Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (20): 4326-4332.doi: 10.3864/j.issn.0578-1752.2011.20.022

• RESEARCH NOTES • Previous Articles    

Effects of Elevated CO2 and Enhanced UV-B on Epidemic Components of Wheat Stripe Rust

 HAN  Guo-Fei, WANG  Hai-Guang, MA  Zhan-Hong   

  1. 1.中国农业大学农学与生物技术学院
  • Received:2010-11-29 Online:2011-10-15 Published:2011-03-28

Abstract: 【Objective】The objective of this research is to investigate the effects of elevated CO2 concentration and enhanced UV-B radiation on epidemic components of wheat stripe rust in climate chamber and to provide a basis for the prediction and control of the disease in future climate conditions. 【Method】 Different wheat cultivars were used as materials including Mingxian 169, Jing 9428, Jing 0045 and Jingdong 8 in this experiment. The wheat seedlings were inoculated with CYR32, one of the physiological races of the pathogen. Four treatments including elevated CO2 and enhanced UV-B radiation were conducted to find out the effects of CO2 and UV-B radiation on epidemic components of wheat stripe rust.【Result】Under high CO2 concentration conditions, the infection efficiency of wheat stripe rust on Mingxian 169, Jing 9428 and Jing 0045 was significantly increased, latent period was shortened, and lesion expansion was increased. Enhanced UV-B radiation had no significant effect on the disease epidemic components. Under the interaction of CO2 concentration and UV-B radiation, the changes of epidemic components of wheat stripe rust on the four cultivars were not significant compared with the control.【Conclusion】Elevated CO2 concentration could increase the occurrence of wheat stripe rust. However, enhanced UV-B radiation could not affect the disease significantly. The comprehensive action of elevated CO2 concentration and enhanced UV-B radiation barely had any effect on the disease.

Key words: CO2 concentration, UV-B, wheat stripe rust, epidemic components

[1]IPCC. Summary for Policymakers//Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M, Miller H L. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007.

[2]王长科, 王跃思, 刘广仁. 北京城市大气CO2浓度变化特征及影响因素.环境科学, 2003, 24(4): 13-17.

Wang C K, Wang Y S, Liu G R. Characteristics of atmospheric CO2 variation and some affecting factors in urban area of Beijing. Environmental Science, 2003, 24(4): 13-17. (in Chinese)

[3]徐  亮, 刘建国, 高闽光, 陆亦怀, 刘文清, 魏秀丽, 张天舒, 陈 华, 刘志明, 王  君. FTIR遥测北京城区大气中的CO和CO2浓度.大气与环境光学学报, 2007, 2(3): 218-221.

Xu L, Liu J G, Gao M G, Lu Y H, Liu W Q, Wei X L, Zhang T S, Chen H, Liu Z M, Wang J. Remote sensing of atmospheric CO and CO2 in Beijing with FTIR. Journal of Atmospheric and Environmental Optics, 2007, 2(3): 218-221. (in Chinese)

[4]The Scientific Assessment Panel of the Montreal Protocol on Substances that Deplete the Ozone Layer. Scientific Assessment of Ozone Depletion: 2002. Nairobi: WMO/UNEP, 2002.

[5]Kakani V G, Reddy K R, Zhao D, Sailaja K. Field crop responses to ultraviolet-B radiation: a review. Agricultural and Forest Meteorology, 2003, 120: 191-218.

[6]Coakley S M, Scherm H, Chakraborty S. Climate change and plant disease management. Annual Review of Phytopathology, 1999, 37: 399-426.

[7]Chakraborty S, Tiedemann A V, Teng P S. Climate change: potential impact on plant diseases. Environmental Pollution, 2000, 108: 317-326.

[8]Thompson G B, Brown J K M, Woodward F I. The effects of host carbon dioxide, nitrogen and water supply on the infection of wheat by powdery mildew and aphids. Plant, Cell and Environment, 1993, 16: 687-694.

[9]Manning W J, Tiedemann A V. Climate change: potential effects of increased atmospheric carbon dioxide (CO2), ozone (O3), and ultraviolet-B (UV-B) radiation on plant disease. Environmental Pollution, 1995, 88: 219-245.

[10]Wu B M, Subbarao K V, van Bruggen A H C. Factors affecting the survival of Bremia lactueae sporangia deposited on lettuce leaves. Phytopathology, 2000, 90: 827-833.

[11]王美琴, 王海荣, 刘慧平, 韩巨才. 番茄叶霉病菌的生物学特性研究. 山西农业大学学报, 2003, 23(4): 303-307.

Wang M Q, Wang H R, Liu H P, Han J C. Bionomics of Fulvia fulva (Cooke) Ciferri. Journal of Shanxi Agricultural University, 2003, 23(4): 303-307. (in Chinese)

[12]李  晶. UV-B辐射对小麦条锈病的影响的初步研究[D]. 北京: 中国农业大学, 2008.

Li J. Primary study on the effect of UV-B (280-320 nm) on wheat stripe rust[D]. Beijing: China Agricultural University, 2008. (in Chinese)

[13]Deckmyn G, Caeyenberghs E, Ceulemans R. Reduced UV-B in greenhouses decreases white clover response to enhance CO2. Environmental and Experimental Botany, 2001, 46: 109-117.

[14]Zhao D, Reddy K R, Kakani V G, Mohammed A R, Read J J, Gao W. Leaf and canopy photosynthetic characteristics of cotton (Gossypium hirsutum) under elevated CO2 concentration and UV-B radiation. Journal of Plant Physiology, 2004, 161: 581-590.

[15]Krupa S V. Joint effects of elevated levels of ultraviolet-B radiation, carbon dioxide and ozone on plants. Photochemistry and Photobiology, 2003, 78(6): 535-542.

[16]肖悦岩, 季伯衡, 杨之为, 姜瑞中. 植物病害流行与预测. 北京: 中国农业大学出版社, 2005: 26-30.

Xiao Y Y, Ji B H, Yang Z W, Jiang R Z. Plant Disease Epidemiology and Forecast. Beijing: China Agricultural University Press, 2005: 26-30. (in Chinese)

[17]骆  勇, 曾士迈. 小麦条锈病 (Puccinia striiformis) 慢锈品种抗性组份的研究 I. 中国科学: B辑, 1988(1): 51-59.

Luo Y, Zeng S M. Component analysis of slow-rusting resistance of wheat cultivars to stripe rust (Puccinia striiformis) (Ⅰ). Scientia Sinica: Series B, 1988(1): 51-59. (in Chinese)

[18]马红亮, 朱建国, 谢祖彬, 刘  钢, 张雅丽, 曾  青. 开放式空气CO2 浓度升高对冬小麦生长和 N吸收的影响. 作物学报, 2005, 31(12): 1634-1639.

Ma H L, Zhu J G, Xie Z B, Liu G, Zhang Y L, Zeng Q. Effects of free-air carbon dioxide enrichment on growth and uptake of nitrogen in winter wheat. Acta Agronomica Sinica, 2005, 31(12): 1634-1639. (in Chinese)

[19]门中华, 李生秀. CO2 浓度对冬小麦氮代谢的影响. 中国农业科学, 2005, 38(2): 320-326.

Men Z H, Li S X. Effects of CO2 concentration on nitrogen metabolism of winter wheat. Scientia Agricultura Sinica, 2005, 38(2): 320-326. (in Chinese)

[20]杨连新, 黄建晔, 李世峰, 杨洪建, 朱建国, 董桂春, 刘红江, 王余龙. 开放式空气二氧化碳浓度增高对小麦氮素吸收利用的影响. 应用生态学报, 2007, 18(3): 519-525.

Yang L X, Huang J Y, Li S F, Yang H J, Zhu J G, Dong G C, Liu H J, Wang Y L. Effects of free-air CO2 enrichment on nitrogen uptake and utilization of wheat. Chinese Journal of Applied Ecology, 2007, 18(3): 519-525. (in Chinese)

[21]Lake J A, Wade R N. Plant–pathogen interactions and elevated CO2: morphological changes in favour of pathogens. Journal of Experimental Botany, 2009, 60(11): 3123-3131.

[22]Karnosky D F, Percy K E, Xiang B, Callan B, Noormets A, Mankovska, B, Hopkin A, Sober J, Jones W, Dickson R E, Isebrands J G. Interacting elevated CO2 and tropospheric O3 predispose aspen (Populus tremuloides Michx.) to infection by rust (Melampsora medusae f. sp. tremuloidae). Global Change Biology, 2002, 8: 329-338.

[23]Mcelrone A J, Reid C D, Hoye K A, Hart E, Jackson R B. Elevated CO2 reduces disease incidence and severity of a red maple fungal pathogen via changes in host physiology and leaf chemistry. Global Change Biology, 2005, 11: 1828-1836.

[24]Plessl M, Elstner E F, Rennenberg H, Habermeyer J, Heiser I. Influence of elevated CO2 and ozone concentrations on late blight resistance and growth of potato plants. Environmental and Experimental Botany, 2007, 60: 447-457.

[25]冯  源, 高召华, 祖艳群, 李  元. 紫外辐射对植物病害影响的研究进展. 植物保护学报, 2008, 35(1): 88-92.

Feng Y, Gao Z H, Zu Y Q, Li Y. The potential effects of UV-radiation on plant diseases. Acta Phytophylacica Sinica, 2008, 35(1): 88-92. (in Chinese)

[26]井金学, 商鸿生, 李振岐. 紫外线照射对小麦条锈菌生物学效应的研究. 植物病理学报, 1993, 23(4): 299-304.

Jing J X, Shang H S, Li Z Q. The biological effects of ultraviolet ray radiation on wheat stripe rust (Puccinia stritiiformis West.). Acta Phytopathologica Sinica, 1993, 23(4): 299-304. (in Chinese)
[1] HU ChaoYue, WANG FengTao, LANG XiaoWei, FENG Jing, LI JunKai, LIN RuiMing, YAO XiaoBo. Resistance Analyses on Wheat Stripe Rust Resistance Genes to the Predominant Races of Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2022, 55(3): 491-502.
[2] MoRan XU,RuiMing LIN,FengTao WANG,Jing FENG,ShiChang XU. Evaluation of Resistance to Stripe Rust and Genetic Diversity and Detection of Resistance Genes in 103 Wheat Cultivars (Lines) [J]. Scientia Agricultura Sinica, 2020, 53(4): 748-760.
[3] HUANG MiaoMiao,CHEN WanQuan,CAO ShiQin,SUN ZhenYu,JIA QiuZhen,GAO Li,LIU Bo,LIU TaiGuo. Surveillance and Genetic Diversity Analysis of Puccinia striiformis f. sp. tritici in Gansu and Qinghai Provinces [J]. Scientia Agricultura Sinica, 2020, 53(18): 3693-3706.
[4] Chen LI,XueHui ZHAO,QingJie WANG,XuXu WANG,Wei XIAO,XiuDe CHEN,XiLing Fu,Ling LI,DongMei LI. Genome Identification of PpGRAS Family and Expression Pattern Analysis of Responding to UV-B in Peach [J]. Scientia Agricultura Sinica, 2019, 52(24): 4567-4581.
[5] HUANG Liang, LIU TaiGuo, XIAO XingZhi, QU ChunYan, LIU Bo, GAO Li, LUO PeiGao, CHEN WanQuan. Evaluation of Stripe Rust Resistance and Molecular Detection of Yr Genes of 79 Wheat Varieties (Lines) in China [J]. Scientia Agricultura Sinica, 2017, 50(16): 3122-3134.
[6] LIU Ai-jing, LI Ni, MA Min, HE Jun-min. Effects of UV-B Radiation on Pollen Tube Growth in Picea wilsonii [J]. Scientia Agricultura Sinica, 2016, 49(5): 825-831.
[7] ZHOU Xin-li, ZHAN Gang-ming, HUANG Li-li, HAN De-jun, KANG Zhen-sheng. Evaluation of Resistance to Stripe Rust in Eighty Abroad Spring Wheat Germplasms [J]. Scientia Agricultura Sinica, 2015, 48(8): 1518-1526.
[8] WANG Tu-hong, GUO Qing-yun, LIN Rui-ming, YAO Qiang, FENG Jing, WANG Feng-tao, CHEN Wan-quan, XU Shi-chang. Postulation of Stripe Rust Resistance Genes in Chinese 40 Wheat Landraces and 40 Commercial Cultivars in the Southern Region of Gansu Province [J]. Scientia Agricultura Sinica, 2015, 48(19): 3834-3847.
[9] WANG Hai-Bo, WANG Xiao-Di, SHI Xiang-Bin, WANG Bao-Liang, ZHENG Xiao-Cui, LIU Feng-Zhi. Environmental Adaptability of Different Grape Cultivars in Greenhouse [J]. Scientia Agricultura Sinica, 2013, 46(6): 1213-1220.
[10] LI Bao-Ping, GUO Qing, MENG Ling. Effects of Elevated CO2 Concentration on Development, Reproduction and Food Utilization of the Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae) [J]. Scientia Agricultura Sinica, 2013, 46(21): 4464-4470.
[11] LIU Jing, WU Shan-Shan, MENG Ling, LI Bao-Ping. Effects of CO2 Concentration and Pesticide Resistance on Penetration Behaviors in Nilaparvata lugens (Homoptera: Delphacidae) [J]. Scientia Agricultura Sinica, 2013, 46(21): 4471-4477.
[12] LI Hui-Min-12, HU Jie-1, HE Jun-Min-1. Effect of Phosphatidylinositol 3-Phosphate on UV-B-Induced H2O2 Production in Guard Cells and Stomatal Closure of Broad Bean [J]. Scientia Agricultura Sinica, 2013, 46(20): 4246-4253.
[13] MA Xian-Ge, HE Jun-Min. Role of Heterotrimeric G Protein in UV-B-Induced Arabidopsis Stomatal Closure [J]. Scientia Agricultura Sinica, 2012, 45(5): 848-853.
[14] HAN De-Jun, ZHANG Pei-Yu, WANG Qi-Lin, ZENG Qing-Dong, WU Jian-Hui, ZHOU Xin-Li, WANG Xiao-Jie, HUANG Li-Li, KANG Zhen-Sheng. Identification and Evaluation of Resistance to Stripe Rust in 1980 Wheat Landraces and Abroad Germplasm [J]. Scientia Agricultura Sinica, 2012, 45(24): 5013-5023.
[15] LI Qing-ming,LIU Bin-bin,ZOU Zhi-rong
. Effects of Doubled CO2 Concentration on Photosynthetic Characteristics of Cucumber Seedlings Under Drought Stresses
[J]. Scientia Agricultura Sinica, 2011, 44(5): 963-971 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!