Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (5): 1010-1024.doi: 10.3864/j.issn.0578-1752.2022.05.013

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Effects of Starch Granule Size on the Physical and Chemical Properties of Barley Starches

XIAO LuTing1(),LI XiuHong1,LIU LiJun1,YE FaYin1,2,3(),ZHAO GuoHua1,2,3   

  1. 1College of Food Science, Southwest University, Chongqing 400715
    2Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715
    3Chongqing Engineering Research Center for Regional Foods, Chongqing 400715
  • Received:2021-06-17 Accepted:2021-09-08 Online:2022-03-01 Published:2022-03-08
  • Contact: FaYin YE E-mail:xlt123456789@email.swu.edu.cn;fye@swu.edu.cn

Abstract:

【Objective】 Barley, an important source of cereal raw material, is widely used in beer brewing, livestock feeding, and medicine and food healthcare, etc. Empirical evidences have showed that the granule size, composition and structure of starch in barley grain mainly determine its use. The present research was carried out to analyze the composition, structure and physicochemical properties of starch granules with different sizes from different barley varieties, which could help enhancing the utilization of barley starch from barley processing industries. 【Method】The starch from selected barley varieties, Xiyin-2, Jingxin-1 and Supi-6, was extracted and fractionated into large, medium and small-sized fractions by using differential sedimentation methods. The effects of granular size on micromorphology, crystal structure, apparent amylose content, amylopectin side chain distribution, thermal properties, hydration properties, gelatinization properties, and digestibility properties of barley starch was investigated.【Result】 The large-sized granules were mostly discal shape, while the medium-sized granules were oblate or oval spherical shape, and the small-sized granules were spherical or polygonal shape. All barley starch granules had a typical polarized cross under a polarized light microscope, and the polarized light spots enhanced as the granule size increased. The large-sized fraction had the highest percentages (87.62%-89.48%) in barley starch, followed by medium-sized fraction (8.97%-9.42%) and small-sized fraction (1.55%-3.29%). The apparent amylose content of barley starch ranged from 19.12 to 30.63 g/100 g. The effect of granule size on its content was not regular. All the samples were A-type crystals, and the relative crystallinity augmented with the increase of granule size. The side chain distribution of barley amylopectin presented a bimodal pattern, with the main peak at DP 12 and the secondary peak at DP 38. The highest content of amylopectin in barley starch was B1 chain (34.34%-44.76%), followed by A chain (25.12%-34.52%). The average chain length of barley amylopectin was DP 22.86-25.00. The thermal characteristics of starch from barley varieties demonstrated that the gelatinization temperature range (∆T) of small-sized granules was the largest, and the gelatinization enthalpy (∆H) increased as the granule size increased. The swelling power of barley starch showed differences in varieties. All granule fractions of Jingxin-1 barley starch had higher swelling power. The results of pasting properties suggested that the small-sized granules had higher peak viscosity, breakdown and final viscosity of than the medium and small-sized granules. The results of digestibility characteristics showed that the rapidly digestible starch content of barley starch increased with the decrease of granule size, but the influence of granule size on its slowly digestible starch and resistant starch contents was not regular.【Conclusion】The granule size had a great influence on the structural characteristics of barley starch, such as the amylose content, the fine structure of amylopectin, and the relative crystallinity, thereby affecting the thermal properties, pasting properties, and digestibility characteristics of barley starch. The application characteristics of barley starch with different granule sizes were worthy of in-depth study.

Key words: starch granule size, barley starch, molecular structure, processing characteristics, digestibility characteristics

Table 1

Basic properties of barley starches"

项目Item 西引2号Xiyin-2 京辛1号Jingxin-1 苏啤6号Supi-6
水分Moisture (g/100 g) 15.90±0.32a 13.42±0.19b 10.93±0.18c
总淀粉Total starch (g/100 g) 98.13±2.13a 98.95±3.46a 98.42±1.36a
蛋白质Protein (g/100 g) 1.54±0.01a 1.02±0.02c 1.18±0.01b
灰分Ash (g/100 g) 0.04±0.01a 0.02±0.01b 0.01±0.01b
表观直链淀粉Apparent amylose (g/100 g) 27.60±3.16a 22.37±2.19c 24.70±2.49b
表面积平均粒径D[3,2] Surface area average particle size (µm) 7.53±0.01b 8.31±0.01a 7.68±0.01b
体积平均粒径D[4,3] Volume average particle size (µm) 16.20±0.03b 17.13±0.03a 16.41±0.06b
低值粒径d(0.1) Low particle size (µm) 8.61±0.03b 9.68±0.02a 8.78±0.23b
中值粒径d(0.5) Median particle size (µm) 16.37±0.03b 17.29±0.03a 16.46±0.04b
高值粒径d(0.9) High particle size (µm) 24.26±0.06b 25.48±0.05a 24.90±0.44b
比表面积Specific surface area (m2·g-1) 0.80±0.02a 0.72±0.01b 0.78±0.01ab

Fig. 1

Normal light microscopy and polarized light microscopy images of barley starch"

Fig. 2

Scanning electron microscope images of barley starch granules A, B, C: Xiyin-2 barley starch (×500, ×1000, ×5000, respectively); D, E, F: Jingxin-1 barley starch (×500, ×1000, ×5000, respectively); G, H, I: Supi-6 barley starch (×500, ×1000, ×5000, respectively)"

Table 2

Properties of large, medium and small barley starch granules"

项目
Item
西引2号Xiyin-2 京辛1号Jingxin-1 苏啤6号Supi-6

Large

Medium

Small

Large

Medium

Small

Large

Medium

Small
总淀粉Total starch (g/100 g) 98.52 98.54 99.37 98.21 98.53 97.65 98.62 97.96 98.59
表观直链淀粉Apparent amylose (g/100 g) 24.23 30.63 27.14 25.51 19.12 23.53 29.47 21.67 22.49
晶体类型Crystal type A型 A型 A型 A型 A型 A型 A型 A型 A型
相对结晶度Relative crystallinity (%) 36.20 28.10 25.20 41.30 26.50 23.30 33.70 27.60 24.60
体积百分比Volume percentage (%) 87.71 9.42 2.85 89.48 8.97 1.55 87.62 9.11 3.29
A链Chain (DP 6-12) (%) 25.12 25.31 27.44 34.52 25.75 26.87 28.52 26.33 26.87
B1链Chain (DP 13-24) (%) 44.76 44.09 43.36 34.34 44.58 44.19 36.83 41.97 44.19
B2链Chain (DP 25-36) (%) 16.99 16.60 15.23 12.62 16.51 15.81 14.63 14.63 15.81
B3链Chain (DP>36) (%) 13.12 13.41 11.61 9.96 12.93 12.20 12.21 13.88 12.20
平均链长Average chain length (DP) 25.00 24.85 24.41 22.86 24.94 24.77 23.05 24.20 24.77

Fig. 3

Chain length distributions of large, medium and small starches in barley grains XLS, XMS and XSS represent the large, medium and small starch granules of Xiyin-2 barley, respectively; JLS, JMS and JSS represent the large, medium and small starch granules of Jingxin-1 barley, respectively; SLS, SMS and SSS represent large, medium and small starch granules of Supi-6 barley, respectively"

Fig. 4

X-ray diffractograms for granule size fractionated barley starch"

Table 3

Thermal and gelatinization properties of large, medium and small barely starches"

项目
Item
西引2号Xiyin-2 京辛1号Jingxin-1 苏啤6号Supi-6

Large

Medium

Small

Large

Medium

Small

Large

Medium

Small
起始糊化温度To (℃) 61.1 61.0 60.9 61.7 60.9 60.1 61.3 60.7 60.6
峰值糊化温度TP (℃) 64.3 64.9 65.5 64.6 65.1 67.0 64.5 65.2 66.9
终值糊化温度Tc (℃) 70.0 70.1 71.4 68.4 70.0 72.9 70.0 70.4 72.1
糊化温度区间∆T (℃) 8.9 9.1 10.5 6.7 9.1 12.9 8.8 9.7 11.4
糊化焓∆H (J·g-1) 7.6 5.4 4.7 7.4 5.6 4.3 7.4 5.7 4.1
糊化温度Gelatinization temperature (℃) 77.7 83.9 81.1 81.6 81.1 83.2
峰值黏度Peak viscosity (cP) 2208 1790 3568 3129 2398 1935
谷值黏度Trough viscosity (cP) 1037 1033 1763 1659 1274 1060
崩解值Breakdown (cP) 1171 757 1805 1470 1125 875
终值黏度Final viscosity (cP) 2158 1998 3429 2985 2305 2090
回生值Setback (cP) 1121 965 1666 1326 1032 1030

Fig. 5

Solubility and swelling power profiles of granule size fractionated barley starches"

Fig. 6

The RVA viscograms of barley starches"

Table 4

RDS, SDS, and RS contents of large, medium and small starch granules in barley grains"

品种Cultivar 淀粉颗粒Starch granule 快消化淀粉RDS (%) 慢消化淀粉SDS (%) 抗性淀粉RS (%)
西引2号
Xiyin-2
大Large 23.43±0.23g 46.94±0.55c 26.81±0.49a
中Medium 30.80±0.15e 44.34±0.26d 21.51±0.36d
小Small 36.29±0.41b 37.12±0.27e 23.35±0.64c
京辛1号
Jingxin-1
大Large 27.93±0.10f 48.81±1.13b 20.71±1.06d
中Medium 33.68±1.90d 52.42±2.43a 10.21±0.55f
小Small 33.85±0.64d 35.50±1.00e 24.15±0.44b
苏啤6号
Supi-6
大Large 30.60±0.42e 34.82±0.81f 26.31±0.85a
中Medium 35.82±0.14c 46.77±0.32c 18.58±0.20e
小Small 42.74±0.14a 46.68±0.53c 6.90±0.40g
[1] ZHANG B J, LI X X, LIU J, XIE F W, CHEN L. Supramolecular structure of A- and B-type granules of wheat starch. Food Hydrocolloids, 2013, 31(1):68-73.
doi: 10.1016/j.foodhyd.2012.10.006
[2] SHANG J Y, LI L, ZHAO B, LIU M, ZHENG X L. Comparative studies on physicochemical properties of total, A- and B-type starch from soft and hard wheat varieties. International Journal of Biological Macromolecules, 2020, 154:714-723. doi: 10.1016/j.ijbiomac.2020.03.150.
doi: 10.1016/j.ijbiomac.2020.03.150
[3] PUNIA S. Barley starch: Structure, properties and in vitro digestibility-A review. International Journal of Biological Macromolecules, 2020, 155:868-875. doi: 10.1016/j.ijbiomac.2019.11.219.
doi: 10.1016/j.ijbiomac.2019.11.219
[4] 韦存虚, 张静, 钟方旭, 周卫东, 许如根, 马雷. 啤酒大麦与饲用大麦籽粒结构和淀粉粒的比较研究. 麦类作物学报, 2006, 26(4):133-138.
WEI C X, ZHANG J, ZHONG F X, ZHOU W D, XU R G, MA L. Comparison of the starch granule and kernel structure between feed and malt barley varieties. Journal of Triticeae Crops, 2006, 26(4):133-138. (in Chinese)
[5] YU W W, TAN X L, ZOU W, HU Z X, FOX G P, GIDLEY M J, GILBERT R G. Relationships between protein content, starch molecular structure and grain size in barley. Carbohydrate Polymers, 2017, 155:271-279. doi: 10.1016/j.carbpol.2016.08.078.
doi: 10.1016/j.carbpol.2016.08.078
[6] JAISWAL S, MONICA B, GEETIKA A, ROSSNAGEL B G, CHIBBAR R N. Development of barley (Hordeum Vulgare L.) lines with altered starch granule size distribution. Journal of Agricultural and Food Chemistry, 2014, 62(10):2289-2296.
doi: 10.1021/jf405424x
[7] TAKEDA Y, TAKEDA C, MIZUKAMI H, HANASHIRO I. Structures of large, medium and small starch granules of barley grain. Carbohydrate Polymers, 1999, 38(2):109-114.
doi: 10.1016/S0144-8617(98)00105-2
[8] MYLLRINEN P, AUTIO K, SCHULMAN A H, POUTANEN K. Heat-induced structural changes of small and large barley starch granules. Journal of the Institute of Brewing, 1998, 104:343-349.
doi: 10.1002/jib.1998.104.issue-6
[9] NAGULESWARAN S, VASANTJAN T, HOOVER R, BRESSLER D. The susceptibility of large and small granules of waxy, normal and high-amylose genotypes of barley and corn starches toward amylolysis at sub-gelatinization temperatures. Food Research International, 2013, 51(2):771-782.
doi: 10.1016/j.foodres.2013.01.057
[10] AHMED Z, TETLOW I J, FALK D E, LIU Q, EMES M J. Resistant starch content is related to granule size in barley. Cereal Chemistry, 2016, 93(6):618-630.
doi: 10.1094/CCHEM-02-16-0025-R
[11] DE SCHEPPER C F, MICHIELS P, LANGENAEKEN N A, COURTIN C M. Accurate quantification of small and large starch granules in barley and malt. Carbohydrate Polymers, 2020, 227:115329. doi: 10.1016/j.carbpol.2019.115329.
doi: 10.1016/j.carbpol.2019.115329
[12] LANGENAEKEN N A, DE SCHEPPER C F, DE SCHUTTER D P, COURTIN C M. Different gelatinization characteristics of small and large barley starch granules impact their enzymatic hydrolysis and sugar production during mashing. Food Chemistry, 2019, 295:138-146. doi: 10.1016/j.foodchem.2019.05.045.
doi: 10.1016/j.foodchem.2019.05.045
[13] DE SCHEPPER C F, GIELENS D R S, COURTIN C M. A new method to isolate and separate small and large starch granules from barley and malt. Food Hydrocolloids, 2021, 120:106907.
doi: 10.1016/j.foodhyd.2021.106907
[14] GUO Q, HE Z H, XIA X C, QU Y Y, ZHANG Y. Effects of wheat starch granule size distribution on qualities of Chinese steamed bread and raw white noodles. Cereal Chemistry, 2014, 91(6):623-630.
doi: 10.1094/CCHEM-01-14-0015-R
[15] TANG H J, ANDO H, WATANABE K, TAKEDA Y, MITSUNAGA T. Some physicochemical properties of small-, medium-, and large- granule starches in fractions of waxy barley grain. Cereal Chemistry, 2000, 77(1):27-31.
doi: 10.1094/CCHEM.2000.77.1.27
[16] DHITAL S, SHRESTHA A K, GIDLEY M J. Relationship between granule size and in vitro digestibility of maize and potato starches. Carbohydrate Polymers, 2010, 82(2):480-488.
doi: 10.1016/j.carbpol.2010.05.018
[17] XIAO H X, WANG S Y, XU W Z, YIN Y Q, XU D, ZHANG L, LIU G Q, LUO F J, SUN S G, LIN Q L, XU B C. The study on starch granules by using darkfield and polarized light microscopy. Journal of Food Composition and Analysis, 2020, 92:103576.
doi: 10.1016/j.jfca.2020.103576
[18] MEI J Y, ZHANG L, LIN Y, LI S B, BAI C H, FU Z. Pasting, rheological, and thermal properties and structural characteristics of large and small Arenga Pinnata starch granules. Starch-Stärke, 2020, 72(11):1900293.
doi: 10.1002/star.v72.11-12
[19] LIU T X, MA M X, GUO K, HU G L, ZHANG L, WEI C X. Structural, thermal, and hydrolysis properties of large and small granules from C-type starches of four Chinese chestnut varieties. International Journal of Biological Macromolecules, 2019, 137:712-720.
doi: 10.1016/j.ijbiomac.2019.07.023
[20] GAO L C, WANG H L, WAN C X, LENG J J, WANG P K, YANG P, GAO X L, GAO J F. Structural, pasting and thermal properties of common buckwheat (Fagopyrum esculentum Moench) starches affected by molecular structure. International Journal of Biological Macromolecules, 2020, 156:120-126. doi: 10.1016/j.ijbiomac.2020.04.064.
doi: 10.1016/j.ijbiomac.2020.04.064
[21] LIN L S, HUANG J, ZHAO L X, WANG J, WANG Z F, WEI C X. Effect of granule size on the properties of lotus rhizome C-type starch. Carbohydrate Polymers, 2015, 134:448-457. doi: 10.1016/j.carbpol. 2015.08.026.
doi: 10.1016/j.carbpol. 2015.08.026
[22] AL-ANSI W, MUSHTAQ B S, MAHDI A A, AL-MAQTARI Q A, AL-ADEEB A, AHMED A, FAN M C, LI Y, QIAN H F, LIU J X, WANG L. Molecular structure, morphological, and physicochemical properties of highlands barley starch as affected by natural fermentation. Food Chemistry, 2021, 356:129665. doi: 10.1016/j.foodchem.2021.129665.
doi: 10.1016/j.foodchem.2021.129665
[23] 张慧, 洪雁, 顾正彪, 汪振炯. 3种谷物全粉中淀粉的消化性及影响因素. 食品与发酵工业, 2012, 38(11):26-31.
ZHANG H, HONG Y, GU Z B, WANG Z J. Starch digestibility and the influence factors in three grain flours. Food and Fermentation Industries, 2012, 38(11):26-31. (in Chinese)
[24] HANASHIRO I, ABE J, HIZUKURI S. A periodic distribution of the chain length of amylopectin as revealed by high-performance anion- exchange chromatography. Carbohydrate Research, 1996, 283(2):151-159.
doi: 10.1016/0008-6215(95)00408-4
[25] LI C Y, ZHOU D D, FAN T, WANG M Y, ZHU M, DING J G, ZHU X K, GUO W S, SHI Y C. Structure and physicochemical properties of two waxy wheat starches. Food Chemistry, 2020, 318:126492. doi: 10.1016/j.foodchem.2020.126492.
doi: 10.1016/j.foodchem.2020.126492
[26] KASEMWONG K, PIYACHOMKWAN K, WANSUKSRI R, SRIROTH K. Granule sizes of Canna (Canna edulis) starches and their reactivity toward hydration, enzyme hydrolysis and chemical substitution. Starch/Staerke, 2008, 60(11):624-633.
doi: 10.1002/star.v60:11
[27] GAO J, VASANTHAN T, HOOVER R. Isolation and characterization of high-purity starch isolates from regular, waxy, and high-amylose hulless barley grains. Cereal Chemistry, 2009, 86(2):157-163.
doi: 10.1094/CCHEM-86-2-0157
[28] DHITAL S, SHRESTHA A K, HASJIM J, GIDLEY M J. Physicochemical and structural properties of maize and potato starches as a function of granule size. Journal of Agricultural and Food Chemistry, 2011, 59(18):10151-10161. doi: 10.1021/jf202293s.
doi: 10.1021/jf202293s
[29] TANG H J, ANDO H, WATANABE K, TAKEDA Y, MITSUNAGA T. Physicochemical properties and structure of large, medium and small granule starches in fractions of normal barley endosperm. Carbohydrate Research, 2001, 330(2):241-248.
doi: 10.1016/S0008-6215(00)00292-5
[30] JAMES M G, DENYER K, MYERS A M. Starch synthesis in the cereal endosperm. Current Opinion in Plant Biology, 2003, 6(3):215-222. doi: 10.1016/s1369-5266(03)00042-6.
doi: 10.1016/s1369-5266(03)00042-6
[31] CHEN G X, ZHU J T, ZHOU J W, SUBBURAJ S, ZHANG M, HAN C X, HAO P C, LI X H, YAN Y M. Dynamic development of starch granules and the regulation of starch biosynthesis in Brachypodium distachyon: Comparison with common wheat and Aegilops peregrina. BMC Plant Biology, 2014, 14:198. doi: 10.1186/s12870-014-0198-2.
doi: 10.1186/s12870-014-0198-2
[32] CAO H, YAN X, CHEN G X, ZHOU J W, LI X H, MA W J, YAN Y M. Comparative proteome analysis of A- and B-type starch granule-associated proteins in bread wheat (Triticum aestivum L.) and Aegilops crassa. Journal of Proteomics, 2015, 112:95-112. doi: 10.1016/j.jprot.2014.08.002.
doi: 10.1016/j.jprot.2014.08.002
[33] WEI C X, ZHANG J, ZHOU W D, CHEN Y F, XU R G. Development of small starch granule in barley endosperm. Acta Agronomica Sinica, 2008, 34(10):1788-1796.
[34] KUMARI S, YADAV B S, YADAV R B. Effect of nano-conversion on morphological, rheological and thermal properties of barley starch. Journal of Food Science and Technology, 2022, 59(2):467-477. doi: 10.1007/s13197-021-05029-0.
doi: 10.1007/s13197-021-05029-0
[35] LI W H, GAO J M, WU G, ZHENG J M, OUYANG S H, LUO Q G. Physicochemical and structural properties of A- and B-starch isolated from normal and waxy wheat: Effects of lipids removal. Food Hydrocolloids, 2016, 60:364-373.
doi: 10.1016/j.foodhyd.2016.04.011
[36] SONG Y, JANE J. Characterization of barley starches of waxy, normal, and high amylose varieties. Carbohydrate Polymers, 2000, 41(4):365-377.
doi: 10.1016/S0144-8617(99)00098-3
[37] KÄLLMAN A, VAMADEVAN V, BERTOFT E, KOCH K, SEETHARAMAN K, ÅMAN P, ANDERSSON R. Thermal properties of barley starch and its relation to starch characteristics. International Journal of Biological Macromolecules, 2015, 81:692-700. doi: 10.1016/j.ijbiomac.2015.08.068.
doi: 10.1016/j.ijbiomac.2015.08.068
[38] ZHAO X, ANDERSSON M, ANDERSSON R. A simplified method of determining the internal structure of amylopectin from barley starch without amylopectin isolation. Carbohydrate Polymers, 2021, 255:117503. doi: 10.1016/j.carbpol.2020.117503.
doi: 10.1016/j.carbpol.2020.117503
[39] 李春燕, 封超年, 王亚雷, 张容, 郭文善, 朱新开, 彭永欣. 不同小麦品种支链淀粉链长分配及其与淀粉理化特性的关系. 作物学报, 2007, 33(8):1240-1245. doi: 10.3321/j.issn:0496-3490.2007.08.004.
doi: 10.3321/j.issn:0496-3490.2007.08.004
LI C Y, FENG C N, WANG Y L, ZHANG R, GUO W S, ZHU X K, PENG Y X. Chain length distribution of debranched amylopectin and its relationship with physicochemical properties of starch in different wheat cultivars. Acta Agronomica Sinica, 2007, 33(8):1240-1245. doi: 10.3321/j.issn:0496-3490.2007.08.004. (in Chinese)
doi: 10.3321/j.issn:0496-3490.2007.08.004
[40] LI C, GONG B, HUANG T, YU W W. In vitro digestion rate of fully gelatinized rice starches is driven by molecular size and amylopectin medium-long chains. Carbohydrate Polymers, 2021, 254:117275. doi: 10.1016/j.carbpol.2020.117275.
doi: 10.1016/j.carbpol.2020.117275
[41] REGINA A, BLAZEK J, GILBERT E, FLANAGAN B M, GIDLEY M J, CAVANAGH C, RAL J P, LARROQUE O, BIRD A R, LI Z, MORELL M K. Differential effects of genetically distinct mechanisms of elevating amylose on barley starch characteristics. Carbohydrate Polymers, 2012, 89(3):979-991. doi: 10.1016/j.carbpol.2012.04.054.
doi: 10.1016/j.carbpol.2012.04.054
[42] MORELL M K, KOSAR-HASHEMI B, CMIEL M, SAMUEL M S, CHANDLER P, RAHMAN S, BULEON A, BATEY I L, LI Z. Barley sex6 mutants lack starch synthase IIa activity and contain a starch with novel properties. The Plant Journal, 2003, 34(2):173-185. doi: 10.1046/j.1365-313x.2003.01712.x.
doi: 10.1046/j.1365-313x.2003.01712.x
[43] TANG H J, WATANABE K, MITSUNAGA T. Structure and functionality of large, medium and small granule starches in normal and waxy barley endosperms. Carbohydrate Polymers, 2002, 49(2):217-224.
doi: 10.1016/S0144-8617(01)00329-0
[44] GEERA B P, NELSON J E, SOUZA E, HUBER K C. Composition and properties of A- and B-type starch granules of wild-type, partial waxy, and waxy soft wheat. Cereal Chemistry, 2006, 83(5):551-557.
doi: 10.1094/CC-83-0551
[45] LIN L S, GUO D W, HUANG J, ZHANG X D, ZHANG L, WEI C X. Molecular structure and enzymatic hydrolysis properties of starches from high-amylose maize inbred lines and their hybrids. Food Hydrocolloids, 2016, 58:246-254.
doi: 10.1016/j.foodhyd.2016.03.001
[46] RAMADOSS B R, GANGOLA M P, AGASIMANI S, JAISWAL S, VENKATESAN T, SUNDARAM G R, CHIBBAR R N. Starch Granule size and amylopectin chain length influence starch in vitro enzymatic digestibility in selected rice mutants with similar amylose concentration. Journal of Food Science and Technology, 2019, 56(1):391-400. doi: 10.1007/s13197-018-3500-8.
doi: 10.1007/s13197-018-3500-8
[1] WANG YuLin,LEI Lin,XIONG WenWen,YE FaYin,ZHAO GuoHua. Effects of Steaming-Retrogradation Pretreatment on Physicochemical Properties and in Vitro Starch Digestibility of the Roasted Highland Barley Flour [J]. Scientia Agricultura Sinica, 2021, 54(19): 4207-4217.
[2] JIA Feng, GUO YuRong, YANG Xi, LIU Dong, LI Jie. Isolation and Purification of Polysaccharide from Fermented Apple Pomace and Its Relationship with Processing Characteristics [J]. Scientia Agricultura Sinica, 2017, 50(10): 1873-1884.
[3] JIA Feng,GUO Yu-rong, LIU Dong, YANG Xi, DENG Hong, MENG Yong-hong. Effect of Fermentation on the Polysaccharides Processing Characteristics in Apple Pomace [J]. Scientia Agricultura Sinica, 2016, 49(19): 3831-3844.
[4] WANG Chun-Qing-1, LI Xia-1, ZHANG Chun-Hui-1, CHEN Xu-Hua-1, SUN Hong-Mei-1, LI Yin-1, LI Hai-1, HE Lei-Tang-2. Study on Relationship Between Myofibril Characteristics and Meat Quality of Chicken Raw Meat [J]. Scientia Agricultura Sinica, 2014, 47(10): 2003-2012.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!