Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (6): 1213-1226.doi: 10.3864/j.issn.0578-1752.2022.06.013
• FOOD SCIENCE AND ENGINEERING • Previous Articles Next Articles
YANG Hong(),CAO WenMing(
),CHEN HeYan,WEI XueQing,SHU LiDan,LI Tong
[1] | European Food Safety Authority. Scientific Opinion on the risks for human and animal health related to the presence of modified forms of certain mycotoxins in food and feed. EFSA Journal, 2014,12(12):3916. |
[2] |
LU Q, QIN J A, FU Y W, LUO J Y, LU J H, LOGRIECO A F, YANG M H. Modified mycotoxins in foodstuffs, animal feed, and herbal medicine: A systematic review on global occurrence, transformation mechanism and analysis methods. Trends in Analytical Chemistry, 2020,133:116088.
doi: 10.1016/j.trac.2020.116088 |
[3] |
NATHANAIL A V, VARGA E, MENG-REITERE J, BUESCHL C, MICHLMAYR H, MALACHOVA A, FRUHMANN P, JESTOI M, PELTONEN K, ADAM G, LEMMENS M, SCHUHMACHER R, BERTHILLER F. Metabolism of the fusarium mycotoxins T-2 toxin and HT-2 toxin in wheat. Journal of Agricultural and Food Chemistry, 2015,63:7862-7872.
doi: 10.1021/acs.jafc.5b02697 |
[4] |
MCCORMICK S P, KATO T, MARAGOS C M, BUSMAN M, LATTANZIO V M T, GALAVERNA G, DALL-ASTA C, CRICH D, PRICE N P J, KURTZMAN C P. Anomericity of T-2 toxin-glucoside: Masked mycotoxin in cereal crops. Journal of Agricultural and Food Chemistry, 2015,63:731-738.
doi: 10.1021/jf504737f |
[5] | BRETZ M, KNECHT A, GӦCKLER S, HUMPF H U. Structural elucidation and analysis of thermal degradation products of the Fusarium mycotoxin nivalenol. Molecular Nutrition & Food Research, 2005,49:309-316. |
[6] |
BRETZ M, BEYER M, CRAMER B, KNECHT A, HUMPF H U. Thermal degradation of the Fusarium mycotoxin deoxynivalenol. Journal of Agricultural and Food Chemistry, 2006,54(17):6445-6451. doi: 10.1021/jf061008g.
doi: 10.1021/jf061008g |
[7] |
ZACHARIASOVA M, VACLAVIKOVA M, LACINA O, VACLAVIK L, HAJSLOVA J. Deoxynivalenol oligoglycosides: New “masked” fusarium toxins occurring in malt, beer, and breadstuff. Journal of Agricultural and Food Chemistry, 2012,60(36):9280-9291. doi: 10.1021/jf302069z.
doi: 10.1021/jf302069z |
[8] |
WARTH B, FRUHMANN P, WIESENBERGER G, KLUGER B, SARKANJ B, LEMMENS M, HAMETNER C, FRÖHLICH J, ADAM G, KRSKA R, SCHUHMACHER R. Deoxynivalenol-sulfates: Identification and quantification of novel conjugated (masked) mycotoxins in wheat. Analytical and Bioanalytical Chemistry, 2015,407(4):1033-1039.
doi: 10.1007/s00216-014-8340-4 |
[9] | European Food Safety Authority. Risks for animal health related to the presence of zearalenone and its modified forms in feed. EFSA Journal, 2017,15(7):4851. |
[10] |
BERTHILLER F, WERNER U, SULYOK M, KRSKA R, HAUSER M T, SCHUHMACHER R. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) determination of phase II metabolites of the mycotoxin Zearalenone in the model plant Arabidopsis thaliana. Food Additives & Contaminants, 2006,23(11):1194-1200. doi: 10.1080/02652030600778728.
doi: 10.1080/02652030600778728 |
[11] |
HUMPF H U, VOSS K A. Effects of thermal food processing on the chemical structure and toxicity of fumonisin mycotoxins. Molecular Nutrition & Food Research, 2004,48(4):255-269. doi: 10.1002/mnfr.200400033.
doi: 10.1002/mnfr.200400033 |
[12] |
KIM E K, SCOTT P M, LAU B P Y. Hidden fumonisins in corn flakes. Food Additives and Contaminants, 2003,20:161-169.
doi: 10.1080/0265203021000035362 |
[13] |
SEEFELDER W, KNECHT A, HUMPF H U. Bound fumonisin B1: Analysis of fumonisin-B1 glyco and amino acid conjugates by liquid Chromatography-Electrospray Ionization-Tandem mass spectrometry. Journal of Agricultural and Food Chemistry, 2003,51(18):5567-5573. doi: 10.1021/jf0344338.
doi: 10.1021/jf0344338 |
[14] | BARTÓK T, TÖLGYESI L, MESTERHáZY Á, BARTOK M, SZECSI A. Identification of the first fumonisin mycotoxins with three acyl groups by ESI-ITMS and ESI-TOFMS following RP-HPLC separation: palmitoyl, linoleoyl and oleoyl EFB1 fumonisin isomers from a solid culture of Fusarium verticillioides. Food Additives and Contaminants, 2010,27(12):1714-1723. |
[15] |
PARK J W, SCOTT P M, LAU B P Y, LEWIS D A. Analysis of heat-processed corn foods for fumonisins and bound fumonisins. Food Additives & Contaminants, 2004,21(12):1168-1178. doi: 10.1080/02652030400021873.
doi: 10.1080/02652030400021873 |
[16] |
DALL’ASTA C, MANGIA M, BERTHILLER F, MOLINELLI A, SULYOK M, SCHUHMACHER R, KRSKA R, GALAVERNA G, DOSSENA A, MARCHELLI R. Difficulties in fumonisin determination: the issue of hidden fumonisins. Analytical and Bioanalytical Chemistry, 2009,395(5):1335-1345. doi: 10.1007/s00216-009-2933-3.
doi: 10.1007/s00216-009-2933-3 |
[17] | JECFA. Evaluation of certain contaminants in food. 72nd Report of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). WHO Technical Report Series, 2011,959:1-115. |
[18] |
EFSA PANEL ON CONTAMINANTS IN THE FOOD CHAIN (CONTAM), KNUTSEN H K, ALEXANDER J, BARREGÅRD L, BIGNAMI M, BRÜSCHWEILER B, CECCATELLI S, COTTRILL B, DINOVI M, GRASL-KRAUPP B, HOGSTRAND C, HOOGENBOOM L R, NEBBIA C S, OSWALD I P, PETERSEN A, ROSE M, ROUDOT A C, SCHWERDTLE T, VLEMINCKX C, VOLLMER G, WALLACE H, DE SAEGER S, ERIKSEN G S, FARMER P, FREMY J M, GONG Y Y, MEYER K, NAEGELI H, PARENT-MASSIN D, RIETJENS I, VAN EGMOND H, ALTIERI A, ESKOLA M, GERGELOVA P, RAMOS BORDAJANDI L, BENKOVA B, DÖRR B, GKRILLAS A, GUSTAVSSON N, VAN MANEN M, EDLER L. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA Journal European Food Safety Authority, 2017,15(9):e04718. doi: 10.2903/j.efsa.2017.4718.
doi: 10.2903/j.efsa.2017.4718 |
[19] |
NAGL V, WOECHTL B, SCHWARTZ-ZIMMERMANN H E, HENNIG-PAUKA I, MOLL W D, ADAM G, BERTHILLER F. Metabolism of the masked mycotoxin deoxynivalenol-3-glucoside in pigs. Toxicology Letters, 2014,229(1):190-197. doi: 10.1016/j.toxlet.2014.06.032.
doi: 10.1016/j.toxlet.2014.06.032 |
[20] | GRATZ S W, DINESH R, YOSHINARI T, HOLTROP G, RICHARDSON A J, DUNCAN G, MACDONALD S, LIOYD A, TARBIN J. Masked trichothecene and zearalenone mycotoxins withstand digestion and absorption in the upper GI tract but are efficiently hydrolyzed by human gut microbiota in vitro. Molecular Nutrition & Food Research, 2017,61(4):1600680. |
[21] |
VIDAL A, CLAEYS L, MENGELERS M, VANHOORNE V, VERVAET C, HUYBRECHTS B, DE SAEGER S, DE BOEVRE M. Humans significantly metabolize and excrete the mycotoxin deoxynivalenol and its modified form deoxynivalenol-3-glucoside within 24 hours. Scientific Reports, 2018,8(1):5255. doi: 10.1038/s41598-018-23526-9.
doi: 10.1038/s41598-018-23526-9 |
[22] |
BINDER S B, SCHWARTZ-ZIMMERMANN H E, VARGA E, BICHL G, MICHLMAYR H, ADAM G, BERTHILLER F. Metabolism of zearalenone and its major modified forms in pigs. Toxins, 2017,9(2):56.
doi: 10.3390/toxins9020056 |
[23] |
DELLAFIORA L, GALAVERNA G, RIGHI F, COZZINI P, DALL'ASTA C. Assessing the hydrolytic fate of the masked mycotoxin Zearalenone-14-glucoside - A warning light for the need to look at the “maskedome”. Food and Chemical Toxicology, 2017,99:9-16. doi: 10.1016/j.fct.2016.11.013.
doi: 10.1016/j.fct.2016.11.013 |
[24] | 赵琼晖, 袁梓洢, 王宏菊, 张建莹. 食品中修饰型真菌毒素及其同时检测方法研究进展. 食品工业科技, 2020,41(2):336-344. |
ZHAO Q H, YUAN Z Y, WANG H J, ZHANG J Y. Progress on the modified mycotoxins and their simultaneous determination methods in food. Science and Technology of Food Industry, 2020,41(2):336-344. (in Chinese) | |
[25] |
KOVALSKY P, KOS G, NÄHRER K, SCHWAB C, JENKINS T, SCHATZMAYR G, SULYOK M, KRSKA R. Co-occurrence of regulated, masked and emerging mycotoxins and secondary metabolites in finished feed and maize-an extensive survey. Toxins, 2016,8(12):363.
doi: 10.3390/toxins8120363 |
[26] |
LORENZ N, DÄNICKE S, EDLER L, GOTTSCHALK C, LASSEK E, MARKO D, RYCHLIK M, MALLY A. A critical evaluation of health risk assessment of modified mycotoxins with a special focus on Zearalenone. Mycotoxin Research, 2019,35(1):27-46. doi: 10.1007/s12550-018-0328-z.
doi: 10.1007/s12550-018-0328-z |
[27] |
STEINKELLNER H, BINAGLIA M, DALL'ASTA C, GUTLEB A C, METZLER M, OSWALD I P, PARENT-MASSIN D, ALEXANDER J. Combined hazard assessment of mycotoxins and their modified forms applying relative potency factors: Zearalenone and T2/HT2 toxin. Food and Chemical Toxicology, 2019,131:110599. doi: 10.1016/j.fct.2019.110599.
doi: 10.1016/j.fct.2019.110599 |
[28] |
HUMPF H U, SCJMELZ E M, MEREDITHI F I, VESPER H, VALES T R, WANG E, MENALDINO D S, LIOTTA D C, MERRILL A H. Acylation of naturally occurring and synthetic 1- deoxysphinganines by ceramide synthase. The Journal of Biological Chemistry, 1998,273(30):19060-19064.
doi: 10.1074/jbc.273.30.19060 |
[29] |
BERTHILLER F, DALL'ASTA C, SCHUHMACHER R, LEMMENS M, ADAM G, KRSKA R. Masked mycotoxins: determination of a deoxynivalenol glucoside in artificially and naturally contaminated wheat by liquid chromatography-tandem mass spectrometry. Journal of Agricultural and Food Chemistry, 2005,53(9):3421-3425. doi: 10.1021/jf047798g.
doi: 10.1021/jf047798g |
[30] |
NATHANAIL A V, SYVÄHUOKO J, MALACHOVÁ A, JESTOI M, VARGA E, MICHLMAYR H, ADAM G, SIEVILäiNEN E, BERTHILLER F, PELTONEN K. Simultaneous determination of major type A and B trichothecenes, zearalenone and certain modified metabolites in Finnish cereal grains with a novel liquid chromatography-tandem mass spectrometric method. Analytical and Bioanalytical Chemistry, 2015,407(16):4745-4755.
doi: 10.1007/s00216-015-8676-4 |
[31] | 李凤琴, 于钏钏, 邵兵, 王伟, 于红霞. 2007-2008年中国谷物中隐蔽型脱氧雪腐镰刀烯醇及多组分真菌毒素污染状况. 中华预防医学杂志, 2011,45(1):57-63. |
LI F Q, YU C C, SHAO B, WANG W, YU H X. Natural occurrence of masked deoxynivalenol and multi-mycotoxins in cereals from China harvested in 2007 and 2008. Chinese Journal of Preventive Medicine, 2011,45(1):57-63. (in Chinese) | |
[32] |
FREIRE L, SANT'ANA A S. Modified mycotoxins: An updated review on their formation, detection, occurrence, and toxic effects. Food and Chemical Toxicology, 2018,111:189-205. doi: 10.1016/j.fct.2017.11.021.
doi: 10.1016/j.fct.2017.11.021 |
[33] |
YOSHINARI T, SAKUDA S, FURIHATA K, FURUSAWA H, OHNISHI T, SUGITA-KONISHI Y, ISHIZAKI N, TERAJIMA J. Structural determination of a nivalenol glucoside and development of an analytical method for the simultaneous determination of nivalenol and deoxynivalenol, and their glucosides, in wheat. Journal of Agricultural and Food Chemistry, 2014,62(5):1174-1180. doi: 10.1021/jf4048644.
doi: 10.1021/jf4048644 |
[34] |
SASANYA J J, HALL C, WOLF-HALL C. Analysis of deoxynivalenol, masked deoxynivalenol, and Fusarium graminearum pigment in wheat samples, using liquid chromatography-UV-mass spectrometry. Journal of Food Protection, 2008,71(6):1205-1213. doi: 10.4315/0362-028x-71.6.1205.
doi: 10.4315/0362-028x-71.6.1205 |
[35] |
PALACIOS S A, ERAZO J G, CIASCA B, LATTANZIO V M T, REYNOSO M M, FARNOCHI M C, TORRES A M. Occurrence of deoxynivalenol and deoxynivalenol-3-glucoside in durum wheat from Argentina. Food Chemistry, 2017,230:728-734. doi: 10.1016/j.foodchem.2017.03.085.
doi: 10.1016/j.foodchem.2017.03.085 |
[36] |
BRYLA M, KSIENIEWICZ-WO´ZNIAK E, WA´SKIEWICZ A, SZYMCZYK K, JEDRZEJCZAK R. Natural occurrence of nivalenol, deoxynivalenol, and Deoxynivalenol-3-Glucoside in polish winter wheat. Toxins, 2018,10(2):81.
doi: 10.3390/toxins10020081 |
[37] |
DE BOEVRE M, DI MAVUNGU J D, MAENE P, AUDENAERT K, DEFORCE D, HAESAERT G, EECKHOUT M, CALLEBAUT A, BERTHILLER F, VAN PETEGHEM C, DE SAEGER S. Development and validation of an LC-MS/MS method for the simultaneous determination of deoxynivalenol, Zearalenone, T-2-toxin and some masked metabolites in different cereals and cereal-derived food. Food Additives & Contaminants: Part A, 2012,29(5):819-835. doi: 10.1080/19440049.2012.656707.
doi: 10.1080/19440049.2012.656707 |
[38] |
WANG W, MA J J, YU C C, LIN X H, JIANG H R, SHAO B, LI E Q. Simultaneous determination of masked deoxynivalenol and some important type B trichothecenes in Chinese corn kernels and corn-based products by ultra-performance liquid chromatography- tandem mass spectrometry. Journal of Agricultural and Food Chemistry, 2012,60(46):11638-11646. doi: 10.1021/jf3038133.
doi: 10.1021/jf3038133 |
[39] |
SCHNEWEIS I, MEYER K, ENGELHARDT G, BAUER J. Occurrence of Zearalenone-4-β-d-glucopyranoside in wheat. Journal of Agricultural and Food Chemistry, 2002,50(6):1736-1738. doi: 10.1021/jf010802t.
doi: 10.1021/jf010802t |
[40] |
MALACHOVA A, DZUMAN Z, VEPRIKOVA Z, VACLAVIKOVA M, ZACHARIASOVA M, HAJSLOVA J. Deoxynivalenol, deoxynivalenol-3-glucoside, and enniatins: The major mycotoxins found in cereal-based products on the Czech market. Journal of Agricultural and Food Chemistry, 2011,59(24):12990-12997. doi: 10.1021/jf203391x.
doi: 10.1021/jf203391x |
[41] |
VENDL O, CREWS C, MACDONALD S, KRSKA R, BERTHILLER F. Occurrence of free and conjugated Fusarium mycotoxins in cereal-based food. Food Additives & Contaminants: Part A, 2010,27(8):1148-1152. doi: 10.1080/19440041003801166.
doi: 10.1080/19440041003801166 |
[42] |
DE BOEVRE M, JACXSENS L, LACHAT C, EECKHOUT M, DI MAVUNGU J D, AUDENAERT K, MAENE P, HAESAERT G, KOLSTEREN P, DE MEULENAER B, DE SAEGER S. Human exposure to mycotoxins and their masked forms through cereal-based foods in Belgium. Toxicology Letters, 2013,218(3):281-292. doi: 10.1016/j.toxlet.2013.02.016.
doi: 10.1016/j.toxlet.2013.02.016 |
[43] |
LEE S Y, WOO S Y, TIAN F, SONG J, MICHLMAYR H, KIM J B, CHUN H S. Occurrence of deoxynivalenol, nivalenol, and their glucosides in korean market foods and estimation of their population exposure through food consumption. Toxins, 2020,12:89.
doi: 10.3390/toxins12020089 |
[44] |
RAHIMI E, SADEGHI E, BOHLOULI S, KARAMI F. Fates of deoxynivalenol and deoxynivalenol-3-glucoside from wheat flour to Iranian traditional breads. Food Control, 2018,91:339-343.
doi: 10.1016/j.foodcont.2018.04.014 |
[45] |
JIN Z, ZHOU B, GILLESPIE J, GROSS T, BARR J, SIMSEK S, BRUEGGEMAN R, SCHWARZ P. Production of deoxynivalenol (DON) and DON-3-glucoside during the malting of Fusarium infected hard red spring wheat. Food Control, 2018,85:6-10.
doi: 10.1016/j.foodcont.2017.09.002 |
[46] | BERTHILLER F, CREWS C, DALL’ASTA C, SAEGER S D, HAESAERT G, KARLOVSKY P, OSWALD I P, SEEFELDER W, SPEIJERS G, STROKA J. Masked mycotoxins: A review. Molecular Nutrition & Food Research, 2013,57:165-186. |
[47] | PASCARI X, GIL-SAMARRA S, MARIN S, RAMOS A J, SANCHIS V. Fate of zearalenone, deoxynivalenol and deoxynivalenol- 3-glucoside during malting process. Food Science and Technology, 2019,99:540-546. |
[48] | 中华人民共和国卫生部. 食品安全国家标准食品中真菌毒素限量: GB 2761—2017. 北京: 中国标准出版社, 2017. |
Ministry of Health of the PRC. National food safety standard limit of mycotoxin in food: GB 2761-2017. Beijing: China Standards Press, 2017. (in Chinese) | |
[49] |
STOEV S D. Foodborne mycotoxicoses, risk assessment and underestimated hazard of masked mycotoxins and joint mycotoxin effects or interaction. Environmental Toxicology and Pharmacology, 2015,39(2):794-809. doi: 10.1016/j.etap.2015.01.022.
doi: 10.1016/j.etap.2015.01.022 |
[50] | 吴限鑫, 林秋君, 郭春景, 王建忠, 王雪鑫, 李广. 国内外主要粮油产品中真菌毒素限量、检测标准及风险评估现状分析. 中国粮油学报, 2019,34(9):130-138. |
WU X X, LIN Q J, GUO C J, WANG J Z, WANG X X, LI G. Analysis of limits, testing standards and risk assessment of mycotoxins in major grain and oil products at home and abroad. Journal of the Chinese Cereals and Oils Association, 2019,34(9):130-138. (in Chinese) | |
[51] |
BERTHILLER F, KRSKA R, DOMIG K J, KNEIFEL W, JUGE N, SCHUHMACHER R, ADAM G. Hydrolytic fate of deoxynivalenol- 3-glucoside during digestion. Toxicology Letters, 2011,206(3):264-267. doi: 10.1016/j.toxlet.2011.08.006.
doi: 10.1016/j.toxlet.2011.08.006 |
[52] |
ABBOTT A. Microbiology: Gut reaction. Nature, 2004,427(6972):284-286. doi: 10.1038/427284a.
doi: 10.1038/427284a |
[53] |
HATTORI M, TAYLOR T D. The human intestinal microbiome: A new frontier of human biology. DNA Research, 2009,16(1):1-12. doi: 10.1093/dnares/dsn033.
doi: 10.1093/dnares/dsn033 |
[54] |
ZHANG Z Q, NIE D X, FAN K, YANG J H, GUO W B, MENG J J, ZHAO Z H, HAN Z. A systematic review of plant-conjugated masked mycotoxins: Occurrence, toxicology, and metabolism. Critical Reviews in Food Science and Nutrition, 2020,60(9):1523-1537. doi: 10.1080/10408398.2019.1578944.
doi: 10.1080/10408398.2019.1578944 |
[55] |
ROGOWSKA A, POMASTOWSKI P, SAGANDYKOVA G, BUSZEWSKI B. Zearalenone and its metabolites: Effect on human health, metabolism and neutralisation methods. Toxicon, 2019,162:46-56. doi: 10.1016/j.toxicon.2019.03.004.
doi: 10.1016/j.toxicon.2019.03.004 |
[56] |
NAGL V, SCHATZMAYR G. Deoxynivalenol and its masked forms in food and feed. Current Opinion in Food Science 2015,5:43-49.
doi: 10.1016/j.cofs.2015.08.001 |
[57] |
HE J W, BONDY G S, ZHOU T, CALDWELL D, BOLAND G J, SCOTT P M. Toxicology of 3-epi-deoxynivalenol, a deoxynivalenol- transformation product by Devosia mutans 17-2-E-8. Food and Chemical Toxicology, 2015,84:250-259. doi: 10.1016/j.fct.2015.09.003.
doi: 10.1016/j.fct.2015.09.003 |
[58] |
YAO Y, LONG M. The biological detoxification of deoxynivalenol: A review. Food and Chemical Toxicology, 2020,145:111649. doi: 10.1016/j.fct.2020.111649.
doi: 10.1016/j.fct.2020.111649 |
[59] |
BRACARENSE A P F L, PIERRON A, PINTON P, GEREZ J R, SCHATZMAYR G, MOLL W D, ZHOU T, OSWALD I P. Reduced toxicity of 3-epi-deoxynivalenol and de-epoxy-deoxynivalenol through deoxynivalenol bacterial biotransformation: in vivo analysis in piglets. Food and Chemical Toxicology, 2020,140:111241. doi: 10.1016/j.fct.2020.111241.
doi: 10.1016/j.fct.2020.111241 |
[60] |
DALL'ASTA C, GALAVERNA G, MANGIA M, SFORZA S, DOSSENA A, MARCHELLI R. Free and bound fumonisins in gluten-free food products. Molecular Nutrition & Food Research, 2009,53(4):492-499. doi: 10.1002/mnfr.200800088.
doi: 10.1002/mnfr.200800088 |
[61] | 张晓明, 杨治彪, 高升成. 农产品中真菌毒素的管控. 现代农业科技, 2016(3):322-323. |
ZHANG X M, YANG Z B, GAO S C. Control of mycotoxins in agricultural products. Modern Agricultural Science and Technology, 2016(3):322-323. (in Chinese) | |
[62] | 周贻兵, 李磊, 吴玉田, 刘利亚. 小麦粉中2种新型真菌毒素含量测定方法. 食品工业, 2021,42(5):448-451. |
ZHOU Y B, LI L, WU Y T, LIU L Y. Determination method of two new mycotoxins in wheat flour. The Food Industry, 2021,42(5):448-451. (in Chinese) | |
[63] |
LANCOVA K, HAJSLOVA J, POUSTKA J, KRPLOVA A, ZACHARIASOVA M, DOSTALEK P, SACHAMBULA L. Transfer of Fusarium mycotoxins and ‘masked’ deoxynivalenol (deoxynivalenol- 3-glucoside) from field barley through malt to beer. Food Additives & Contaminants: Part A, 2008,25(6):732-744. doi: 10.1080/02652030701779625.
doi: 10.1080/02652030701779625 |
[64] |
NERVA L, CHITARRA W, SICILIANO I, GAIOTTI F, CIUFFO M, FORGIA M, VARESE G C, TURINA M. Mycoviruses mediate mycotoxin regulation in Aspergillus ochraceus. Environmental Microbiology, 2019,21(6):1957-1968. doi: 10.1111/1462-2920.14436.
doi: 10.1111/1462-2920.14436 |
[65] |
HOENISCH R W, DAVIS R M. Relationship between kernel pericarp thickness and susceptibility to Fusarium ear rot in field corn. Plant Disease, 1994,78(5):517-519.
doi: 10.1094/PD-78-0517 |
[66] |
DORNER J W. Efficacy of a biopesticide for control of aflatoxins in corn. Journal of Food Protection, 2010,73(3):495-499. doi: 10.4315/0362-028x-73.3.495.
doi: 10.4315/0362-028x-73.3.495 |
[67] |
WU Q H, KUČA K, HUMPF H U, KLÍMOVÁ B, CRAMER B. Fate of deoxynivalenol and deoxynivalenol-3-glucoside during cereal- based thermal food processing: a review study. Mycotoxin Research, 2017,33(1):79-91. doi: 10.1007/s12550-016-0263-9.
doi: 10.1007/s12550-016-0263-9 |
[68] | 吕聪, 邢福国, 刘阳. 国内外真菌毒素防控新技术. 中国猪业, 2017,12(6):27-32. |
LÜ C, XING F G, LIU Y. New technologies of mycotoxin prevention and control at home and abroad. China Swine Industry, 2017,12(6):27-32. (in Chinese) | |
[69] |
TIAN Y, TAN Y L, LIU N, YAN Z, LIAO Y C, CHEN J, DE SAEGER S, YANG H, ZHANG Q Y, WU A B. Detoxification of deoxynivalenol via glycosylation represents novel insights on antagonistic activities of Trichoderma when confronted with Fusarium graminearum. Toxins, 2016,8(11):335.
doi: 10.3390/toxins8110335 |
[70] |
SHIMA J, TAKASE S, TAKAHASHI Y, IWAI Y, OCHI K. Novel detoxification of the trichothecene mycotoxin deoxynivalenol by a soil bacterium isolated by enrichment culture. Applied and Environmental Microbiology, 1997,63(10):3825-3830.
doi: 10.1128/aem.63.10.3825-3830.1997 |
[71] | 何伟杰, 刘易科, 朱展望, 张静伯, 高春保, 廖玉才. 镰刀菌毒素脱氧雪腐镰刀菌烯醇脱毒菌及脱毒酶研究进展. 植物病理学报, 2019,49(5):577-589. |
HE W J, LIU Y K, ZHU Z W, ZHANG J B, GAO C B, LIAO Y C. Recent progress on microbial and enzymatic detoxification of Fusarium mycotoxin deoxynivalenol. Acta Phytopathologica Sinica, 2019,49(5):577-589. (in Chinese) | |
[72] |
GUAN S, HE J W, YOUNG J C, ZHU H H, LI X Z, JI C, ZHOU T. Transformation of trichothecene mycotoxins by microorganisms from fish digesta. Aquaculture, 2009,290(3):290-295.
doi: 10.1016/j.aquaculture.2009.02.037 |
[1] | QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976. |
[2] | REN Yifang,YANG ZhangPing,LING Fenghua,XIAO LiangWen. Risk Zoning of Heat Stress Risk Zoning of Dairy Cows in Jiangsu Province and Its Characteristics Affected by Climate Change [J]. Scientia Agricultura Sinica, 2022, 55(22): 4513-4525. |
[3] | MAO LianGang,GUO MingCheng,YUAN ShanKui,ZHANG Lan,JIANG HongYun,LIU XinGang. Analysis on the Status of Insecticides Registered on Small Insects of Fruits and Vegetables in China Based on Recommended Dosage [J]. Scientia Agricultura Sinica, 2022, 55(11): 2161-2173. |
[4] | ZHANG Qiao,WANG Ke. The Uncertainty of Agricultural Yield Risk Assessment and Agricultural Insurance Pricing: Literature Review and Wayforward [J]. Scientia Agricultura Sinica, 2021, 54(22): 4778-4786. |
[5] | WANG XiaoBin, YAN Xiang, LI XiuYing. Environmental Safety Risk for Application of Anaerobic Fermentation Biogas Slurry from Livestock Manure in Agricultural Land in China [J]. Scientia Agricultura Sinica, 2021, 54(1): 110-139. |
[6] | XU YongHong,CHEN Li,TANG Song,DING DeKuan,YANG YuHeng. Prediction of Suitable Area and Risk Analysis for Citrus Target Spot [J]. Scientia Agricultura Sinica, 2020, 53(21): 4430-4439. |
[7] | LI XiaoBei,ZHAO XiaoYan,LI JianYing,CHEN Lei,ZHOU ChangYan,HE XiangWei. Residue Behavior and Dietary Intake Risk Assessment of Imidaclothiz in Pakchoi (Brassica chinensis L.) [J]. Scientia Agricultura Sinica, 2020, 53(17): 3587-3596. |
[8] | WANG XiaoBin,YAN Xiang,LI XiuYing,JI HongJie. Environmental Risks for Application of Phosphogysum in Agricultural Soils in China [J]. Scientia Agricultura Sinica, 2019, 52(2): 293-311. |
[9] | WANG XiaoBin, YAN Xiang, LI XiuYing, CAI DianXiong, LEI Mei. Environment Risk for Application of Flue Gas Desulfurization Gypsum in Soils in China [J]. Scientia Agricultura Sinica, 2018, 51(5): 926-939. |
[10] | JIA ShiRong. Risk Assessment and Regulation of Genetically Engineered Crops: History and Reformation [J]. Scientia Agricultura Sinica, 2018, 51(4): 601-612. |
[11] | GAI XiaPu, LIU HongBin, ZHAI LiMei, YANG Bo, REN TianZhi, WANG HongYuan, WU ShuXia, LEI QiuLiang. Effects of Long-Term Additional Application of Organic Manure or Straw Incorporation on Soil Nitrogen Leaching Risk [J]. Scientia Agricultura Sinica, 2018, 51(12): 2336-2347. |
[12] | HU GuiXian, LAI AiPing, YUAN YuWei, ZHANG ZhiHeng, ZHAO ShouPing, ZHU JiaHong, WANG Qiang. Cumulative Risk Assessment of Dietary Sulfur Dioxide Residues of Consumers [J]. Scientia Agricultura Sinica, 2017, 50(7): 1317-1325. |
[13] | XU Li, LU AnXiang, TIAN XiaoQin, HE HongJu, YIN JingWei. Accumulation Characteristics and Risk Assessment of Heavy Metals in Typical Greenhouse Vegetable Bases [J]. Scientia Agricultura Sinica, 2017, 50(21): 4149-4158. |
[14] | LI ZhiXia, NIE JiYun, YAN Zhen, ZHANG XiaoNan, GUAN DiKai, SHEN YouMing, CHENG Yang. Progress in Research of Detection, Risk Assessment and Control of the Mycotoxins in Fruits and Fruit Products [J]. Scientia Agricultura Sinica, 2017, 50(2): 332-347. |
[15] | YE Meng-liang, NIE Ji-yun, XU Guo-feng, YAN Zhen, ZHENG Li-jing. Residue and Dietary Exposure Risk Assessment of Four Pesticides in Apple [J]. Scientia Agricultura Sinica, 2016, 49(7): 1289-1302. |
|