sinica, 2022, 55(13): 2667-2684.
[9] SONG BoWen,YANG Long,PAN YunFei,LI HaiQiang,LI Hao,FENG HongZu,LU YanHui. Effects of Agricultural Landscape on the Population Dynamic of Grapholitha molesta Adults in Apple Orchards in Southern Xinjiang [J]. Scientia Agricultura Sinica, 2022, 55(1): 85-95.
[10] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[11] HOU ChengLi,HUANG CaiYan,ZHENG XiaoChun,LIU WeiHua,YANG Qi,ZHANG DeQuan. Changes of Antioxidant Activity and Its Possible Mechanism in Tan Sheep Meat in Different Postmortem Time [J]. Scientia Agricultura Sinica, 2021, 54(23): 5110-5124.
[12] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[13] ZHAO WeiSong,GUO QingGang,DONG LiHong,WANG PeiPei,SU ZhenHe,ZHANG XiaoYun,LU XiuYun,LI SheZeng,MA Ping. Transcriptome and Proteome Analysis of Bacillus subtilis NCD-2 Response to L-proline from Cotton Root Exudates [J]. Scientia Agricultura Sinica, 2021, 54(21): 4585-4600.
[14] LI ZiTeng,CAO YuHan,LI Nan,MENG XiangLong,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Molecular Variation and Phylogenetic Relationship of Apple Scar Skin Viroid in Seven Cultivars of Apple [J]. Scientia Agricultura Sinica, 2021, 54(20): 4326-4336.
[15] SONG ChunHui,CHEN XiaoFei,WANG MeiGe,ZHENG XianBo,SONG ShangWei,JIAO Jian,WANG MiaoMiao,MA FengWang,BAI TuanHui. Identification of Candidate Genes for Waterlogging Tolerance in Apple Rootstock by Using SLAF-seq Technique [J]. Scientia Agricultura Sinica, 2021, 54(18): 3932-3944.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!