Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (3): 503-517.doi: 10.3864/j.issn.0578-1752.2016.03.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Nitrogen Cycling and Management Strategies in Chinese Agriculture

WANG Jing-guo, LIN Shan, LI Bao-guo   

  1. College of Resources and Environmental Sciences, China Agricultural University/Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing 100193
  • Received:2015-08-17 Online:2016-02-01 Published:2016-02-01

Abstract: It is in general thought that nitrogen (N) fertilizer is overused in Chinese croplands and that the overuse has resulted in severe environmental problems. As the biggest reactive nitrogen producer and N fertilizer consumer in the world, China is facing a great challenge to reduce nitrogen consumption in agriculture. The objectives of this review are to examine the sources and fate of reactive nitrogen in agroecosystems, to find out why N fertilizer consumption reaches such a high level, and provide with suggestions for better N management practices. To understand the current agricultural use of reactive N in China, principles of biogeochemical N cycling are used to discuss N flows in the agroecosystems in the year 2010, with focus on N input/output and balances in crop-soil systems. At the national level, input of reactive N to croplands was excessive in 2010, and the surplus was approximately equal to the quantity of the reactive N recycled back to crop fields by atmospheric N deposition and irrigation with N-polluted water, about 5 Tg N. Generally speaking, the use of N fertilizer in cereal crops is not extraordinarily high since N fertilizer is also distributed for other uses: Forestation, feeding livestock and fishes, and application to the green fields in urban areas. It is common and significant that there are much higher N application rates to fruit tree plantations and vegetable production, especially to the greenhouse vegetable growing system, in comparison with that applied to cereal crops. With the facts of the limited arable lands, low recycling rates of organic wastes, and low input of biological fixed N, crop production has to depend heavily on the use of N fertilizer in China. There is a low acreage of arable land per capita, with 8% of global arable land feeding 20% of the world population. Recycled rate of nutrient N in the organic wastes are lower than 30% and input of biological N fixation to croplands is less than 15%. Therefore, to meet the demands of Chinese population for both food and improving diets under the condition of the predominance of the croplands with medium to low productivities, high N fertilizer input is understandable. However, N fertilizer consumption is much higher than the national average in some highly productive regions, including the Huang-Huai-Hai Plain, the Yangtze Basin, and Zhujiang Delta (Guangdong) regions, and is closely connected with higher crop yields/multiple cropping indices, and smaller proportion of legume crops to the total cropping area. It is clear that the N losses from food production-processing-consumption chain have resulted in resource wasting and environmental risks. On the other hand, part of the environment received reactive N from the losses of croplands and the other pollution sources, returns to the fields via atmospheric deposition and the irrigations with polluted waters, and becomes an important source of N input to croplands. Due to the complexity of N transformation in agroecosystems and biogeochemical N cycling, N losses are unavoidable. Therefore, the best management practices at various spatial levels should be taken as the options to reduce the fertilizer use in croplands to the minimum. Integrated measures, including multi-disciplinary researches and the cooperation of various social sectors, have been suggested to optimize N management practices at each spatial level, in order to reach the fundamental goals of maintaining/improving soil fertility, securing food, reducing nitrogen fertilizer use, and minimizing environmental risks.

Key words: agroecosystem, biogeochemical nitrogen cycling, nitrogen balance, nitrogen losses, nitrogen management

[1]    Fowler D, Coyle M, Skiba U, Sutton M A, Cape J N, Reis S, Sheppard L J, Jenkins A, Grizzetti B, Galloway J N, Vitousek P, Leach A, Bouwman A F, Butterbach-Bahl K, Dentener F, Stevenson D, Amann M, Voss M. The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society of London, 2013, 368(1621): 91-97
[2]    Schlesinger W H. On the fate of anthropogenic nitrogen. PNAS, 2009, 106(1): 203-206.
[3]    Galloway J N, Townsend A R, Erisman J W, Bekunda M, Cai Z C, Freney J R, Martinelli L A, Seitzinger S P, Sutton M A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 2008, 320: 889-892.
[4]    Cui S H, Shi Y L, Groffman P M, Schlesinger W H, Zhu Y G. Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910-2010) . PNAS, 2013, 110(6): 2052-2057.
[5]    Gu B J, Ju X T, Chang J, Ge Y, Vitousek P M. Integrated reactive nitrogen budgets and future trends in China. PNAS, 2015, doi: 10.1073/pnal. 151021112
[6]    张卫峰, 马林, 黄高强, 武良, 陈新平, 张福锁. 中国氮肥发展、贡献和挑战. 中国农业科学, 2013, 46(15): 3161-3171.
Zhang W F, Ma L, Huang G Q, Wu L, Chen X P, Zhang F S. The development and contribution of nitrogenous fertilizer in China and challenges faced by the country. Scientia Agricultura Sinica, 2013, 46(15): 3161-3171. (in Chinese)
[7]    Erisman J W, Sutton M A, Galloway J, Klimont Z , Winiwarter W. How a century of ammonia synthesis changed the world. Nature Geoscience, 2008, 1(10): 636-639.
[8]    林葆. 中国肥料结构和肥效的演变、存在问题及对策//李庆逵, 朱兆良, 于天仁. 中国农业持续发展中的肥料问题. 南昌:江西科学技术出版社, 1997: 12-27.
Lin B. Changes, problem and management strategies in fertilizer structure and use efficiency// Li Q K, Zhu Z L, Yu T R. Fertilizer Issues in Chinese Sustainable Agricultural Development. Nanchang: Jiangxi Press of Science and Technology, 1997: 12-27. (in Chinese)
[9]    Su H, Cheng Y F, Oswald R, Behrendt T, Trebs I, Meixner F X, Andreae M O, Cheng P, Zhang Y, Poschl U. Soil nitrite as a source of atmospheric HONO and OH radicals. Science, 2011, 333: 1616-1618.
[10]   UNEP (United Nations Environment Programme). Reactive nitrogen in the environment: Too much or too little of a good thing. Paris: UNEP, WHRC, 2007. www.unep.org/pdf/dtie/Reactive_Nitrogen. pdf.
[11]   Sommer S G, Schoerring J K, Demead O T. Ammonia emission from mineral fertilizers and fertilized crops. Advances in Agronomy, 2004, 82: 558-612.
[12]   Zhu Z L, Chen D L. Nitrogen fertilizer use in China-Contributions to food production, impacts on the environment and best management strategies. Nutrient Cycling in Agroecosystems, 2002, 63(2/3): 117-127.
[13]   Jarvis S, Hutchings N, Brentrup F, Olesen J E, van der Hoek K W. Nitrogen flows in farming systems across Europe// Sutton M A. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives. Cambridge, UK: Cambridge University Press, 2011: 211-227.
[14]   Oenema O, Tamminga S. Nitrogen in global animal production and management options for improving nitrogen use efficiency. Science in China Series C-Life Sciences, 2005, 48 (Special Issue): 871-887 .
[15]   Leach A M, Galloway J N, Bleeker A, Erisman J W, Kohn R, Kitzes J. A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment. Environmental Development, 2012, 1(1): 40-66.
[16]   Chen Q, Hooper D U, Lin S. Shifts in species composition constrain restoration of overgrazed grassland using nitrogen fertilization in Inner Mongolian steppe, China. PLoS One, 2011, 6(3): e16909.
[17]   Giese M, Brueck H, Gao Y Z, Lin S, Steffens M, Kögel-Knabner I, Glindmann T, Susenbeth A, Taube F, Butterbach-Bahl K, Zheng X, Hoffmann C, Bai Y F, Han X G. N balance and cycling of Inner Mongolia typical steppe-A comprehensive case study of grazing effects. Ecology Monographs, 2013, 83(1): 195-219.
[18]   Gong X Y, Fanselow N, Dittert K, Taube F, Lin S. Response of primary production and biomass allocation to nitrogen and water supplementation along a grazing intensity gradient in semiarid grassland. European Journal of Agronomy, 2015, 63(1): 27-35.
[19]   Galloway J N, Dentener F J, Capone D G., Boyer E W, Howarth R W, Seitzinger S P, Asner G P, Cleveland C C, Green P A, Holland E A, Karl D M, Michaels A F, Porter J H, Townsend A R, Vorosmarty C J. Nitrogen cycles: Past, present, and future. Biogeochemistry, 2004, 70(1): 153-226.
[20]   Zhang Y, Zheng L X, Liu X J, Jickells T, Cape J N, Goulding K, Fangmeiere A, Zhang F S. Evidence for organic N deposition and its anthropogenic sources in China. Atmospheric Environment, 2008, 42(5): 1035-1041.
[21] Zhang Y, Dore A J, Ma L, Liu X J, Ma W Q, Cape J N, Zhang F S. Agricultural ammonia emissions inventory and spatial distribution in the North China Plain. Environmental Pollution, 2010, 158(7): 490-501.
[22]   Liu X J, Zhang Y, Han W X, Tang A H, Shen J L, Cui Z L, Vitousek P, Erisman J W, Goulding K, Christie P, Zhang F S. Enhanced nitrogen deposition over China. Nature, 2013, 494(7438): 459-462.
[23]   Bleeker A, Hicks W K, Dentener F, Galloway J, Erisman J W. N deposition as a threat to the World’s protected areas under the convention on biological diversity. Environmental Pollution, 2011, 159(10): 2280-2288.
[24]   环保部, 国家统计局, 农业部. 第一次全国污染源普查公报,[2010-2-6]/[2015-7-6]. http://www.zhb.gov.cn/gzfw/xzzx/wdxz/201002/ P020100225536025177826.pdf.
Ministry of Environmental Protection of the People’s Republic of China, National Bureau of Statistics, Ministry of Agriculture of the People’s Republic of China. The First Report on National Pollution Sources, [2010-2-6]/[2015-7-6]. http://www.zhb.gov.cn/gzfw/xzzx/ wdxz/201002/P020100225536025177826.pdf. (in Chinese)
[25]   Zhang W L, Tian Z X, Zhang N, Li X Q. Nitrate pollution of groundwater in northern China. Agriculture, Ecosystem and Environment, 1996, 59(3): 223-231.
[26]   国家统计局. 《中国统计年鉴》(2011). 北京: 中国统计出版社, 2011.
National Bureau of Statistics (NBS). Yearbook of Chinese Statistics (2011). Beijing: Chinese Press of Statistics, 2012. (in Chinese)
[27]   全国农业技术推广服务中心. 中国有机肥料养分志. 北京: 中国农业出版社,1999: 53-62.
The National Agro-Tech Extension and Service Center (NATESC). Nutrients in Organic Fertilizer. Beijing: China Agriculture Press, 1999: 53-62. (in Chinese)
[28]   宋贺, 王敬国, 陈清, 林杉, 郭景恒, 任涛. 设施菜田种植体系的资源投入与环境效应//王敬国. 设施菜田退化土壤修复与资源高效利用. 北京: 中国农业大学出版社, 2011: 1-18.
Song H, Wang J G, Chen Q, Lin S, Guo J H, Ren T. Input of resources in greenhouse vegetable production system and its impacts on the environments//Wang J G. Management of Degraded Vegetable Soils in Greenhouse. Beijing: China Agricultural University Press, 2011: 1-18. (in Chinese)
[29]   张福锁, 朱兆良, 沈其荣. 中国肥料产业与科学施肥战略研究报告. 北京: 中国农业大学出版社, 2008: 50-71.
Zhang F S, Zhu Z L, Shen Q R. Report on Chinese Fertilizer Industry and Fertilization Strategies. Beijing: China Agricultural University Press, 2008: 50-71. (in Chinese)
[30]   关大伟, 李力, 岳现录, 马鸣超, 张武, 李俊. 中国大豆的生物固氮潜力研究. 植物营养与肥料学报, 2014, 20(6): 1497-1504.
Guan D W, Li L, Yue X L, Ma M C, Zhang W, Li J. Study on potential of biological nitrogen fixation of soybean in China. Journal of Plant Nutrition and Fertilizer, 2014, 20(6): 1497-1504. (in Chinese)
[31]   Vitousek P, Menge D N L, Reed S C, Cleveland C C. Biological nitrogen fixation: Rates, patterns and ecological controls in terrestrial ecosystems. Philosophical Transactions of the Royal Society of London, 2013, 368(1621): 91-97.
[32]   孙景玲, 魏丹, 马星竹, 刘德志, 郭文义, 刘晓莉, 鹿文成. 黑龙江省黑土区大豆测土配方施肥指标体系的建立. 大豆科学, 2013, 32(4): 512-516.
Sun J L, Wei D, Ma X Z, Liu D Z, Guo W Y, Liu X L, Lu W C. Establishing fertilization recommendation index of soybean in black soil region of Heilongjiang province. Soybean Science, 2013, 32(4): 512-516. (in Chinese)
[33]   刘庆元, 郭昌智. 油料作物施肥//中国农科院土肥所. 中国肥料. 上海: 上海科技出版社, 1994: 538-566.
Liu Q Y, Guo C Z. Fertilization for oil crops//Institute of Soil and Fertilizer Sciences. Fertilizers in China. Shanghai: Shanghai Press of Science and Technology, 1994: 538-566. (in Chinese)
[34]   Herridge D F, Peoples M B, Boddey R M. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil, 2008, 311(1/2): 1-18.
[35]   Cape J N, Cornell S E, Jickells T D, Nemitz E. Organic nitrogen in the atmosphere-Where does it come from? A review of sources and methods. Atmospheric Research, 2011, 102(1): 30-48.
[36]   Ge X L, Wexler A S, Clegg S L. Atmospheric amines Part I. A review. Atmospheric Environment, 2011, 45(3): 524-546.
[37]   Zhang Y, Song L, Liu X J, Li W Q, Lü S H, Zheng L X, Bai Z C, Cui G Y, Zhang F S. Atmospheric organic nitrogen deposition in China. Atmospheric Environment, 2012, 46(1): 195-204.
[38]   国家环保部. 2011年中国环境状况公报. http://jcs.mep.gov.cn/hjzl/ zkgb/2012zkgb/.
Ministry of Environmental Protection of the People’s Republic of China. Annual Report on Chinese Environments (2011). http://jcs.mep. gov. cn/hjzl/zkgb/2012zkgb/. (in Chinese)
[39]   Hou Y, Ma L, Gao Z L, Wang F H, Sims J T, Ma W Q, Zhang F S. The driving forces for nitrogen and phosphorus flows in the food chain of China, 1980 to 2010. Journal of Environmental Quality, 2013, 42(4): 962-971.
[40]   Zhang Y, Tang A H, Liu X J, Fangmeier A, Goulding K T W, Zhang F S. Nitrogen inputs and isotopes in precipitation in the North China Plain. Atmospheric Environment, 2008, 42(7): 1436-1448.
[41]   Shen J L, Tang A H, Liu X J, Fangmeier A, Goulding K T W, Zhang F S. High concentrations and dry deposition of reactive nitrogen species at two sites in the North China Plain. Environmental Pollution, 2009, 157(11): 3106-3113.
[42]   Luo X S, Liu P, Tang A H, Liu J Y, Zong X Y, Zhang Q, Kou C L, Zhang L J, Fowler D, Fangmeier A, Christie P, Zhang F S, Liu X J. An evaluation of atmospheric Nr pollution and deposition in North China after the Beijing Olympics. Atmospheric Environment, 2013, 74: 209-216.
[43]   国家环保部. 2014年中国环境状况公报. http://jcs.mep.gov.cn/hjzl/ zkgb/2014zkgb.
Ministry of Environmental Protection of the People’s Republic of China. Annual Report on Chinese Environments (2014). http://jcs.mep. gov.cn/hjzl/zkgb/2014zkgb. (in Chinese)
[44]   Ren T,Christie P, Wang J G, Chen Q, Zhang F S. Root zone soil nitrogen management to maintain high tomato yields and minimum nitrogen losses to the environment. Scientia Hotriculturea, 2010, 125(1): 22-33.
[45]   Fan Z B, Lin S, Zhang X M, Jiang Z M, Yang K C, Jian D D, Chen Y Z, Li J L, Q Chen, Wang J G. Conventional flooding irrigation causes an overuse of nitrogen fertilizer and low nitrogen use efficiency in intensively used solar greenhouse vegetable production. Agricultural Water Management, 2014, 144(1): 11-19.
[46]   朱兆良, 文启孝. 中国土壤氮素. 南京: 江苏科技出版社.
Zhu Z L, Wen Q X. Soil Nitrogen in China. Nanjing: Jiangsu Press of Science and Technology. (in Chinese)
[47]   Ju X T, Xing G X, Chen X P, Zhang S L, Zhang L J, Liu X J, Cui Z L, Yin B, Christiea P, Zhu Z L, Zhang F S. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. PNAS, 2009, 106: 3041-3046.
[48]   Zhang W F, Dou Z X, He P, Ju X T, Powlson D, Chadwick D, Norsee D, Lu Y L, Zhang Y, Wu L, Chen X P, Cassman K G, Zhang F S. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. PNAS, 2013, 110: 8375-8380.
[49]   Sun Y, Hu K L, Fan Z B, Wei Y P, Lin S, Wang J G. Simulating the fate of nitrogen and optimizing water and nitrogen management of greenhouse tomato in North China using the EU-Rotate N model. Agricultural Water Management, 2013, 128(1): 72-84.
[50]   Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie  P, Goulding K W T, Vitousek P M, Zhang F S. Significant acidification in major Chinese croplands. Science, 2010, 327: 1008-1010.
[51]   Sutton M A, Reis S, Riddick S N, Dragosits O, Nemitz E, Theobald M R, Tang Y S, Braban C F, Vieno M, Dore A, Mitchell R F, Wanless S, Daunt F, Fowler D, Blackall T D, Milford C, Flechard C R, Loubet B, Massad R, Cellier P, et al. Towards a climate-dependent paradigm of ammonia emission and deposition. Philosophical Transactions of the Royal Society of London, 2013, 368(1621): 125-134.
[52]   Huang Y, Sun W J. Changes in topsoil organic carbon of croplands in mainland China over the last two decades. Chinese Science Bulletin, 2006, 51: 1785-1803.
[53]   Yan X Y, Cai Z C, Wang S W, Smith P. Direct measurement of soil organic carbon content change in the croplands of China. Global Change Biology, 2011, 17: 1487-1496.
[54]   Zhang W, Yu Y Q, Li T T, Sun W J, Huang Y. Net greenhouse gas balance in China’s croplands over the last three decades and its mitigation potential. Environmental Science and Technology, 2014, 48: 2589-2597.
[55]   Ju X T, Liu X J, Zhang F S, Roelcke M. Nitrogen fertilization, soil nitrate accumulation, and policy recommendations in several agricultural regions in China. Ambio, 2004, 33: 300-305.
[56]   Lin S, Dittert K, Wu W L, Sattelmacher B. Added nitrogen interaction as affected by soil nitrogen pool size and fertilization-significance of displacement of fixed ammonium. Journal of Plant Nutrition and Soil Science, 2004, 167: 138-146.
[57]   Walker J T, Jones M R, Bash J O, Myles L, Meyers T, Schwede D, Herrick J, Nemitz E, Robarge W. Processes of ammonia air-surface exchange in a fertilized Zea mays canopy. Biogeosciences, 2013, 10: 981-998.
[58]   Francis D D, Schepers J S, Vigil M F. Postanthesis nitrogen loss from corn. Agronomy Journal, 1993, 85: 659-663.
[59]   Perakis S S, Hedin L O. Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds. Nature, 2002, 415: 416-419.
[60]   Nadeem S, Dorsch P, Bakken L R. Autoxidation and acetylene- accelerated oxidation of NO in a 2-phase system: Implications for the expression of denitrification in ex situ experiments. Soil Biology & Biochemistry, 2013, 57: 606-614.
[61]   Mariotti A, Germon J C, Hubert P, Kaiser P, Letolle R, Tardieux A, Tardieux P. Experimental determination of nitrogen kinetic isotope fractionation: Some principles, illustration for the denitrification and nitrification processes. Plant Soil, 1981, 62: 413-430.
[62]   Hogberg P. 15N natural abundance in soil-plant systems. New Phytologist, 1997, 137: 179-203.
[63]   Qu Z, Wang J G, Almøy T, Bakken L R. Excessive use of nitrogen in Chinese agriculture results in high N2O/(N2O+N2) product ratio of denitrification, primarily due to acidification of the soils. Global Change Biology, 2014, 20: 1685-1698.
[64]   全国农业技术推广服务中心. 中国有机肥料资源. 北京: 中国农业出版社, 1999: 30-31.
The National Agro-Tech Extension and Service Center (NATESC). Resources of Organic Fertilizers in China. Beijing: China Agriculture Press, 1999: 30-31. (in Chinese)
[65]   Chen X P, Cui Z L, Fan M S, Vitousek P, Zhao M, Ma W Q, Wang Z L, Zhang W J, Yan X Y, Yang J C, Deng X P, Gao Q, Zhang Q, Guo S W, Ren J, Li S Q, Ye Y L, Wang Z H, Huang J L, Tang Q Y, Sun Y X, Peng X L, Zhang J W, He M R, Zhu Y J, Wang G L, Wu L, An N, Wu L Q, Ma L, Zhang W F, Zhang F S. Producing more grain with lower environmental costs. Nature, 2014, 514: 486-489.
[66]   Li Q Q, Yang A L, Wang Z H, Roelcke M, Chen X P, Zhang F S, Pasda G, Zerulla W, Wissemeier A H, Liu X J. Effect of a new urease inhibitor on ammonia volatilization and nitrogen utilization in wheat in north and northwest China. Field Crops Research, 2015, 175: 96-105.
[67]   蔡祖聪, 颜晓元, 朱兆良. 立足于解决高投入条件下的氮污染问题. 植物营养与肥料学报, 2014, 20(1): 1- 6.
Cai Z C, Yan X Y, Zhu Z L. A great challenge to solve nitrogen pollution from intensive agriculture. Journal of Plant Nutrition and Fertilizer, 2014, 20(1): 1-6. (in Chinese)
[68] Six J, Elliott E T, Paustian K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no- tillage agriculture. Soil Biology & Biochemistry, 2000, 32: 2099-2103.
[1] CHEN XuHao,GAO Qiang,CHEN XinPing,ZHANG WuShuai. Temporal and Spatial Characteristics of Resources Input and Environmental Effects for Maize Production in the Three Provinces of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3170-3184.
[2] WANG XinYuan,ZHAO SiDa,ZHENG XianFeng,WANG ZhaoHui,HE Gang. Effects of Straw Returning and Nitrogen Application Rate on Grain Yield and Nitrogen Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2021, 54(23): 5043-5053.
[3] XUE Liang,MA ZhongMing,DU ShaoPing,FENG ShouJiang,RAN ShengBin. Effects of Application of Nitrogen on Melon Yield, Nitrogen Balance and Soil Nitrogen Accumulation Under Plastic Mulching with Drip Irrigation [J]. Scientia Agricultura Sinica, 2019, 52(4): 690-700.
[4] ZHOU LiPing, YANG LiPing, BAI YouLu, LU YanLi, WANG Lei. Effects of Different Slow-Released Nitrogen Fertilizers on Summer Maize and Nitrogen Fate in the Field [J]. Scientia Agricultura Sinica, 2018, 51(8): 1527-1536.
[5] YunPeng HOU, Qian LI, LiLi KONG, YuBo QIN, Meng WANG, Lei YU, LiChun WANG, CaiXia YIN. Effects of Different Slow/Controlled Release Nitrogen Fertilizers on Spring Maize Nitrogen Uptake and Utilization, Soil Inorganic Nitrogen and Nitrogen Balance [J]. Scientia Agricultura Sinica, 2018, 51(20): 3928-3940.
[6] WANG Na, FAN Mei-rong, LIU Shuang-quan, ZHAO Shi-cheng, ZHAO Ying, QIU Shao-jun, HE Ping, ZHOU Wei. Characteristics of Nitrogen Pools and Nitrogen Balance in Soil Profile in Typical Spring Maize Planted Regions in Northeast China [J]. Scientia Agricultura Sinica, 2016, 49(5): 885-895.
[7] WANG Ping,CHEN Xin-ping,ZHANG Fu-suo,TIAN Chang-yan
. Effect of Different Irrigation and Fertilization Strategies on Nitrogen Balance and Soil Nitrate Movement of High-Yield Cotton System
[J]. Scientia Agricultura Sinica, 2011, 44(5): 946-955 .
[8] . Effects of Glycerol on Rumen Fermentation, Urinary Excretion of Purine Derivatives, Digestibility, Energy Metabolism and Nitrogen Balance in Simmental Steer
[J]. Scientia Agricultura Sinica, 2009, 42(2): 642-649 .
[9] . Effects of N rate on application rate on N utilization and yield of vegetable and soil residual NO3--N under drip irrigation system [J]. Scientia Agricultura Sinica, 2007, 40(11): 2535-2545 .
[10] ,,,. The Concept of Agricultural Productivity on Ecosystem Scale and Its Measurement [J]. Scientia Agricultura Sinica, 2005, 38(05): 983-989 .
[11] ,. Effect of Different Irrigation and Fertilization Strategies on Yield, Fiber Quality and Nitrogen Balance of High-Yield Cotton System [J]. Scientia Agricultura Sinica, 2005, 38(04): 761-769 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!