Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (2): 409-417.doi: 10.3864/j.issn.0578-1752.2020.02.015

• SPECIAL FOCUS: YOUNG RUMINANT REARING RESEARCH • Previous Articles     Next Articles

Effects of Milk Replacer Feeding Level on Hematology Index and Gut Barrier Function in Lambs

LI YanJun1,NIU XiaoLin2,ZHANG Qian2,WANG GuoXiu1,LI FaDi1,2,LI Fei2,LI Chong1(),PANG Xin1,JIA Li1,FAN HaiMiao1   

  1. 1 College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070
    2 College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000
  • Received:2019-07-08 Accepted:2019-08-23 Online:2020-01-16 Published:2020-02-17
  • Contact: Chong LI E-mail:lichong@gsau.edu.cn

Abstract:

【Background】 The application of milk replacer powder has important significance for improving the health and survival rate of lambs. However, the effects of milk replacer feeding levels on immune function and intestinal barrier function of lambs were still unclear. The optimal level of milk replacer for development of immune function and intestinal health is still inconclusive. 【Objective】 The objective of this experiment was to analyze the effects of the milk replacer feeding level on the immune function and intestinal barrier function of lambs through the dynamic of hematological indicators, the morphology of ileum and colon, antioxidant index, immune index and expression of intestinal barrier function related genes.【Method】16 newborn lambs were randomly divided into two groups: the control group (CON, milk replacer feeding level was 2% of average body weight) and the intensive feeding group (H, milk replacer feeding level was 4% of their average body weight). All lambs were fed milk replacer from the 7th day of age and were slaughtered at 49 days of age. 【Result】The results showed that the milk replacer feeding level had no significant effects on leukocyte count, lymphocyte count, neutrophil count, red blood cell count and hemoglobin concentration (P>0.05). The number of lymphocytes, red blood cells and hemoglobin in the 21-49d lambs increased gradually with age, significantly higher at 49 days of age (P<0.05), while neutrophil lymphocytes were significantly lower than at 49 days (P<0.05). The ileal villus height of the H group was significantly higher than that of the CON group (P<0.05), the ileum and colon crypt depth was significantly lower than that of the CON group (P<0.05), the ileal and colonic malondialdehyde (MDA) content and immunoglobulin A (The content of IgA) was significantly lower than that of CON group (P<0.05). The expression of Claudin4 in colon was significantly lower than that in CON group (P<0.05), and the expression of tumor necrosis factor (TNF-α) in ileum and colon was significantly lower than that in CON group (P<0.05). 【Conclusion】The intensive milk replacer feeding could reduce intestinal oxidative damage, promote intestinal villus development, reduce intestinal physical barrier damage and reduce intestinal immune response. In the sheep production, an intensive milk replacer-feeding program benefits to the healthy intestinal development.

Key words: lamb, milk replacer, hematological index, intestinal barrier, antioxidant

Table 1

Feed formulation and chemical composition of two diets (air-dry basis)"

原料 Ingredients 配比Proportion (%) 营养成分Chemical composition
苜蓿草粉 Alfalfa meal 18.50 干物质 DM (%) 90.96
玉米 Corn 21.00 消化能 DE (MJ·kg-1) 13.01
膨化玉米 Extruded corn 22.30 粗蛋白质 CP (%) 19.50
麸皮 Bran 6.00 钙 Ca(%) 0.66
豆粕 Soybean meal 21.50 磷 P(%) 0.31
膨化大豆 Extruded-soybean 4.00 中性洗涤纤维 NDF(%) 18.87
玉米蛋白粉 Corn gluten meal 5.00
石粉 Limestone 0.30
预混料 Premix 1.00
食盐 Salt 0.40
合计 Total 100.00

Table 2

Sequences of forward and reverse primers used for real-time PCR"

基因
Gene
检索号
Gene bank number
引物序列
Primer sequence
片段长度
Size (bp)
扩增效率
Amplification efficiency
Claudin-1 NM_001185016.1 F: 5' AATACATTGAGGTCACCGAGTA 3' 191 98.93%
R: 5' GATTAGGCAAGGAAAGGCAC 3'
Claudin-4 NM_001185017.1 F: 5' GCCTTCATCGGCAGCAACAT 3' 115 92.75%
R: 5' CCAGCAGCGAGTCGTACACCTT 3'
Occludin XM_012145891.2 F: 5' AGTGGTAACTTGGAGACGCTTTC 3' 107 95.17%
R: 5' CCTCCCGTCGTGTAGTCTGTT 3'
TLR4 NM_001135930.1 F: 5' GGTTTCAGGAATGCCACTT 3' 142 98.14%
R: 5' CTTTCACCTCTGCCATACTTT 3'
TNFα NM_001114186.1 F: 5' ACGGCGTGGAGCTGAAA 3' 132 92.18%
R: 5' CTGATGGTGTGGGTGAGGAA 3'
β-Actin NM_001009784.2 F: 5' TCCGTGACATCAAGGAGAAGC 3' 266 91.82%
R: 5' CCGTGTTGGCGTAGAGGT 3'

Table 3

Effect of milk replacer feeding level on dynamic changes of hematological parameters"

项目
Items
处理组
Treatment
日龄(d) 标准误
SEM
P P value
21 28 35 42 49 饲喂水平
Treatment
日龄
Age
饲喂水平×日龄
Treatment × Age
白细胞
Leukocyte (×109cells/L)
CON 8.28 8.31 9.20 8.28 9.86 0.297 0.839 0.615 0.954
H 8.33 8.26 8.34 8.91 9.48
淋巴细胞
Lymphocyte (×109cells/L)
CON 3.52b 3.32b 4.01ab 4.32ab 5.47a 0.153 0.763 <0.001 0.966
H 3.57b 3.57b 3.86ab 4.32ab 5.88a
中性粒细胞
Neutrophil (×109cells/L)
CON 3.49 3.69 3.68 2.75 3.30 0.200 0.592 0.738 0.908
H 3.36 3.37 3.44 3.25 2.40
中性粒细胞/淋巴细胞NLR CON 1.02 1.12 1.03 0.66 0.61 0.062 0.813 0.034 0.972
H 1.05a 1.04a 0.99ab 0.78ab 0.44b
红细胞
Red blood cells (×1012cells/L)
CON 8.47ab 7.91b 7.94b 8.37ab 9.22a 0.080 0.920 <0.001 0.696
H 8.11b 7.80b 8.22b 8.45b 9.40a
血红蛋白浓度Hemoglobin concentration (g·L-1) CON 122.64ab 109.79b 111.94b 116.67ab 127.43a 1.346 0.705 0.001 0.698
H 114.72ab 108.71b 115.00ab 116.43ab 127.92a

Table 4

Effect of milk replacer feeding level on intestinal morphology of lambs"

项目Item CON H PP value
回肠
Ileum
肠绒毛高度Villus height (μm) 349.58±39.01 429.77±62.51 0.041
肠绒毛宽度Villus width (μm) 104.43±23.06 130.49±37.13 0.219
隐窝深度Crypt depth(μm) 158.63±28.27 114.46±15.71 0.027
肌层厚度Muscle layer thickness (μm) 173.06±47.28 175.40±15.44 0.919
结肠
Colon
肠绒毛高度Villus height (μm) 371.99±44.80 350.01±74.85 0.544
肠绒毛宽度Villus width (μm) 86.79±3.98 75.80±23.36 0.544
隐窝深度Crypt depth (μm) 190.09±52.96 135.58±27.37 0.041
肌层厚度Muscle layer thickness (μm) 167.97±39.30 164.22±31.93 0.859

Table 5

Effect of milk replacer feeding level on intestinal antioxidant index and immune index"

项目Item CON H PP value
回肠
Ileum
MDA(nmol·g-1 14.02±5.00 6.59±3.14 0.029
GSH(U·g-1 448.72±75.27 452.33±77.20 0.936
SOD(U·g-1 1236.01±203.75 1246.15±117.87 0.929
IgA(mg·g-1 0.37±0.06 0.15±0.09 0.005
结肠
Colon
MDA(nmol·g-1 61.49±14.56 26.03±13.84 0.003
GSH(U·g-1 405.04±102.68 396.40±105.56 0.907
SOD(U·g-1 1134.25±218.65 932.68±141.25 0.111
IgA(mg·g-1 0.90±0.21 0.56±0.23 0.015

Fig. 1

Effect of milk replacer feeding level on the expression of intestinal barrier function-related genes in lambs"

[1] 贾少敏, 张英杰, 刘月琴 . 羔羊代乳粉在羊生产中的应用. 中国草食动物科学, 2012(S1):107-109.
JIA S M, ZHANG Y J, LIU Y Q . Application of milk replacer of lamb in sheep production.. China Herbivore Science, 2012(S1):107-109.(in Chinese)
[2] 郭敏增, 郑成江, 宋桂敏, 王文杰, 侯振平, 杨升 . 代乳粉对早期断奶羔羊生长及健康状况的影响. 天津农业科学, 2011,17(3):50-53.
GUO M Z, ZHENG C J, SONG G M, WANG W J, HOU Z P, YANG S . Effects of babymeal on growth performance and health status in early-weaned lamb. Tianjin Agricultural Sicences, 2011,17(3):50-53. (in Chinese)
[3] 岳喜新 . 蛋白水平及饲喂量对早期断奶羔羊生长性能及消化代谢的影响[D]. 阿拉尔: 塔里木大学, 2011.
YUE X X . Effects of protein levels and feeding levels of a milk replacer on growth performance and nutrient utilization in early- weaned lambs[D]. Alar: Tarim University, 2011. (in Chinese)
[4] 江喜春, 夏伦志, 张乃锋, 谢俊龙, 陈丽园, 柴建民, 刁其玉 . 代乳粉能量水平对早期断奶湖羊羔羊生长性能和物质代谢的影响. 中国畜牧杂志, 2015,51(7):50-53.
JIANG X X, XIA L Z, ZHANG N F, XIE J L, CHEN L Y, CHAI J M, DIAO Q Y . Effect of energy level of milk replacer on growth performance and nutrient utilization in Hu lambs. China Animal Husbandry & Veterinary Medicine, 2015,51(7):50-53. (in Chinese)
[5] 岳喜新, 刁其玉, 马春晖, 邓凯东, 屠焰, 姜成钢, 杜红芳 . 早期断奶羔羊代乳粉饲喂水平对营养物质消化代谢及血清生化指标的影响. 中国农业科学, 2011,44(21):4464-4473.
YUE X X, DIAO Q Y, MA C H, DENG K D, TU Y, JIANG C G, DU H F . Effects of feeding level of milk replacer on digestion and metabolism of nutrients, and serum biochemical indexes in lambs. Scientia Agricultura Sinica, 2011,44(21):4464-4473. (in Chinese)
[6] MOSENTHIN R, ZENTEK J, ZEBROWSKA T . Biology of Nutrition in Growing Animals. London: Elsevier, 2006.
[7] BALLOU M A . Immune responses of Holstein and Jersey calves during the pre-weaning and immediate post-weaned periods when fed varying planes of milk replacer. Journal of Dairy Science, 2012,95(12):7319-7330.
[8] JOHNSTON D, KENNY D A, KELLY A K, MCCABE M S, MCGEE M, WATERS S M, EARLEY B . Characterisation of haematological profiles and whole blood relative gene expression levels in Holstein-Friesian and Jersey bull calves undergoing gradual weaning. Animal, 2016,10(9):1547-1556.
[9] JOHNSON J D, CAMPISI J, SHARKEY C M, KENNEDY S L, NICKERSON M, GREENWOOD B N, FLESHNER M . Catecholamines mediate stress-induced increases in peripheral and central inflammatory cytokines. Neuroscience, 2005,135(4):1295-1307.
[10] O'LOUGHLIN A, MCGEE M, WATERS S M, DOYLE S, EARLEY B . Examination of the bovine leukocyte environment using immunogenetic biomarkers to assess immunocompetence following exposure to weaning stress. BMC Veterinary Research, 2011,7:45.
[11] LI C, ZHANG Q, WANG W M, LIU T, ZHANG Q, WANG G X, LI F D, LI F, YUE X P, LI T F . Effect of early weaning on the intestinal microbiota and expression of genes related to barrier function in lambs. Frontiers in Microbiology, doi. org/10.3389/fmicb.2018.01431.
[12] HU C H, XIAO K, LUAN Z S, SONG J . Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs. Journal of Animal Science, 2013,91(3):1094-1101.
[13] ZHU L H . Impact of weaning and an antioxidant blend on intestinal barrier function and antioxidant status in pigs. Journal of Animal Science, 2012,90(8):2581-2589.
[14] WOOD K M, PALMER S I, STEELE M A, METCALF J A, PENNER G B . The influence of age and weaning on permeability of the gastrointestinal tract in Holstein bull calves. Journal of Dairy Science, 2015,98(10):7226-7237.
[15] LIVAK K J, SCHMITTGEN T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2002,25(4):402-408.
[16] MALLAPPA S, SINHA A, GUPTA S, CHADWICK S J D . Preoperative neutrophil to lymphocyte ratio>5 is a prognostic factor for recurrent colorectal cancer. Colorectal Disease, 2013,15(3):323-328.
[17] O'LOUGHLIN A, MCGEE M, DOYLE S, BERNADETTE E . Biomarker responses to weaning stress in beef calves. Research in Veterinary Science, 2014,97(2):458-463.
[18] ZHU M H, SUNG T SI, KURAHASHI M, O’KANE L E, O’DRISCOLL K, KOH S D, SANDERS K M, . Na+-K+-Cl- cotransporter (NKCC) maintains the chloride gradient to sustain pacemaker activity in interstitial cells of Cajal. American Journal of Physiology. Gastrointestinal and Liver Physiology, 2016,311(6):1037-1046.
[19] SHYER A E, HUYCKE T R, LEE C H, MAHADEVAN L, TABIN C J . Bending gradients: how the intestinal stem cell gets its home. Cell, 2015, 161(3):569-580.
[20] YIN J, WU M M, XIAO H, REN W K, DUAN J L, YANG G, LI T J, YIN Y L . Development of an antioxidant system after early weaning in piglets. Journal of Animal Science, 2014,92(2):612-619.
[21] LORENZO B, ANDREA M, SONIA J M, ERMINIO T, ELISA E, MICHELA L, FATIMA C, FRANCO L, MARCIN R, ALDO P, FILIPPO R, RAFFAELE M, GIUSEPPE B, JUAN J L, PAOLO A . Gut response induced by weaning in piglet features marked changes in immune and inflammatory response. Functional & Integrative Genomics, 2014,14(4):657-671.
[22] PI J, ZHANG Q, FU J, WOODS C G, HOU Y Y, CORKEY B E, COLLINS S, ANDERSEN M E . ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function. Toxicology and Applied Pharmacology, 2010,244(1):77-83.
[23] REUTER S, GUPTA S C, CHATURVEDI M M, CHATURVEDI , BHARAT B A . Oxidative stress, inflammation, and cancer: how are they linked. Free Radical Biology and Medicine, 2010,49(11):1603-1616.
[24] SHEN L, WEBER CR, RSLEIGH D R, YU D, TURNER J R . Tight junction pore and leak pathways: a dynamic duo. Annual Review of Physiology, 2011,73(2):283-309.
[1] SONG SongQuan,LIU Jun,TANG CuiFang,CHENG HongYan,WANG WeiQing,ZHANG Qi,ZHANG WenHu,GAO JiaDong. Research Progress on the Physiology and Its Molecular Mechanism of Seed Desiccation Tolerance [J]. Scientia Agricultura Sinica, 2022, 55(6): 1047-1063.
[2] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
[3] ZiHan FAN,YaYin LUO,HuaYe XIONG,YuWen ZHANG,FuRong KANG,YuHeng WANG,Jie WANG,XiaoJun SHI,YueQiang ZHANG. Effect of Nitrification on Ammonium Toxicity to Citrus in Acidic Soil [J]. Scientia Agricultura Sinica, 2022, 55(18): 3600-3612.
[4] Yue GE,DeQuan ZHANG,ShaoBo LI,Li CHEN,XiaoChun ZHENG,Ce LIANG,TongJing YAN,JinHuo LI,ZhenYu WANG. Eating Quality Evaluation of Lamb in Different Postmortem Phases Based on Consumers’ Sensory Preferences [J]. Scientia Agricultura Sinica, 2022, 55(18): 3640-3651.
[5] YAN TongJing,ZHANG DeQuan,LI Xin,LIU Huan,FANG Fei,LIU ShanShan,WANG Su,HOU ChengLi. Effects of Very Fast Chilling on Flavor Quality in Chilled Lamb [J]. Scientia Agricultura Sinica, 2022, 55(15): 3029-3041.
[6] HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
[7] WANG JinFei,YANG GuoYi,FAN ZiHan,LIU Qi,ZHANG PengCheng,REN YouShe,YANG ChunHe,ZHANG ChunXiang. Effects of Whole Plant Corn Silage Ratio in Diet on Growth Performance, Rumen Fermentation, Nutrient Digestibility and Serological Parameters of Dorper×Hu Crossbred Female Lambs [J]. Scientia Agricultura Sinica, 2021, 54(4): 831-844.
[8] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[9] HOU ChengLi,HUANG CaiYan,ZHENG XiaoChun,LIU WeiHua,YANG Qi,ZHANG DeQuan. Changes of Antioxidant Activity and Its Possible Mechanism in Tan Sheep Meat in Different Postmortem Time [J]. Scientia Agricultura Sinica, 2021, 54(23): 5110-5124.
[10] SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584.
[11] ZHAO Shan,ZHONG LingLi,QIN Lin,HUANG ShiQun,LI Xi,ZHENG XingGuo,LEI XinYu,LEI ShaoRong,GUO LingAn,FENG JunYan. Effects of Different Drying Methods on Functional Components and Antioxidant Activity in Sweet Potato Leaves [J]. Scientia Agricultura Sinica, 2021, 54(21): 4650-4663.
[12] YANG NingZhi,LI Ting,WANG Yan,CHEN Zhuo,MA YiCheng,REN QiangLin,LIU JiaJia,YANG HuiGuo,YAO Gang. Comparison of Growth Physiology and Gut Microbiota Between Healthy and Diarrheic Lambs in Pre- and Post-Weaning Period [J]. Scientia Agricultura Sinica, 2021, 54(2): 422-434.
[13] YAN ZhenHua,LIU DongYao,JIA XuCun,YANG Qin,CHEN YiBo,DONG PengFei,WANG Qun. Maize Tassel Development, Physiological Traits and Yield Under Heat and Drought Stress During Flowering Stage [J]. Scientia Agricultura Sinica, 2021, 54(17): 3592-3608.
[14] HUANG WenQin,LÜ XiaoKang,ZHUANG YiMin,CUI Kai,WANG ShiQing,DIAO QiYu,ZHANG NaiFeng. The Effects of Early Weaning and NDF Levels of Finishing Diets on Growth Performance, Nutrient Digestion and Metabolism of Hu Lambs [J]. Scientia Agricultura Sinica, 2021, 54(10): 2217-2228.
[15] HAO XiaoYan,MU ChunTang,QIAO Dong,ZHANG XuanZi,YANG WenJun,ZHAO JunXing,ZHANG ChunXiang,ZHANG JianXin. Effects of High-Concentrate Diet Supplemented with Grape Seed Proanthocyanidins on Rumen fermentation, Inflammatory and Antioxidant Indicators of Rumen and Serum in Lambs [J]. Scientia Agricultura Sinica, 2021, 54(10): 2239-2248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!