Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (6): 1202-1212.doi: 10.3864/j.issn.0578-1752.2018.06.018

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Comparison and Analysis of Genetic Parameters Estimation of Early Growth Traits of Alpine Merino Sheep by Different Animal Models

ZHANG JianBo1, YUAN Chao1, YUE YaoJing1, GUO Jian1, NIU ChunE1, WANG XiJun2WANG LiJuan2, LÜ HuiQin2, YANG BoHui1   

  1. 1Lanzhou Institute of Animal Science & Veterinary Pharmaceutics, Chinese Academy of Agricultural Sciences/Sheep Breeding Engineering Technology Research Center, Chinese Academy of Agricultural Sciences, Lanzhou 730050; 2Gansu Provincial Sheep Breeding Technology Extension Station, Sunan 734031, Gansu
  • Received:2017-08-16 Online:2018-03-16 Published:2018-03-16

Abstract: 【Objective】This study aims to investigate the effect of different animal models on the estimation of genetic parameters of early growth traits of Alpine Merino Sheep, and to select the best animal model. And the best model was used to estimate the genetic parameters of early growth traits, which can provide the theoretical basis for the breeding of Alpine Merino Sheep in the early stage. 【Method】 Firstly, F- test was performed using ASReml software to determine whether the factors in the fixed effects were significant. And the fixed effects which have significant influence on the early growth traits of Alpine Merino sheep were selected for further analysis. Secondly, four animal models were constructed considering different random effects. And genetic parameters in each model were estimated by the Average Information Restricted Maximum Likelihood (AIREML) in ASReml software. Individual additive genetic effect was considered as random effect in model 1. Besides individual additive genetic effect, maternal genetic effect, individual permanent environmental effect was considered as random effects in model 2 and model3, respectively. Finally, the optimal animal model was selected by comparing the random effects in different models with the Akzo Information Criterion (AIC) Index and Likelihood Ratio Test (LRT). 【Result】 (1) The results showed that bloodline, gender, birth type, birth year, birth month, mating month and flocks highly affected the early growth traits of Alpine Merino sheep (P<0.001). Except gender and birth type, other fixed effects were significant on gestation length (P<0.001). (2) The direct heritabilities were (0.0924±0.0160)-(0.2073±0.0226), (0.0651±0.0126)-(0.1027±0.0159), (0.0681±0.0130)-(0.1001±0.1061), (0.0865±0.0148)- (0.0937±0.0149) and (0.0902±0.0174)-(0.1119±0.0189) for BWT, WWT, ADG, WSL, GL, respectively. The maternal heritabilities were 0.1623±0.0113, (0.1097±0.0407)-(0.1098±0.0112), 0.0898±0.0112, 0.0173±0.0107 and 0.0477±0.0146 for birth weight (BWT), weaning weight (WWT), pre-weaning average daily gain (ADG), weaning staple length (WSL) , gestation length (GL), respectively. (3) The comparative analysis of the random effects in different models by the Akaike information criterion (AIC ) and the likelihood ratio test (LRT) showed that the early growth traits were significantly affected by the individual additive genetic effects and maternal genetic effects, but the individual permanent environmental effects were negligible. Therefore, the model 2 was the best model for the early growth traits of Alpine Merino Sheep. 【Conclusion】 The early growth traits of Alpine Merino Sheep were affected by maternal genetic effects more than other random effects. Model 2 was the best animal model for estimating the genetic parameters of early growth traits of Alpine Merino Sheep. Based on the best animal model, the direct heritabilities were 0.0924 ± 0.0160, 0.0651 ± 0.0126, 0.0681 ± 0.0130, 0.0865 ± 0.0148, 0.0902 ± 0.0174 for BWT, WWT, ADG, WSL, GL, respectively. The maternal heritabilities of these traits were 0.1623 ± 0.0113, 0.1098 ± 0.0112, 0.0898 ± 0.0112, 0.0173 ± 0.0107 and 0.0477 ± 0.0146, respectively.

Key words: animal models, Alpine Merino Sheep, early growth traits, genetic parameters, heritabilities, maternal heritabilities

[1]    白俊艳, 李金泉, 贾小平, 张勤, 道尔吉. 母体遗传效应对绒山羊生产性状遗传参数估计的影响. 遗传, 2006, 28(9): 1083-1086.
BAI J Y, LI J Q, JIA X P, ZHANG Q, DAO E J. Influence of maternal genetic effect on genetic parameter estimates of production traits of cashmere goat. Hereditas, 2006, 28(9): 1083-1086. (in Chinese)
[2]    张沅, 张勤. 畜禽育种中的线性模型. 北京: 北京农业大学出版社, 1993.
ZHANG Y, ZHANG Q. Linear Models in Animal Breeding. Beijing: Beijing Agricultural University Press, 1993. (in Chinese)
[3]    魏永龙. 白绒山羊生长性状遗传评估模型及遗传参数估计的研究[D]. 呼和浩特:内蒙古农业大学, 2014.
WEI Y L. Study of genetic evaluation model and estimation of genetic parameters of growth traits in White Cashmere Goats[D]. Huhhot: Inner Mongolia Agricultural University, 2014. (in Chinese)
[4]    岳耀敬, 王天翔, 刘建斌, 郭健, 李桂英, 孙晓萍, 李文辉, 冯瑞林, 牛春娥, 郭婷婷, 李范文, 杨博辉. 高山美利奴羊新品种种质特性初步研究. 中国畜牧杂志, 2014, 50(21): 16-19.
YUE Y J, WANG T X, LIU J B, GUO J, LI G Y, SUN X P, LI W H, FENG R L, NIU C E, GUO T T, LI F W, YANG B H. Preliminary study on Gansu Alpine Merino sheep new varieties of germplasm characteristics. Chinese Journal of Animal Science, 2014, 50(21): 16-19. (in Chinese)
[5]    杨博辉. 论高山美利奴羊新品种的价值和意义. 甘肃畜牧兽医, 2017, 47(04): 55-56.
YANG B H. On the value and significance of new varieties of alpine merino. Gansu Animal Husbandry and Veterinary, 2017, 47(04): 55-56. (in Chinese)
[6]    BORG R C, NOTTER D R, KOTT R W. Phenotypic and genetic associations between lamb growth traits and adult ewe body weights in western range sheep. Journal of Animal Science, 2009, 87(11): 3506-3514. doi: 10. 2527/jas. 2008-1622.
[7]    HANFORD K J, VAN VLECK L D, SNOWDER G D. Estimates of genetic parameters and genetic change for reproduction, weight, and wool characteristics of Targhee sheep. Journal of Animal Science, 2003, 81(3): 630-640. doi: 10. 2527/2003. 813630x.
[8]    CLOETE S W P, MISZTAL I, OLIVIER J J. Genetic parameters and trends for lamb survival and birth weight in a Merino flock divergently selected for multiple rearing ability. Journal of Animal Science, 2009, 87(7): 2196-208. doi: 10. 2527/jas. 2008-1065.
[9]    DI J, ZHANG Y, TIAN K C, LAZATE, LIU J F, XU X M, ZHANG Y J, ZHANG T H. Estimation of (co)variance components and genetic parameters for growth and wool traits of Chinese superfine Merino sheep with the use of a multi-trait animal model. Livestock Science, 2011, 138(1/3): 278-288. doi: 10. 1016/j. livsci. 2011. 01. 005.
[10]   王立贤, 张沅, 潘君乾. 绵羊生长性状母本效应方差组分、遗传参数估计的研究. 畜牧兽医学报, 1993, 24(4): 289-293.
WANG L X, ZHANG Y, PAN J Q. Study of estimating variance components and genetic parameters of maternal influenced sheep growth trait. Chinese Journal of Animal and Veterinary Sciences, 1993, 24(4): 289-293. (in Chinese)
[11] 王鹏宇, 官却扎西, 祁全青, 德毛, 张燕军, 王瑞军, 张文广, 李金泉. 不同模型对青海细毛羊生长性状遗传参数估计的比较. 中国农业科学, 2012(11): 2280-2287. doi: 10. 3864/j. issn. 0578-1752. 2012. 11. 018.
WANG P Y, GUANQUE Z X, QI Q Q, DE M, ZHANG Y J, WANG R J, ZHANG W G, LI J Q. Comparison and analysis of genetic parameters of growth traits of Qinghai Fine-Wool Sheep estimated by different models. Scientia Agricultura Sinica, 2012(11): 2280-2287. doi: 10. 3864/j. issn. 0578-1752. 2012. 11. 018. (in Chinese)
[12]   ABEGAZ S, WYK J V, OLIVIER J J. Model comparisons and genetic and environmental parameter estimates of growth and the Kleiber ratio in Horro sheep. South African Journal of Animal Science, 2005, 35(1): 30-40. doi: 10. 4314/sajas. v35i1. 4046.
[13]   HANFORD K J, SNOWDER G D, VAN VLECK L D. Models with nuclear, cytoplasmic, and environmental effects for production traits of Columbia sheep. Journal of Animal Science, 2003, 81(8): 1926. doi: 10. 2527/2003. 8181926x.
[14]   李文辉, 苏文娟, 保国俊. 甘肃高山细毛羊遗传参数估计. 中国畜牧杂志, 1997(06): 24-25+31.
LI W H, SU W J, BAO G J. Estimation of genetic parameters of Gansu alpine fine wool sheep. Chinese Journal of Animal Science, 1997 (06): 24-25+31. (in Chinese)
[15]   GOWANE G R, CHOPRA A, PRINCE L L, PASWAN, ARORA A L. Estimates of (co)variance components and genetic parameters for body weights and first greasy fleece weight in Bharat Merino sheep. Animal an International Journal of Animal Bioscience, 2010,4(3): 425-31. doi: 10. 1017/S1751731109991157.
[16]   李丽娟, 杨莉, 申小云, 宋德荣. 不同模型对贵州半细毛羊的遗传参数估计比较. 畜牧与兽医, 2014(07): 37-40.
LI L J, YANG L, SHEN X Y, SONG D R. Comparison of different models for estimating genetic parameters of Guizhou semi - fine wool sheep. Animal Husbandry & Veterinary Medicine, 2014(07): 37-40. (in Chinese)
[17]   白俊艳, 李金泉, 道尔吉, 张勤. 用不同模型估计绒山羊早期生长性状遗传参数的比较. 遗传学报, 2004, 31(6): 578-581.
BAI J Y, LI J Q, DAOERJI, ZHANG Q. Comparison of different models for estimating genetic parameters of early growth traits in Cashmere goat. Journal of Genetics and Genomics, 2004, 31(6): 578-581. (in Chinese)
[18]   林元震, 陈晓阳. R与ASReml—R统计分析教程. 北京:中国林业出版社, 2014: 198-199.
LIN Y Z, CHEN X Y. R & ASReml-R Statistical Analysis Tutorial. Beijing: China Forestry Publishing House, 2014: 198-199. (in Chinese)
[19]   边黎明, 施季森, 童春发, 郑仁华. ASReml及其在林木遗传分析中的应用前景. 林业科技开发, 2012(04): 9-12.
BIAN L M, SHI J S, TONG C F, ZHENG R H. ASReml and its application prospect in forest genetic analysis. Journal of Forestry Engineering, 2012(04): 9-12. (in Chinese)
[20]   王鹏宇, 官却扎西, 祁全青, 德毛, 张文广, 李金泉. 母体遗传效应对青海细毛羊生产性能遗传参数估计的影响. 遗传, 2012(05): 584-590. doi: 10. 3724/SP. J. 1005. 2012. 00584.
WANG P Y, GUANQUE Z X, QI Q Q, DE M, ZHANG W G, LI J Q. Impact of maternal genetic effect on genetic parameter estimation of production traits for Qinghai fine-wool sheep. Hereditas, 2012 (05): 584-590. doi: 10. 3724/SP. J. 1005. 2012. 00584. (in Chinese)
[21]   HATCHER S, ATKINS K D, Safari E. Lamb survival in Australian Merino sheep: a genetic analysis. Journal of Animal Science, 2010, 88(10): 3198. doi: 10. 2527/jas. 2009-2461.
[22]   王鹏宇. 青海细毛羊封闭与开放核心群育种规划效果评估[D]. 呼和浩特:内蒙古农业大学, 2012.
WANG P Y. Evaluating the breeding efficiency of closed and open nucleus breeding scheme for Qinghai Fine-Wool Sheep[D]. Huhhot: Inner Mongolia Agricultural University, 2012. (in Chinese)
[23]   MANIATIS N, POLLOTT G E. The impact of data structure on genetic (co)variance components of early growth in sheep, estimated using an animal model with maternal effects. Journal of Animal Science, 2003, 81(1): 101-108. doi: 10. 2527/2003. 811101x.
[24]   KUSHWAHA B P, MANDAL A, ARORA A L, KUMAR R, KUMAR S, NOTTER D R. Direct and maternal (co)variance components and heritability estimates for body weights in Chokla sheep. Journal of Animal Breeding and Genetics, 2009, 126(4): 278-287. doi: 10. 1111/ j. 1439-0388. 2008. 00771. x.
[25]   ZHANG C, YANG L, ZHONG S. Variance components and genetic parameters for weight and size at birth in the Boer goat. Livestock Science, 2008, 115(1): 73-79. doi: 10. 1016/j. livsci. 2007. 06. 008.
[26]   HOSSEINZADEH N G, ARDALAN M. Comparison of different models for the estimation of genetic parameters of body weight traits in Moghani sheep. Agricultural & Food Science, 2010, 19(3): 207-213. doi: 10. 2137/145960610792912639.
[27]   OSORIO-AVALOS J, MENENDEZ-BUXADERA A, SERRADILLA J M, ALCALA A M. Comparison of genetic parameters of weight traits estimated using cross sectional and longitudinal analyses of animal models with two types of contemporary groups in spanish Merino lambs. Small Ruminant Research, 2017, 151: 45-51. doi: 10. 1016/j. smallrumres. 2017. 04. 007.
[28]   JALIL-SARGHALE A, KHOLGHI M, SHAHREBABAK M M, SHAHREBABAK H M, MOHAMMADI H, ABDOLLAHI- ARPANAHI R. Model comparisons and genetic parameter estimates of growth traits in Baluchi sheep. Slovak Journal of Animal Science, 2014, 47(1): 12-18.
[29]   BOUJENANE I, CHIKHI A, IBNELBACHYR M, MOUH F Z. Estimation of genetic parameters and maternal effects for body weight at different ages in D’man sheep. Small Ruminant Research, 2015, 130: 27-35. doi: 10. 1016/j. smallrumres. 2015. 07. 025.
[30]   SINGH H, PANNU U, NARULA H K, CHOPRA A, NAHARWARA V, BHAKAR S K. Estimates of (co)variance components and genetic parameters of growth traits in Marwari sheep. Journal of Applied Animal Research, 2016, 44(1): 27-35. doi: 10. 1080/09712119. 2014. 987291.
[31]   JAFAROGHLI M, RASHIDI A. (Co)variance components and genetic parameter estimates for growth traits in Moghani sheep. Small Ruminant Research, 2010, 91(2): 170-177. doi: 10. 1016/j. smallrumres. 2010. 03. 010.
[32]   BOUJENANE I, DIALLO I T. Estimates of genetic parameters and genetic trends for pre-weaning growth traits in Sardi sheep. Small Ruminant Research, 2017, 146(1): 61-68. doi: 10. 1016/j. smallrumres. 2016. 12. 002.
[33]   WYK J V, FAIR M D, CLOETE S. Revised models and genetic parameter estimates for production and reproduction traits in the Elsenburg Dormer sheep stud. South African Journal of Animal Science, 2003, 33(4): 213-222.
[34]   SAFARI E, FOGARTY N M, GILMOUR A R, ATKINS K D, MORTIMER S I, SWAN A A, BRIEN F D, GREEFF J C, VAN DER WERF J H J. Across population genetic parameters for wool, growth, and reproduction traits in Australian Merino sheep. 2. Estimates of heritability and variance components. Crop & Pasture Science, 2007, 58(2): 177-184.
[35]   杨平贵. 凉山半细毛羊早期性状遗传参数的估测及羔羊产肉性能研究[D]. 雅安:四川农业大学, 2003.
Yang P G. Estimation of genetic parameters of early traits in Liangshan semi-fine wool and study on performance of lamb[D]. Yaan: Sichuan Agricultural University , 2003. (in Chinese)
[36]   LI L, BROWN D J. Estimation of genetic parameters for lambing  ease, birthweight and gestation length in Australian sheep. Animal Production Science, 2016, 56: 934-940. doi: 10. 1071/AN14129
[37]   OSINOWO O A, ABUBAKAR B Y, TRIMNELL A R. Genetic and phenotypic relationships between gestation length, litter size and litter birth weight in Yankasa sheep. Animal Reproduction Science, 1993, 34(2): 111-118. doi: 10. 1016/0378-4320(93)90069-4.
[38]   BRADFORD G E. The role of maternal effects in animal breeding. VII. Maternal effects in sheep. Journal of Animal Science, 1972, 35(6): 1324-1334. doi: 10. 2527/jas1972. 3561324x
[1] LI XueWu, LIU Yan, WANG RuiJun, WANG ZhiYing, NA Qing, LI HongWei, WANG ZhenYu, XU BingBing,SU Rui, ZHANG YanJun, LIU ZhiHong, LI JinQuan . Genetic Parameter Estimation of Cashmere Yield and Body Weight at Different Staple Types of Inner Mongolian Cashmere Goats [J]. Scientia Agricultura Sinica, 2018, 51(12): 2410-2417.
[2] REN XiaoLi, LIU AoXing, LI Xiang, ZHANG Xu, WANG YaChun, SHAO HuaiFeng, QIN ChunHua, WANG Yu, WEN Wan, ZHANG ShengLi. Genetic Parameters Estimation of Test Day Milk Yield in Holstein Heifers in Ningxia Using a Random Regression Test-Day Model [J]. Scientia Agricultura Sinica, 2017, 50(10): 1885-1892.
[3] REN Xiao-Li-1, ZHANG Xu-1, WANG Ya-Chun-1, WU Hong-Jun-2, LIU Ai-Rong-3, ZHANG Yi-1, WANG Dong-Sheng-2, CUI Jiu-Hui-3, DOU Tong-Xi-2, YUAN Peng-2, JIANG Li-Xin-2, ZHOU Lei-2, ZHAO Jian-2. Genetic Parameter Estimation for Body Measurements and Weight at Birth in Sanhe Cattle [J]. Scientia Agricultura Sinica, 2013, 46(23): 5020-5025.
[4] WANG Peng-Yu, GUAN Que-Zha-Xi, QI Quan-Qing, DE Mao, ZHANG Yan-Jun, WANG Rui-Jun, ZHANG Wen-Guang, LI Jin-Quan. Comparison and Analysis of Genetic Parameters of Growth Traits of Qinghai Fine-Wool Sheep Estimated by Different Models [J]. Scientia Agricultura Sinica, 2012, 45(11): 2280-2287.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!