Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (20): 3863-3875.doi: 10.3864/j.issn.0578-1752.2018.20.005

• THEORETICAL BASIS • Previous Articles     Next Articles

Yield Effect and Nitrogen Fertilizer Screening of One-off Application of Controlled Release Fertilizer for Winter Wheat

XiaoBin WU1(), DeShui TAN1(), HaiTao LIN1, GuoLiang ZHU2, ZiShuang LI3, AiLing HE4, JianHua GUO5, ZhaoHui LIU1()   

  1. 1Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences/Key Laboratory of Wastes Matrix Utilization, Ministry of Agriculture/Shandong Provincial Key Laboratory of Plant Nutrition and Fertilizer, Jinan 250100, Shandong
    2Taian Academy of Agricultural Sciences, Tai’an 271000, Shandong
    3Dezhou Academy of Agricultural Sciences, Dezhou, 253015 Shandong
    4Institute of Plant Nutrition, Agricultural Resources and Environment Science, Henan Academy of Agricultural Sciences, Zhengzhou 450002
    5Beijing Research Center for Information Technology in Agriculture, Beijing 100097
  • Received:2018-01-18 Accepted:2018-07-17 Online:2018-10-16 Published:2018-10-16

Abstract:

【Objective】 It is very important to investigate the suitable controlled-release fertilizer (CRF) for different soil types which can provide scientific basis and technical support for one-off application of CRF during wheat production. The aim of the present study was to investigate the effect of CRF on wheat yield from the perspectives of wheat nutrient uptake and soil nutrient supplying.【Method】Field experiments were conducted at different experimental sites (TA, ZMD, DZ, HZ and SJZ) in three years (2013-2014, 2014-2015 and 2015-2016). There were eight treatments: Control (CON), OPT and CRF (A1, A2, B, C, D and E) treatments. 【Result】The field results at TA showed that treatments A2, C and E were benefit for improving wheat population and increasing grain yield because of the synchronization of nitrogen (N) release with N requirement. The average result of three years showed that, compared with OPT, the early winter tillers, the maximum tillers and the effective tillers of A2, C and E treatments improved 5.7%-14.7%, 10.9%-22.2% and 4.5%-6.0%, respectively. The yield of A2, C and E treatments increased 2.6%-4.6%. The three-year results at ZMD showed that nitrogen recovery use efficiency (NRE) and total N uptake under A2, C and E treatments increased 7.7%-11% and 4.3%-5.3% than OPT treatment, respectively. The field results of SJZ showed that A2 and D synchronized N release with N requirement of wheat. The average results of three years showed that the NRE and total N uptake of A2 and D treatments increased by 6.4%-26% and 2.8%-12%, respectively, and the yield increased by 1.7%-5.6% compared with the OPT treatment. The results at DZ and HZ showed that A2 maintained high yield of wheat in three consecutive years compared with OPT. The application effect of other CRF treatments varied greatly from year to year, but with the implementation of the experiment, the application effect had been stable year by year. Compared with OPT treatment, the yield of A2 and C treatments at DZ and HZ in 2015-2016 improved 1.4%-8.3% and 1.5%-4.8%, respectively. Overall, A2 and C showed a steady trend of grain yield increase compared with OPT.【Conclusion】The application effect of CRF varied with soil type. The synchronization of N release in the field with N requirement of wheat was essential to improve yield.

Key words: controlled-release nitrogen fertilizers, soil types, nitrogen requirement, nutrient release, spatio-temporal matching

Table 1

The specific situation at different experimental sites"

试验地点
Experimental sites
经纬度
Longitude and latitude
土壤类型
Soil type
年均气温
Mean temperature (℃)
年均降水量
Average rainfall (mm)
小麦品种
Wheat variety
泰安Tai’an (TA) 117°08′ E, 36°11′ N 砂姜黑土Shajiang black soil 13.6 903.2 鲁麦22 Lumai 22
德州Dezhou (DZ) 116°20′ E, 37°21′ N 潮土Fluvo-aquic soil 12.9 547.5 济麦22 Jimai 22
驻马店Zhumadian (ZMD) 114°05′ E, 33°26′ N 砂姜黑土Shajiang black soil 15.5 784.8 新农979 Xinnong 979
菏泽Heze (HZ) 115°29′ E, 35°09′ N 潮土Fluvo-aquic soil 13.7 655.7 矮抗58 Aikang 58
石家庄Shijiazhuang (SJZ) 114°23′ E, 38°08′ N 褐土Cinnamon soil 12.0 560.0 邢麦6号 Xingmai 6

Table 2

Initial test of topsoil (0-30 cm) at different experimental sites"

试验地点
Experimental sites
pH 有机质
Organic carbon (g·kg-1)
全氮
Total N (g·kg-1)
无机氮
Nmin (mg·kg-1)
速效钾
available K (mg·kg-1)
速效磷
Olsen-P (mg·kg-1)
泰安TA 6.99 17.0 1.6 175 47.5
德州DZ 8.01 7.2 1.4 77.2 25.9
驻马店ZMD 6.20 15.1 1.1 164 13.7
菏泽HZ 8.10 12.3 18.3 105 13.9
石家庄SJZ 8.50 17.4 1.1 132 44.9

Table 3

The N, P2O5 and K2O application rate at different experimental sites and the N application rate of the different treatments applied before sowing (BS) and at jointing stage (JS)"

试验地点
Experimental sites
N (kg·hm-2) P2O5
(kg·hm-2)
K2O
(kg·hm-2)
播前BS 拔节期JS 总量Total
泰安
TA
CON 0 0 0 105 75
OPT 112.5 112.5 225 105 75
CRF (A1-E) 225 0 225 105 75
德州
DZ
CON 0 0 0 105 75
OPT 112.5 112.5 225 105 75
CRF (A1-E) 225 0 225 105 75
驻马店
ZMD
CON 0 0 0 90 90
OPT 97.5 97.5 195 90 90
CRF (A1-E) 195 0 195 90 90
菏泽
HZ
CON 0 0 0 135 67.5
OPT 134.4 105.6 240 135 67.5
CRF (A1-E) 240 0 240 135 67.5
石家庄
SJZ
CON 0 0 0 90 80
OPT 100 100 200 90 80
CRF (A1-E) 200 0 200 90 80

Table 4

The variance analysis results of year, site and treatment on yield, N uptake and NRE"

因素
Factor
产量Yield 吸氮量N uptake 氮肥表观回收率NRE
df F df F df F
年份Year 2 16.8*** 2 9.18*** 2 94.9***
地点Site 4 460*** 1 1320*** 1 1069***
处理Treatment 7 294*** 7 296*** 6 5.77***
年份×地点 (Year×Site) 8 7.82*** 2 0.07ns 2 143***
年份×处理 (Year×Treatment) 14 2.74*** 14 2.78** 12 1.30ns
地点×处理 (Site×Treatment) 28 20.2*** 7 25.5*** 6 10.3***
年份×地点×处理 (Year×Site×Treatment) 56 2.83*** 14 3.78*** 12 1.89*

Fig. 1

Wheat grain yields as affected with different N treatments at different experimental sites from 2013 to 2016 Each value is the mean of three replicates (±SE). Different lower case letters denote significant difference (P<0.05) among different N treatments. The same as below"

Table 5

Yield components of wheat across different experimental sites (TA, DZ and ZMD), different years (2013-2016) and all N treatments"

处理
Treatment
穗数(×104) spikes/(666.7 m2) 穗粒数Grains/spike 千粒重1000-grain weight (g)
2013-2014 2014-2015 2015-2016 2013-2014 2014-2015 2015-2016 2013-2014 2014-2015 2015-2016
泰安 TA
对照 CON 43.5d 39.8c 44.0b 30.4ab 34.9c 31.6b 45.9bc 39.2a 47.5a
优化施肥 OPT 45.9cd 44.7ab 49.9a 32.2a 36.7bc 34.3a 46.5ab 37.9bc 44.3bc
控释氮肥A1 (A1) 47.2bc 42.9bc 49.4a 31.1ab 38.7ab 34.2a 44.7c 37.0bc 44.9bc
控释氮肥A2 (A2) 50.3a 46.1ab 50.3a 29.9b 38.8ab 33.8ab 46.2abc 37.8abc 44.0c
控释氮肥B (B) 48.7abc 45.9ab 50.9a 30.9ab 37.8ab 35.2a 47.5a 38.5ab 45.2b
控释氮肥C (C) 50.4a 47.1a 51.3a 30.1ab 39.6a 34.6a 46.0abc 37.9abc 44.9bc
控释氮肥D (D) 49.8ab 44.0ab 51.1a 31.2ab 38.5ab 34.4a 44.9c 36.4c 45.0bc
控释氮肥E (E) 50.0ab 45.4ab 51.8a 29.9b 38.2ab 34.6a 45.8bc 38.6ab 44.9bc
德州 DZ
对照 CON 21.2d 11.5b 11.5d 17.7d 11.8d 15.3c 41.0b 39.0c 41.9c
优化施肥 OPT 24.0bc 21.2a 21.2bc 36.0a 27.3c 27.8b 51.2a 48.7a 52.9a
控释氮肥A1 (A1) 24.7b 21.8a 21.8ab 29.0c 27.8bc 29.3ab 52.9a 45.6b 50.0b
控释氮肥A2 (A2) 25.8a 20.6a 22.7a 30.0bc 27.4c 29.0ab 53.1a 48.8a 49.7b
控释氮肥B (B) 24.7b 21.8a 20.5bc 31.3b 29.7ab 29.0ab 51.0a 46.7ab 50.4ab
控释氮肥C (C) 24.4b 21.6a 20.4bc 30.0bc 30.4a 29.4a 53.3a 46.4ab 49.8b
控释氮肥D (D) 23.2c 20.5a 20.5bc 28.7c 29.1abc 29.2ab 53.8a 47.8ab 51.3ab
控释氮肥E (E) 23.8c 21.0a 20.3c 28.7c 30.8a 29.8a 53.3a 49.3a 49.7b
驻马店 ZMD
对照 CON 31.5b 31.6b 31.5b 35.3b 34.8b 35.0b 40.5b 40.3b 40.3b
优化施肥 OPT 37.5a 37.5a 39.2a 36.3a 36.3a 36.7a 41.8b 41.5b 42.5a
控释氮肥A1 (A1) 37.6a 37.3a 37.2a 36.2a 36.0a 35.8a 42.6a 42.6a 42.5a
控释氮肥A2 (A2) 38.2a 37.9a 38.0a 36.4a 36.2a 36.0a 42.8a 42.6a 42.5a
控释氮肥B (B) 37.8a 37.8a 37.7a 36.3a 36.3a 36.2a 42.6a 42.6a 42.6a
控释氮肥C (C) 39.0a 38.8a 38.7a 36.3a 36.3a 36.0a 42.5ab 42.3ab 42.2ab
控释氮肥D (D) 38.5a 38.0a 38.2a 36.2a 36.2a 36.4a 42.5ab 42.4ab 42.2ab
控释氮肥E (E) 38.4a 38.8a 39.2a 36.5a 36.5a 36.5a 42.6a 42.6a 42.3ab

Fig. 2

Effects of different N treatments on NRE and total N uptake"

Table 6

Population development as affected by different N treatments"

处理
Treatment
泰安 TA 德州 DZ
2013-2014 2014-2015 2015-2016 2013-2014 2014-2015 2015-2016
冬前分蘖Early winter tillers (×104 tillers/667m2)
对照 CON 47.6bc 74.0c 75.4c 50.3b 46.9b 47.9b
优化施肥 OPT 43.6c 82.1b 78.4c 71.9a 66.9a 67.4a
控释氮肥A1 (A1) 44.8c 81.5b 78.1c 71.9a 66.9a 68.1a
控释氮肥A2 (A2) 56.9a 87.8a 89.2a 74.1a 68.9a 69.6a
控释氮肥B (B) 44.2c 82.4ab 80.5bc 69.0a 64.3a 64.8a
控释氮肥C (C) 49.2abc 85.0ab 81.5bc 65.4a 60.9a 64.4a
控释氮肥D (D) 51.0abc 86.2ab 87.7ab 68.3a 63.6a 66.7a
控释氮肥E (E) 55.8bc 88.1a 80.9bc 67.6a 62.9a 66.4a
最大分蘖Maximum tillers (×104 tillers/667m2)
对照 CON 91.4d 115c 103d 58.5d 54.5d 62.7e
优化施肥 OPT 118c 119c 105cd 83.9abc 78.1abc 85.7ab
控释氮肥A1 (A1) 142ab 142b 110bc 96.8a 90.1a 91.8a
控释氮肥A2 (A2) 119c 148ab 114abc 91.5ab 85.2ab 90.9a
控释氮肥B (B) 124c 156a 113abc 82.1bc 76.4bc 81.2bc
控释氮肥C (C) 135b 143b 116ab 73.7c 68.6c 69.6de
控释氮肥D (D) 145a 156a 120ab 81.2bc 75.6bc 75.7cd
控释氮肥E (E) 140ab 156a 122a 76.1c 70.9c 72.7cd
有效分蘖Effective tillers (×104 tillers/667m2)
对照 CON 43.5d 39.8c 44.0b 21.2d 11.5b 12.8b
优化施肥 OPT 45.9cd 44.7ab 49.9a 24.0bc 21.2a 21.8a
控释氮肥A1 (A1) 47.2bc 42.9bc 49.4a 24.7b 21.8a 21.9a
控释氮肥A2 (A2) 50.3a 46.1ab 50.3a 25.8a 20.6a 21.8a
控释氮肥B (B) 48.7abc 45.9ab 50.9a 24.7b 21.8a 21.1a
控释氮肥C (C) 50.4a 47.1a 51.3a 24.4b 21.6a 20.4a
控释氮肥D (D) 49.8ab 44.0ab 51.1a 23.2c 20.5a 22.3a
控释氮肥E (E) 50.0ab 45.4ab 51.8a 23.8bc 21.0a 21.3a

Fig. 3

Effects of different N treatments on soil Nmin"

[1] 张卫峰, 马文奇, 王雁峰, 张福锁. 中国农户小麦施肥水平和效应的评价. 土壤通报, 2008, 39(5): 1049-1055.
doi: 10.3321/j.issn:0564-3945.2008.05.017
ZHANG W F, MA W Q, WANG Y F, ZHANG F S.Assessment on farmers' fertilization behavior for wheat production in china.Chinese Journal of Soil Science, 2008, 39(5): 1049-1055. (in Chinese)
doi: 10.3321/j.issn:0564-3945.2008.05.017
[2] 叶优良, 韩燕来, 谭金芳, 崔振岭. 中国小麦生产与化肥施用状况研究. 麦类作物学报, 2007, 27(1): 127-133.
doi: 10.7606/j.issn.1009-1041.2007.01.031
YE Y L, HAN Y L, TAN J F, CUI Z L.Wheat production and fertilizer application in China.Journal of Triticeae Crops, 2007, 27(1): 127-133. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2007.01.031
[3] 王旭, 李贞宇, 马文奇, 张福锁. 中国主要生态区小麦施肥增产效应分析. 中国农业科学, 2010, 43(12): 2469-2476.
WANG X, LI Z Y, MA W Q, ZHANG F S.Effects of fertilization on yield increase of wheat in different agro-ecological regions of china.Scientia Agricultura Sinica, 2010, 43(12): 2469-2476. (in Chinese)
[4] ZHANG W, DOU Z, HE P.Improvements in manufacture and agricultural use of nitrogen fertilizer in China offer scope for significant reductions in greenhouse gas emissions.Proceedings of the National Academy of Sciences, 2013, 110: 8375-8380.
doi: 10.1073/pnas.1210447110 pmid: 23671096
[5] OITA A, MALIK A, KANEMOTO K, GESCHKE A, NISHIJIMA S, LENZEN M.Substantial nitrogen pollution embedded in international trade.Nature Geoscience, 2016, 9(2): 111-115.
doi: 10.1038/ngeo2635
[6] LIU X J, JU X T, ZHANG Y, HE C E, KOPSCH J, ZHANG F S.Nitrogen deposition in agroecosystems in the Beijing area.Agriculture, Ecosystems & Environment, 2006, 113(1): 370-377.
doi: 10.1016/j.agee.2005.11.002
[7] CONLEY D J, PAERL H W, HOWARTH R W, BOESCH D F, SEITZINGER S P, HAVENS K E, LANCELOT C, LIKENS G E.Controlling eutrophication: nitrogen and phosphorus.Science, 2009, 323(5917): 1014-1015.
doi: 10.1126/science.1167755
[8] JU X T, KOU C L, ZHANG F S, CHRISTIE P.Nitrogen balance and groundwater nitrate contamination: comparison among three intensive cropping systems on the North China Plain.Environmental Pollution, 2006, 143(1): 117-125.
doi: 10.1016/j.envpol.2005.11.005 pmid: 16364521
[9] YANG Y C, ZHANG M, LI Y C, FAN X H, GENG Y Q.Controlled release urea improved nitrogen use efficiency, activities of leaf enzymes, and rice yield.Soil Science Society of America Journal, 2012, 76(6): 2307-2317.
doi: 10.2136/sssaj2012.0173
[10] GENG J B, MA Q, ZHANG M, LI C L, LIU Z G, LYV X X, ZHENG W K.Synchronized relationships between nitrogen release of controlled release nitrogen fertilizers and nitrogen requirements of cotton.Field Crops Research, 2015, 184: 9-16.
doi: 10.1016/j.fcr.2015.09.001
[11] GENG J B, MA Q, CHEN J Q, ZHANG M, LI C L, YANG Y C, YANG X Y, ZHANG W T, LIU Z G.Effects of polymer coated urea and sulfur fertilization on yield, nitrogen use efficiency and leaf senescence of cotton.Field Crops Research, 2016, 187: 87-95.
doi: 10.1016/j.fcr.2015.12.010
[12] 谢培才, 马冬梅, 张兴德, 刘传珍. 包膜缓释肥的养分释放及其增产效应. 土壤肥料, 2005(1): 23-28.
XIE P C, MA D M, ZHANG X D, LIU C Z.The nutrient release rate and increase production of film-coated and release fertilizer.Soils and Fertilizers, 2005(1): 23-28. (in Chinese)
[13] 孙云保, 张民, 郑文魁, 耿计彪, 杨力, 李家康. 控释氮肥对小麦-玉米轮作产量和土壤养分状况的影响. 水土保持学报, 2014, 28(4): 115-121.
SUN Y B, ZHANG M, ZHENG W K, GENG J B, YANG L, LI J K.Effects of controlled release nitrogen fertilizer on yield and soil nutrient regime of wheat-corn rotation system.Journal of Soil and Water Conservation, 2014, 28(4): 115-121. (in Chinese)
[14] 隋常玲, 张民. 15N示踪控释氮肥的氮肥利用率及去向研究. 西北农业学报, 2014, 23(9): 120-127.
SUI C L, ZHANG M.Nitrogen recovery and fate of polymer coated 15n-urea fertilizers under corn-wheat rotation.Acta Agriculturae Boreali-Occidentalis Sinica, 2014, 23(9): 120-127. (in Chinese)
[15] 张务帅. 控释氮钾肥配比及施肥方式对玉米、小麦生长和土壤养分变化的影响[D]. 泰安: 山东农业大学, 2015.
ZHANG W S.Effects of controlled release nitrogen and potassium fertilizers with ratios and application methods on growth of corn-wheat and soil nutrients [D]. Tai’an: Shandong Agricultural University, 2015. (in Chinese)
[16] 张婧, 夏光利, 李虎, 朱国梁, 牟小翎, 王立刚, 黄诚诚, 江雨倩. 一次性施肥技术对冬小麦/夏玉米轮作系统土壤N2O排放的影响. 农业环境科学学报, 2016, 35(1): 195-204.
ZHANG J, XIA G L, LI H, ZHU G L, MOU X L, WANG L G, HUANG C C, JIANG Y Q.Effect of single basal fertilization on N2O emissions in wheat and maize rotation system.Journal of Agro-Environment Science, 2016, 35(1): 195-204. (in Chinese)
[17] 王文岩, 董文旭, 陈素英, 李嘉珍, 陈拓, 胡春胜. 连续施用控释肥对小麦/玉米农田氮素平衡与利用率的影响. 农业工程学报, 2016, 32(S2): 135-141.
doi: 10.11975/j.issn.1002-6819.2016.z2.018
WANG W Y, DONG W X, CHEN S Y, LI J Z, CHEN T, HU C S.Effect of continuously appling controlled-release fertilizers on nitrogen balance and utilization in winter wheat-summer maize cropping system.Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S2): 135-141. (in Chinese)
doi: 10.11975/j.issn.1002-6819.2016.z2.018
[18] 周丽平, 杨俐苹, 白由路, 卢艳丽, 王磊. 夏玉米施用不同缓释化处理氮肥的效果及氮肥去向. 中国农业科学, 2018, 51(8): 1527-1536.
ZHOU L P, YANG L P, BAI Y L, LU Y L, WANG L.Effects of different slow-released nitrogen fertilizers on summer maize and nitrogen fate in the field.Scientia Agricultura Sinica, 2018, 51(8): 1527-1536. (in Chinese)
[19] 王志芬, 吴科, 宋良增, 王守瑰, 范仲学, 张凤云, 朱连先, 张福锁. 山东省不同穗型超高产小麦产量构成因素分析与选择思路. 山东农业科学, 2001(4): 6-8.
WANG Z F, WU K, SONG L Z, WANG S G, FAN Z X, ZHANG F Y, ZHU L X, ZHANG F S.Analysis of yield elements for super high-yielding wheat varieties with different spike type and selection strategy in Shandong province.Shandong Agricultural Sciences, 2001(4): 6-8. (in Chinese)
[20] 杨春玲, 关立, 侯军红, 王阔, 宋志均, 韩勇, 李晓亮. 黄淮麦区小麦产量构成因素效用研究. 山东农业科学, 2007(4): 19-23.
YANG C L, GUAN L, HOU J H, WANG K, SONG Z J, HAN Y, LI X L.Study on the yield components of wheat in Huang-Huai Region.Shandong Agricultural Sciences, 2007(4): 19-23. (in Chinese)
[21] 卢殿君. 华北平原冬小麦高产高效群体动态特征与氮营养调控[D]. 北京: 中国农业大学, 2015.
LU D J.Dynamics of population trait for high yielding and high efficiency winter wheat and N nutrient regulation in the North China Plain [D]. Beijing: China Agricultural University, 2015. (in Chinese)
[22] 王月福, 于振文, 李尚霞, 余松烈. 土壤肥力和施氮量对小麦氮素吸收运转及籽粒产量和蛋白质含量的影响. 应用生态学报, 2003, 14(11): 1868-1872.
WANG Y F, YU Z W, LI S X, YU S L.Effects of soil fertility and nitrogen application rate on nitrogen absorption and translocation, grain yield, and grain protein content of wheat.Chinese Journal of Applied Ecology, 2003, 14(11): 1868-1872. (in Chinese)
[23] SIMMONS S R, RASMUSSON D C, WIERSMA J V.Tillering in barley: genotype, row spacing, and seedling rate effects.Crop Science, 1982, 22(4): 801-805.
doi: 10.2135/cropsci1982.0011183X002200040024x
[24] 董树亭. 高产麦田群体结构与光合作用的关系. 山东农业大学学报(自然科学版), 1992, 23(1): 27-30.
DONG S T.Relationship between community structure and photosynthesis in high-yield winter wheat.Journal of Shandong Agricultural University (Natural Science Edition), 1992, 23(1): 27-30. (in Chinese)
[25] LU D J, LU F F, YAN P, CUI Z L, CHEN X P.Elucidating population establishment associated with N management and cultivars for wheat production in China.Field Crops Research, 2014, 163: 81-89.
doi: 10.1016/j.fcr.2014.03.022
[26] YE Y L, WANG G L, HUANG Y F, ZHU Y J, MENG Q F, CHEN X P, ZHANG F S, CUI Z L.Understanding physiological processes associated with yield-trait relationships in modern wheat varieties.Field Crops Research, 2011, 124(3): 316-322.
doi: 10.1016/j.fcr.2011.06.023
[27] 于振文. 小麦产量与品质生理及栽培技术. 北京: 中国农业出版社, 2007.
YU Z W. The Yield, Quality and Physiology, and Cultivation Techniques of Wheat. Beijing: China Agriculture Press, 2007. (in Chinese)
[28] 余松烈, 于振文, 董庆裕, 王东, 张永丽, 姚德常, 王坚强. 小麦亩产789.9 kg高产栽培技术思路. 山东农业科学, 2010(4): 11-12.
doi: 10.3969/j.issn.1001-4942.2010.04.004
YU S L, YU Z W, DONG Q Y, WANG D, ZHANG Y L, YAO D C, WANG J Q.Theory of cultivation techniques for wheat with yield of 789.9 kg per mu.Shandong Agricultural Sciences, 2010(4): 11-12. (in Chinese)
doi: 10.3969/j.issn.1001-4942.2010.04.004
[29] ZHANG F S, SHEN J B, ZHANG J L, ZUO Y M, LI L, CHEN X P.Rhizosphere processes and management for improving nutrient use efficiency and crop productivity: Implications for China.Advances in Agronomy, 2010, 107:1-32.
doi: 10.1016/S0065-2113(10)07001-X
[30] SHEN J B, CUI Z L, MIAO Y X, MI G H, ZHANG H Y, FAN M S, ZHANG C C, JIANG R F, ZHANG W F, LI H G, CHEN X P, LI X L, ZHANG F S.Transforming agriculture in China: from solely high yield to both high yield and high resource use efficiency.Global Food Security, 2013, 2: 1-8.
doi: 10.1016/j.gfs.2012.12.004
[31] SUBRAMANYAM S, SARDESAI N, MINOCHA S C, ZHENG C, SHUKLE R H, WILLIAMS C E.Hessian fly larval feeding triggers enhanced polyamine levels in susceptible but not resistant wheat.BMC Plant Biology, 2015, 15(1): 3.
doi: 10.1186/s12870-014-0396-y pmid: 4308891
[32] ARISNABARRETA S, MIRALLES D J.Critical period for grain number establishment of near isogenic lines of two-and six-rowed barley.Field Crops Research, 2008, 107(3): 196-202.
doi: 10.1016/j.fcr.2008.02.009
[33] ESTRADA-CAMPUZANO G, MIRALLES D J, SLAFER G A.Yield determination in triticale as affected by radiation in different development phases.European Journal of Agronomy, 2008, 28(4): 597-605.
doi: 10.1016/j.eja.2008.01.003
[34] BOATWRIGHT G O, HAAS H J.Development and composition of spring wheat as influenced by nitrogen and phosphorus fertilization.Agronomy Journal, 1961, 53(1): 33-36.
doi: 10.2134/agronj1961.00021962005300010012x
[35] XU Z Z, YU Z W, ZHAO J Y.Theory and application for the promotion of wheat production in China: past, present and future.Journal of the Science of Food and Agriculture, 2013, 93(10): 2339-2350.
doi: 10.1002/jsfa.6098 pmid: 23408419
[36] MENG Q F, YUE S C, CHEN X P, CUI Z L, YE Y L, MA W Q, TONG Y A, ZHANG F S.Understanding dry matter and nitrogen accumulation with time-course for high-yielding wheat production in China.PLoS ONE, 2013, 8(7): e68783.
doi: 10.1371/journal.pone.0068783 pmid: 23874762
[37] 陆景陵. 植物营养学(上册). 北京: 中国农业大学出版社, 2002.
LU J L.Plant Nutrition (volume one). Beijing: China Agricultural University Press, 2002. (in Chinese)
[38] POWER J F, ALESSI J.Tiller development and yield of standard and semidwarf spring wheat varieties as affected by nitrogen fertilizer.The Journal of Agricultural Science, 1978, 90(1): 97-108.
doi: 10.1017/S0021859600048632
[39] SHAVIV A.Advances in controlled-release fertilizers.Advances in Agronomy, 2001, 71: 1-49.
doi: 10.1016/S0065-2113(01)71011-5
[40] YANG Y C, ZHANG M, ZHENG L, CHENG D D, LIU M, GENG Y Q.Controlled release urea improved nitrogen use efficiency, yield, and quality of wheat.Agronomy Journal, 2011, 103(2): 479-485.
doi: 10.2134/agronj2010.0343
[41] 刘永哲, 陈长青, 尚健, 王火焰, 周健民, 陈照明, 刘晓伟. 沙壤土包膜尿素释放期与小麦适宜施肥方式研究. 植物营养与肥料学报, 2016, 22(4): 905-912.
doi: 10.11674/zwyf.15289
LIU Y Z, CHEN C Q, SHANG J, WANG H Y, ZHOU J M, CHEN Z M, LIU X W.Release durations and suitable application patterns of coated urea on winter wheat in sandy loam soil.Journal of Plant Nutrition and Fertilizer, 2016, 22(4): 905-912. (in Chinese)
doi: 10.11674/zwyf.15289
[42] AZEEM B, KUSHAARI K, MAN Z B, BASIT A, THANH T H.Review on materials & methods to produce controlled release coated urea fertilizer.Journal of Controlled Release, 2014, 181: 11-21.
doi: 10.1016/j.jconrel.2014.02.020
[43] 胡雪荻, 耿元波, 梁涛. 缓控释肥在茶园中应用的研究进展. 中国土壤与肥料, 2018(1): 1-8.
HU X D, GENG Y B, LIANG T.The progress of controlled-release fertilizer applied in tea garden.Soil and Fertilizer Sciences in China, 2018(1): 1-8. (in Chinese)
[44] 刘敏, 宋付朋, 卢艳艳. 硫膜和树脂膜控释尿素对土壤硝态氮含量及氮素平衡和氮素利用率的影响. 植物营养与肥料学报, 2015, 21(2): 541-548.
doi: 10.11674/zwyf.2015.0231
LIU M, SONG F P, LU Y Y.Effects of sulfur-and polymer-coated controlled release urea fertilizers on spatial-temporal variations of soil NO3--N and nitrogen balance and nitrogen use efficiency.Plant Nutrition and Fertilizer Science, 2015, 21(2): 541-548. (in Chinese) .
doi: 10.11674/zwyf.2015.0231
[1] CHEN ChunYu,CHEN SongLing,HAN YanYu,REN LiJun,ZOU HongTao,ZHANG YunLong. Preparation and Properties of Bionic Modified Water-Based Polymer Coated Urea [J]. Scientia Agricultura Sinica, 2022, 55(20): 3970-3982.
[2] CUI Shuai,LIU ShuoRan,WANG Yin,XIA ChenZhen,YAN Li,FENG GuoZhong,GAO Qiang. Soil Available Sulfur Content in Jilin Province and Its Correlation with Soil Organic Matter and Soil Total Nitrogen [J]. Scientia Agricultura Sinica, 2022, 55(12): 2372-2383.
[3] HUANG QiuHong,LIU ZhiLei,LI PengFei,CHE JunJie,YU CaiLian,PENG XianLong. Difference in Nitrogen Responses and Nitrogen Efficiency of Different Paddy Soils in Southern and Northern China Under the Same Climatic Condition [J]. Scientia Agricultura Sinica, 2021, 54(19): 4143-4154.
[4] KONG Long-1, 2 , TAN Xiang-Ping-1, HE Wen-Xiang-1, 3 , WEI Ge-Hong-2. Response of Soil Enzyme Activity in Different Type of Soils to Cadmium Exposure in China [J]. Scientia Agricultura Sinica, 2013, 46(24): 5150-5162.
[5] SONG Yuan-Yuan, CAO Ming, FAN Xiao-Lin. Nutrient Release Characteristics of Controlled Release Urea Coated by Vegetable Oil in the Soil at Four Stages of Banana Growing [J]. Scientia Agricultura Sinica, 2013, 46(1): 80-88.
[6] WANG Qun, LI Chao-Hai, LI Quan-Zhong, XUE Shuai. Effect of Soil Compaction on Spatio-temporal Distribution and Activities in Maize Under Different Soil Types [J]. Scientia Agricultura Sinica, 2011, 44(10): 2039-2050.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!