Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (10): 1920-1930.doi: 10.3864/j.issn.0578-1752.2018.10.011

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Biochar and Biochar-Based Fertilizer on Soil Microbial Community Structure

Kun CHEN(), XiaoNan XU, Jing PENG, XiaoJie FENG, YaPeng LI, XiuMei ZHAN(), XiaoRi HAN   

  1. College of Land and Environment, Shenyang Agricultural University/National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866
  • Received:2017-06-27 Accepted:2017-10-12 Online:2018-05-16 Published:2018-05-16

Abstract:

【Objective】 Microbes play the key role of switcher in soil nutrient cycling, the aim of this paper was to study the effects of soil microbial community structure by long-term fertilization of biochar and biochar-based fertilizer, and to provide theory reference on reasonable administration of different organic fertilizers, contrasting with traditional organic fertilizer (corn straw and piggery manure compost) in the meantime. 【Method】 This research was based on the long-term experiment of soil improvement of brown soil in Shenyang Agricultural University (began in 2009). The changes of soil physic-chemical properties, soil microbial community structure and their relationship by long-term organic fertilizer plus NPK fertilization were studied by PLFA and correlatively analysis. Soil samples were collected from treatments as farmland with biochar-based compound fertilizer (BF) alone and farmland with piggery manure compost (PMC), corn straw-returning (CS), biochar (BIO) combination of NPK fertilizer, respectively. 【Result】 Soil pH of PMC and BF were higher than BIO significantly; total N (TN) of PMC was significantly higher than BF and CS, which of BIO had no significant difference with PMC; soil organic matter (SOM) of PMC was significantly higher than that of BF and BIO; moisture content (MC) of PMC was the highest of all treatments; total K (TK) of all treatments had no significant difference. Total PLFAs of PMC was significantly higher than other treatments, but there were no significant differences among others; bacteria PLFAs of PMC was the highest of all treatments, which of BF was significantly lower than BIO and CS; fungi, gram-positive, gram-negative PLFAs of PMC were significantly higher than BIO, which of BF had no significant difference with PMC; actinomyces PLFAs of PMC was higher than CS significantly, there were no significant differences between BIO and BF. The result of analysis showed that Shannon-Winner richness index (H) and the fungi/bacteria PLFAs ratio of BF was higher than BIO significantly, the gram- positive/gram-negative PLFAs ratio of BF and PMC were lower than BIO significantly. The result of redundancy analysis (RDA) showed that microbial PLFA was significantly influenced (P<0.01) by soil pH, TN and SOM, and significantly influenced (P<0.05) by MC and TK.【Conclusion】 Soil physico-chemical properties were obvious improved by long-term fertilization of biochar and biochar-based compound fertilizer. Compared to PMC, farmland with BIO was bad for the growth of fungi and gram-negative microbe, and farmland with BIO and BF had different effects on soil microbial community structure, namely, farmland with BIO could increase the biomass of bacteria, while farmland with BF could increase the fungi/bacteria ratio and the diversity of soil microbial community structure. Soil pH, TN, SOM, MC and TK were the important factors which influence the soil microbe community structure in this study in the order.

Key words: biochar, biochar-based compound fertilizer, PLFA, community structure, soil microbe

Table 1

The dry-based nutrient contents (%) and pH of different organic resources"

有机物料 Organic resources C N P2O5 K2O pH值
玉米秸秆CS 44.44 1.01 0.21 0.93 ——
猪厩肥PMC 29.20 1.44 1.08 0.94 7.21
炭基肥BF 7.73 11.00 13.00 13.00 9.14
生物炭颗粒BIO 33.32 0.50 0.84 0.59 7.06

Table 2

Effects of different treatments on soil physic-chemical properties"

处理
Treatments
pH 全钾
Total K(g·kg-1)
全氮
Total N (g·kg-1)
有机质
Soil Organic matter (g·kg-1)
土壤含水量
Soil moisture content(%)
CS 5.98±0.19bc 22.72±0.43a 0.90±0.04b 17.18±0.37ab 10.05±0.76b
PMC 6.35±0.12a 22.65±0.11a 1.01±0.05a 18.16±0.74a 11.75±0.49a
BF 6.21±0.32ab 22.52±0.11a 0.90±0.01b 15.86±0.61b 10.00±0.09b
BIO 5.80±0.21c 22.50±0.59a 0.97±0.03ab 15.83±1.02b 9.94±0.67b

Fig. 1

Content of soil microbial PLFAs under different treatments"

Fig. 2

Content of soil G+ and G- microbial PLFAs under different treatments"

Table 3

Soil microbial diversity indices under different treatments"

处理
Treatment
多样性指数
Shannon-Winner Diversity Index(H)
均匀度指数
Pielou Evenness Index(J)
优势度指数
Simpson Dominance Index(D)
CS 2.89ab 0.88a 0.92a
PMC 2.88ab 0.87a 0.92a
BF 2.91a 0.88a 0.93a
BIO 2.83b 0.86a 0.91a

Fig. 3

Rations of soil fungi /bacteria (a) and G+ /G-(b) under different treatments"

Table 4

Importance and significance levels of physic-chemical parameters"

土壤理化指标
Soil physic-chemical parameters
重要性排序
Importance rank
理化因子所占解释量
Variance explanation of different parameters
P
P-value estimate
pH 1 0.703 0.002
全氮TN 2 0.607 0.004
有机质SOM 3 0.509 0.010
土壤含水量MC 4 0.506 0.014
全钾TK 5 0.402 0.048

Fig. 4

Redundancy analysis of soil microbial community structure and chemical properties"

Table 5

Correlation between soil microbial composition and physic-chemical properties"

pH 全钾
TK
全氮
TN
有机质
SOM
含水量
MC
总PLFAs Total PLFAs 0.671 0.846** 0.690 0.639 0.695
细菌PLFAs Bacterial PLFAs 0.573 0.850** 0.611 0.567 0.636
真菌PLFAs Fungi PLFAs 0.924** 0.480 0.823* 0.843** 0.731*
放线菌PLFAs
Actinomycetes PLFAs
0.834* 0.795* 0.823* 0.672 0.775*
革兰氏阳性PLFAs
G+ PLFAs
0.916** 0.761* 0.871** 0.816* 0.800*
革兰氏阴性PLFAs
G- PLFAs
0.958** 0.600 0.860** 0.785* 0.764*
[1] 徐阳春, 沈其荣, 冉炜. 长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响. 土壤学报, 2002, 39(01): 83-90.
doi: 10.11766/trxb200103110113
XU Y, C,SHEN Q R, RAN W.Effects of zero-tillage and application of manure on soil microbial biomass C,N and P after sixteen years of cropping.Acta Pedologica Sinica, 2002, 39(01): 83-90. (in Chinese)
doi: 10.11766/trxb200103110113
[2] 李春越, 王益, BROOKES P, 党廷辉, 王万忠. pH对土壤微生物C/P比的影响. 中国农业科学, 2013, 46(13): 2709-2716.
doi: 10.3864/j.issn.0578-1752.2013.13.009
LI C Y, WANG Y, BROOKES P, DANG T H, WANG W Z.Effect of soil pH on soil microbial carbon phosphorus ratio.Scientia Agricultura Sinica, 2013, 46(13): 2709-2716. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.13.009
[3] 陈温福, 张伟明, 孟军. 农用生物炭研究进展与前景. 中国农业科学, 2013, 46(16): 3324-3333.
doi: 10.3864/j.issn.0578-1752.2013.16.003
CHEN W F, ZHANG W M, MENG J.Advances and prospects in research of biochar utilization in agriculture.Scientia Agricultura Sinica, 2013, 46(16): 3324-3333. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.16.003
[4] 战秀梅, 彭靖, 王月, 刘轶飞, 陈坤, 韩晓日, 王恒飞, 蔺文成, 李喜研. 生物炭及炭基肥改良棕壤理化性状及提高花生产量的作用. 植物营养与肥料学报, 2015, 21(6): 1633-1641.
doi: 10.11674/zwyf.2015.0631
ZHAN X M, PENG J, WANG Y, LIU Y F, CHEN K, HAN X R, WANG H F, LIN W C, LIX Y.Influences of application of biochar and biochar-based fertilizr on brown soil physiochemical properties and peanut yields.Journal of Plant Nutrition and Fertilizer, 2015, 21(6): 1633-1641. (in Chinese)
doi: 10.11674/zwyf.2015.0631
[5] 陈温福, 韩晓日, 徐正进, 刘金. 一种炭基缓释花生专用肥料及其制备方法:CN101121619.2008-02-13.
CHEN W F, HAN X R, XU Z J, LIU J. Biochar-based slow release peanut fertilizer and preparation method:CN101121619.2008-02-13. (in Chinese)
[6] 王巍巍, 赵琼, 赵欣然, 曾德慧, 艾桂艳. 凋落物管理对樟子松人工林土壤微生物群落结构的影响. 生态学杂志, 2015, 34(9): 2605-2612.
WANG W W, ZHAO Q, ZHAO X R, ZENG D H, AI G Y.Effects of litter manipulation on soil microbial community structure in a Pinus sylvestris var.mongolica plantation.Chinese Journal of Ecology, 2015, 34(9): 2605-2612. (in Chinese)
[7] 郭芸, 孙本华, 王颖, 魏静, 高明霞, 张树兰, 杨学云. 长期施用不同肥料土plfa指纹特征. 中国农业科学, 2017, 50(1): 94-103.
doi: 10.3864/j.issn.0578-1752.2017.01.009
GUO Y, SUN B H, WANG Y, WEI J, GAO M X, ZHANG S L, YANG X Y.PLFA fingerprint characteristics of an anthropogenic loess soil under long-term different fertilizations.Scientia Agricultura Sinica, 2017, 50(1): 94-103. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.01.009
[8] 何绪生, 耿增超, 佘雕, 张保健, 高海英. 生物炭生产与农用的意义及国内外动态. 农业工程学报, 2011, 27(2): 1-7.
HE X S, GENG Z C, SHE D, ZHANG B J, GAO H Y.Implications of production and agricultural utilization of biochar andits international dynamic.Transactions of the CSAE, 2011, 27(2): 1-7. (in Chinese)
[9] WOOLF D, AMONETTE J E, STREETPERROT F A, LEHMANN J, JOSEPH S.Sustainable biochar to mitigate global climate change.Nature Communications, 2010, 1(5): 56. DOI:10.1038/ncomms1053.
doi: 10.1038/ncomms1053 pmid: 2964457
[10] LEHMANN J, GAUNT J, RONDON M, READ P.Bio-char sequestration in terrestrial ecosystems - a review.Mitigation and Adaptation Strategies for Global Change, 2006, 11(2): 395-419.
doi: 10.1007/s11027-005-9006-5
[11] ASAI H, SAMSON B K, STEPHAN H M, SONGYIKHANGSUTHOR K, HOMMA K, KIYONO Y, INOUE Y, SHIRAIWA T, HOEIR T.Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield.Field Crops Research, 2009, 111(1/2): 81-84.
doi: 10.1016/j.fcr.2008.10.008
[12] STEINBEISS S, GLEIXNER G, ANTONIETTI M.Effect of biochar amendment on soil carbon balance and soil microbial activity.Soil Biology and Biochemistry, 2009, 41(6): 1301-1310.
doi: 10.1016/j.soilbio.2009.03.016
[13] PIETIKÄINEN J, KIIKKIlÄ O, FRITZE H. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus.Oikos, 2000, 89(2): 231-242.
doi: 10.1034/j.1600-0706.2000.890203.x
[14] RIVERA-UTRILLA J, BAUTISTA-TOLEDO I,FERRO-GARCIA M A, MORENO-CASTILLA C. Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption.Journal of Chemical Technology and Biotechnology, 2001, 76(12): 1209-1215.
doi: 10.1002/jctb.506
[15] WARNOCK D D, LEHMANN J, KUYPER T W, RILLIG M C.Mycorrhizal responses to biochar in soil - concepts and mechanisms.Plant and Soil, 2007, 300(1/2): 9-20.
doi: 10.1007/s11104-007-9391-5
[16] KOLB S E, FERMANICH K J, DOMNBUSH M E.Effect of charcoal quantity on microbial biomass and activity in temperate soils.Soil Science Society of America Journal, 2009, 73(4): 1173-1181.
doi: 10.2136/sssaj2008.0232
[17] 颜永毫, 王丹丹, 郑纪勇. 生物炭对土壤N2O和CH4排放影响的研究进展. 中国农学通报, 2013, 29(8): 140-146.
doi: 10.3969/j.issn.1000-6850.2013.08.027
YAN Y H, WANG D D,ZHENG J Y.Advances in effects of biochar on the soil N2O and CH4 emissions.Chinese Agricultural Science Bulletin, 2013, 29(8): 140-146. (in Chinese)
doi: 10.3969/j.issn.1000-6850.2013.08.027
[18] LEHMANN J, RILL M C, THIES J, MASIELLO C A, HOCKADAY W C, CROWLEY D.Biochar effects on soil biota - A review.Soil Biology and Biochemistry, 2011, 43(9):1812-1836.
doi: 10.1016/j.soilbio.2011.04.022
[19] O'NEILL B, GROSSMAN J, TSAI M T, GOMES J E, LEHMANN J, PETERSON J, NEVES E, THIES J E. Bacterial community composition in Brazilian Anthrosols and adjacent soils characterized using culturing and molecular identification.Microbial Ecology, 2009, 58(1): 23-35.
doi: 10.1109/MIC.2007.108 pmid: 19381712
[20] FIERER N, SCHIMEL J P, HOLDEN P A.Variations in microbial community composition through two soil depth profiles.Soil Biology & Biochemistry, 2003, 35(1): 167-176.
doi: 10.1016/S0038-0717(02)00251-1
[21] 潘全良, 宋涛, 陈坤, 徐晓楠, 彭靖, 战秀梅, 王月, 韩晓日. 连续6年施用生物炭和炭基肥对棕壤生物活性的影响. 华北农学报, 2016, 31(3): 225-232.
doi: 10.7668/hbnxb.2016.03.033
PAN Q L, SONG T, CHEN K, XU X N, PENG J, ZHAN X M, WANG Y, HAN X R.Influences of 6-year application of biochar and biochar-based compound fertilizer on soil bioactivity on brown soil.Acta Abriculturae Boreali-simica, 2016, 31(3): 225-232. (in Chinese)
doi: 10.7668/hbnxb.2016.03.033
[22] BOSSIO D A, SCOW K M.Impacts of carbon and flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns.Microbial Ecology, 1998, 35(3): 265-278.
[23] 齐鸿雁, 薛凯, 张洪勋. 磷脂脂肪酸谱图分析方法及其在微生物生态学领域的应用. 生态学报, 2003, 23(8): 1576-1582.
QI H Y, XUE K, ZHANG H X.Phospholipid fatty acid analysis and its applications in microbial ecology.Acta Ecologica Sinica, 2003, 23(8): 1576-1582. (in Chinese)
[24] SCHNECKER J R, WILD B, FUCHSLUEGER L, RICHTER A.A field method to store samples from temperate mountain grassland soils for analysis of phospholipid fatty acids.Soil Biology and Biochemistry, 2012, 51(8): 81-83.
doi: 10.1016/j.soilbio.2012.03.029 pmid: 22865936
[25] FROSTEGÄR A, BÄÄTH E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil.Biology and Fertility of Soils, 1996, 22(1): 59-65.
doi: 10.1007/BF00384433
[26] OLSSON P A.Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil.FEMS Microbiology Ecology, 1999, 29(4): 303-310.
doi: 10.1111/j.1574-6941.1999.tb00621.x
[27] HILL G T, MITKOWSKI N A, ALDRICH-WOLFE L, EMELE L R, JURKONIE D D, FICKE A, MALDONADO-RAMIREZ S, LYNCH S T, NELSON E B.Methods for assessing the composition and diversity of soil microbial communities.Applied Soil Ecology, 2000, 15(1): 25-36.
doi: 10.1016/S0929-1393(00)00069-X
[28] SUUTARI M, LAAKSO S.Microbial fatty acids and thermal adaptation.Critical Reviews in Microbiology, 1994, 20(4): 285-328.
doi: 10.3109/10408419409113560 pmid: 7857519
[29] KIMETU J M, LEHMANN J, KRULL E, SINGH B, JOSEPH S.Stability and stabilisation of biochar and green manure in soil with different organic carbon contents.Australian Journal of Soil Research, 2010, 48(7): 577-585.
doi: 10.1071/SR10036
[30] BAGREEV A, BANDOSZ T J, LOCKE D C.Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer.Carbon, 2001, 39(13): 1971-1979.
doi: 10.1016/S0008-6223(01)00026-4
[31] CAO X, HARRIS W.Properties of dairy-manure-derived biochar pertinent to its potential use in remediation.Bioresource Technology, 2010, 101(14): 5222-5228.
doi: 10.1016/j.biortech.2010.02.052 pmid: 20206509
[32] SCHMIDT M W I, NOACK A G. Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges.Global Biogeochemical Cycles, 2000, 14(3): 777-793.
doi: 10.1029/1999GB001208
[33] YAO H, HE Z, WILSON M J, CAMPBELL C D.Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use.Microbial Ecology, 2000, 40(3): 223-237.
doi: 10.1007/s002480000053
[34] MARSCHNER P, KANDELER E, MARSCHNER B.Structure and function of the soil microbial community in a long-term fertilizer experiment.Soil Biology and Biochemistry, 2003, 35(3): 453-461.
doi: 10.1016/S0038-0717(02)00297-3
[35] INGWERSEN J, POLL C, STRECK T, KANDELER E.Micro-scale modelling of carbon turnover driven by microbial succession at a biogeochemical interface.Soil Biology and Biochemistry, 2008, 40(4): 864-878.
doi: 10.1016/j.soilbio.2007.10.018
[36] JIN H.Characterization of microblal life colonizing biochar and biochar-amended soils. Ithaca: Cornell University, 2010.
[37] 李新, 焦燕, 杨铭德. 用磷脂脂肪酸(plfa)谱图技术分析内蒙古河套灌区不同盐碱程度土壤微生物群落多样性. 生态科学, 2014, 33(3): 488-494.
LI X, JIAO Y, YANG M D.Microbial diversity of different saline-alkaline soil analyzing by PLFA in the Hetao area of inner Mongolia. Ecological Science, 2014, 33(3): 488-494. (in Chinese)
[38] FTDE V, HOFFLAND E, NVAN E, BRUSSAARD L, BLOEM J.Fungal/bacterial ratios in grasslands with contrasting nitrogen management.Soil Biology and Biochemistry, 2006, 38(8): 2092-2103.
doi: 10.1016/j.soilbio.2006.01.008
[39] FROSTEGÄRD Ä, BÄÄTHE, TUNLIO A. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis.Soil Biology and Biochemistry, 1993, 25(6): 723-730.
doi: 10.1016/0038-0717(93)90113-P
[40] MCKINLEY V L, PEACOCK A D, WHITE D C.Microbial community PLFA and PHB responses to ecosystem restoration in tallgrass prairie soils.Soil Biology and Biochemistry, 2005, 37(10): 1946-1958.
doi: 10.1016/j.soilbio.2005.02.033
[41] MARSCHNER P, YANG C H, LIEBEREI R, CROWLEY D E.Soil and plant specific effects on bacterial community composition in the rhizosphere.Soil Biology and Biochemistry, 2001, 33(11): 1437-1445.
doi: 10.1016/S0038-0717(01)00052-9
[42] 岳琳艳, 郑俊强, 韩士杰, 杨建华, 耿世聪, 陈志杰, 张雪, 谷越. 长白山温带森林不同演替阶段土壤化学性质及微生物群落结构的变化. 生态学杂志, 2015, 34(9): 2590-2597.
YUE L Y, ZHENG J Q, HAN S J, YANG J H, GENG S C, CHEN Z J, ZHANG X, GU Y.Soil chemical properties and microbial community structure at different succession stages of temperate forest in Changbai Mountains.Chinese Journal of Ecology, 2015, 34(9): 2590-2597. (in Chinese)
[1] PANG JinWen, WANG YuHao, TAO HongYang, WEI Ting, GAO Fei, LIU EnKe, JIA ZhiKuan, ZHANG Peng. Effects of Different Biochar Application Rates on Soil Aggregate Characteristics and Organic Carbon Contents for Film-Mulching Field in Semiarid Areas [J]. Scientia Agricultura Sinica, 2023, 56(9): 1729-1743.
[2] SONG BoYing, GUO YanJie, WANG WenZan, LÜ ZeNan, ZHAO YuQing, LIU Lu, ZHANG LiJuan. Effects of Biochar Combined with Dicyandiamide on Greenhouse Gases Emissions from Facility Vegetable Soil [J]. Scientia Agricultura Sinica, 2023, 56(10): 1935-1948.
[3] ZHONG JiaLin,XU ZiYan,ZHANG YiYun,LI Jie,LIU XiaoYu,LI LianQing,PAN GenXing. Effects of Feedstock, Pyrolyzing Temperature and Biochar Components on the Growth of Chinese Cabbage [J]. Scientia Agricultura Sinica, 2022, 55(14): 2775-2785.
[4] GONG XiaoYa,SHI JiBo,FANG Ling,FANG YaPeng,WU FengZhi. Effects of Flooding on Soil Chemical Properties and Microbial Community Composition on Farmland of Continuous Cropped Pepper [J]. Scientia Agricultura Sinica, 2022, 55(12): 2472-2484.
[5] BIAN RongJun,LIU XiaoYu,ZHENG JuFeng,CHENG Kun,ZHANG XuHui,LI LianQing,PAN GenXing. Chemical Composition and Bioactivity of Dissolvable Organic Matter in Biochars [J]. Scientia Agricultura Sinica, 2022, 55(11): 2174-2186.
[6] SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584.
[7] GU BoWen, YANG JinFeng, LU XiaoLing, WU YiHui, LI Na, LIU Ning, AN Ning, HAN XiaoRi. Effects of Continuous Application of Biochar on Chlorophyll Fluorescence Characteristics of Peanut at Different Growth Stages [J]. Scientia Agricultura Sinica, 2021, 54(21): 4552-4561.
[8] ZHAO WeiSong,GUO QingGang,SU ZhenHe,WANG PeiPei,DONG LiHong,HU Qing,LU XiuYun,ZHANG XiaoYun,LI SheZeng,MA Ping. Characterization of Fungal Community Structure in the Rhizosphere Soil of Healthy and Diseased-Verticillium Wilt Potato Plants and Carbon Source Utilization [J]. Scientia Agricultura Sinica, 2021, 54(2): 296-309.
[9] HAO HaiPing,BAI HongTong,XIA Fei,HAO YuanPeng,LI Hui,CUI HongXia,XIE XiaoMing,SHI Lei. Effects of Tea-Litsea Cubeba Intrercropping on Soil Microbial Community Structure in Tea Plantation [J]. Scientia Agricultura Sinica, 2021, 54(18): 3959-3969.
[10] ZHAO WeiSong,GUO QingGang,LI SheZeng,WANG PeiPei,LU XiuYun,SU ZhenHe,ZHANG XiaoYun,MA Ping. Effect of Wilt-Resistant and Wilt-Susceptible Cotton on Soil Bacterial Community Structure at Flowering and Boll Stage [J]. Scientia Agricultura Sinica, 2020, 53(5): 942-954.
[11] XIANG Wei,WANG Lei,LIU TianQi,LI ShiHao,ZHAI ZhongBing,LI ChengFang. Effects of Biochar Plus Inorganic Nitrogen on the Greenhouse Gas and Nitrogen Use Efficiency from Rice Fields [J]. Scientia Agricultura Sinica, 2020, 53(22): 4634-4645.
[12] DONG Cheng,CHEN ZhiYong,XIE YingXin,ZHANG YangYang,GOU PeiXin,YANG JiaHeng,MA DongYun,WANG ChenYang,GUO TianCai. Effects of Successive Biochar Addition to Soil on Nitrogen Functional Microorganisms and Nitrous Oxide Emission [J]. Scientia Agricultura Sinica, 2020, 53(19): 4024-4034.
[13] ZHAO XinZhou,ZHANG ShiChun,LI Ying,ZHENG YiMin,ZHAO HongLiang,XIE LiYong. The Characteristics of Soil Ammonia Volatilization Under Different Fertilizer Application Measures in Corn Field of Liaohe Plain [J]. Scientia Agricultura Sinica, 2020, 53(18): 3741-3751.
[14] ZHU RuiFen,LIU JieLin,WANG JianLi,HAN WeiBo,SHEN ZhongBao,XIN XiaoPing. Molecular Ecological Network Analyses Revealing the Effects of Nitrogen Application on Soil Microbial Community in the Degraded Grasslands [J]. Scientia Agricultura Sinica, 2020, 53(13): 2637-2646.
[15] ZHANG MengYang,XIA Hao,LÜ Bo,CONG Ming,SONG WenQun,JIANG CunCang. Short-Term Effect of Biochar Amendments on Total Bacteria and Ammonia Oxidizers Communities in Different Type Soils [J]. Scientia Agricultura Sinica, 2019, 52(7): 1260-1271.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!