Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (24): 5123-5131.doi: 10.3864/j.issn.0578-1752.2013.24.006

• PLANT PROTECTION • Previous Articles     Next Articles

Comparative Analysis of Gene Expression Profiles of Rice Responding to Different Races of Magnaporthe grisea

 JIANG  Zhao-Yuan-1, 2 , 3 , REN  Jin-Ping-1, 2 , 3 , LIU  Xiao-Mei-1, 2 , 3 , ZOU  Xiao-Wei-1, 2 , 3 , GUO  Xiao-Li-1, 2 , 3 , WANG  Ji-Chun-1, 2 , 3 , WEN  Jia-Wei-2, LIU  Wen-Ping-2, XIA  Hai-Feng-4, HONG  De-Zhi-5   

  1. 1.Northeast Agricultural Research Center of China, Jilin Academy of Agricultural Sciences, Changchun 130033;
    2.Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, Jilin;
    3.Key Laboratory of Integrated Pest Management on Crops in Northeast, Ministry of Agriculture, Gongzhuling136100, Jilin;
    4.Tonghua Academy of Agricultural Sciences, Tonghua 135007, Jilin; 5Agricultural Technology and Extension Center of Jilin Province, Changchun 130021
  • Received:2013-06-05 Online:2013-12-16 Published:2013-09-16

Abstract: 【Objective】The objective of this study is to investigate the gene expression profiles of rice at 48 h after compatible and incompatible Magnaporthe grisea inoculation, and to explore the molecular mechanism of rice resistance to different M. griseas races.【Method】mRNA expression in compatible and incompatible rice was profiled using the Affymetrix microarray assay. GO (gene ontology) analyses were conducted on differentially expressed genes using a free web-based Molecular Annotation System 3.0 (MAS 3.0). Finally, the quantitative real-time PCR was used to verify the expression patterns of genes selected from microarray in rice. 【Result】Among the 49 824 transcripts on the array, about 24 000 transcripts were detected in rice. And 1 028 genes showed a fold change (FC) of more than 2.5. There were 460 genes were up-regulated and 568 genes were down-regulated in incompatible rice. Subsequently, real-time PCR was performed to validate four genes screened out by the microarray approach and sufficient consistency was observed between the two methods. The differentially expressed genes were functionally categorized by GO term analysis, which demonstrated that the gene set encoded proteins that function in signal transduction, enzyme regulation, transcription, molecule transport, and so on. 【Conclusion】 The result of gene expression profiles show that there were significant differences inthe compatible and incompatible rice. The genes differentially expressed in rice identified by microarray and functionally categorized by GO term analysis will help further understanding of plant disease resistance mechanisms in plant-pathogen interaction and may be beneficial to provide a new method for control of rice blast.

Key words: rice blast , gene expression profile , genechip

[1]方福平, 程式华. 论中国水稻生产能力. 中国水稻科学, 2009, 23(6): 559-566.

Fang F P, Cheng S H. Rice production capacity in China. Chinese Journal of Rice Science, 2009, 23(6): 559-566. (in Chinese)

[2]Devi S, Sharma G D. Blast disease of rice caused by Magnaporthe grisea: A review. Biological and Environmental Sciences, 2010, 6(1): 144-154.

[3]Jia Y, McAdams S A, Bryan G T, Hershey H P, Valent B. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. The EMBO Journal, 2000, 19(15): 4004-4014.

[4]Wang Z X, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. The Plant Journal, 1999, 19(1): 55-64.

[5]Zhou B, Qu S H, Liu G F, Dolan M, Sakai H, Lu G D, Bellizzi M, Wang G L. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Molecular Plant-Microbe Interactions, 2006, 19(11): 1216-1228.

[6]Bryan G T, WuK S, Farrall L, Jia Y, Hershey H P, McAdams S A, Faulk K N, Donaldson G K, Tarchini R, Valent B. A single amino acid difference distinguishes resistance and susceptible alleles of the rice blast resistance gene Pi-ta. The Plant Cell, 2000, 12: 2033-2045.

[7]Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang G L. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-bingding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics, 2006, 172(3): 1901-1914.

[8]Liu X Q, Lin F, Wang L, Pan Q H. The in silico map-based cloning of Pi36, a rice coiled-coil nucleotide-binding site-leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics, 2007, 176(4): 2541-2549.

[9]Ponciano G, Yoshikawa M, Lee J L, Ronald P C, Whalen M C. Pathogenesis-related gene expression in rice is correlated with developmentally controlled Xa21-mediated resistance against Xanthomonas oryzae pv. oryzae. Physiological and Molecular Plant Pathology, 2006, 69: 131-139.

[10]肖拴锁, 王钧. 水稻中超氧诱导与稻瘟菌抗性及苯丙氨酸解氨酶、几丁酶、β-1,3葡聚糖酶活性诱导的关系. 中国水稻科学, 1997, 11(2): 93-102.

Xiao S S, Wang J. Relationship among generation rate of superoxide, resistance of rice to blast fungi and activation of inducible phenylalanine ammonia-lyase, chitinase, β-1,3-glucanase. Chinese Journal of Rice Science, 1997, 11(2): 93-102. (in Chinese)

[11]Hammond-Kosack K E, Jones J D G. Resistance gene-dependent plant defense responses. The Plant Cell, 1996, 8: 1773-1791.

[12]韩德俊, 曹莉, 陈耀锋, 李振岐. 植物抗病基因与病原菌无毒基因互作的分子基础. 遗传学报, 2005, 32(12): 1319-1326.

Han D J, Cao L, Chen Y F, Li Z Q. Molecular basic of interaction between disease gene and avirulence gene. Acta Genetica Sinica, 2005, 32(12): 1319-1326. (in Chinese)

[13]Gururani M A, Venkatesh J, Upadhyaya C P, Nookaraju A, Pandey S K, Park S W. Plant disease resistance genes: current status and future directions. Physiological and Molecular Plant Pathology, 2012, 78: 51-65.

[14]胡海燕, 庄杰云, 柴荣耀, 吴建利, 樊叶杨, 郑康乐. 水稻对不同小种稻瘟菌抗性差异表达基因的鉴定. 中国水稻科学, 2007, 21(1): 1-6.

Hu H Y, Zhuang J Y, Chai R Y, Wu J L, Fan Y Y, Zheng K L. Identification of differentially expressed genes in rice plants responded to different races of blast fungus. Chinese Journal of Rice Science, 2007, 21(1): 1-6. (in Chinese)

[15]Yoshida K, Saitoh H, Fujisawa S, Kanzaki H, Matsumura H, Yoshida K, Tosa Y, Chuma I, Takano Y, Win J, Kamoun S, Terauchi R. Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. The Plant Cell, 2009, 21(5): 1573-1591.

[16]Orbach M J, Farrall L, Sweigard J A, Chumley F G, Valent B. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. The Plant Cell, 2000, 12(11): 2019-2032.

[17]Li P, Bai B, Zhang H Y, Zhou H, Zhou B. Genomic organization and sequence dynamics of the AvrPiz-t locus in Magnaporthe oryzae. Journal of Zhejiang University-Science B: Biomedicine & Biotechnology, 2012, 13(6): 452-464.

[18]Böhnert H U, Fudal I, Dioh W, Tharreau D, Notteghem J L, Lebrun M H. A putative polyketide synth-ase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. The Plant Cell, 2004, 16(9): 2499-2513.

[19]Li W, Wang B H, Wu J, Lu G D, Hu Y J, Zhang X, Zhang Z G, Zhao Q, Feng Q, Zhang H Y, Wang Z Y, Wang G L, Han B, Wang Z H, Zhou B. The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Molecular Plant-Microbe Interactions, 2009, 22(4): 411-420.

[20]Farman M L, Eto Y, Nakao T, Tosa Y, Nakayashiki H, Mayama S, Leong S A. Analysis of the structure of the AVR1-CO39 avirulence locus in virulent rice- infecting isolates of Magnaporthe grisea. Molecular Plant-Microbe Interactions, 2002, 15(1): 6-16.

[21]Hayashi K, Yoshida H. Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. The Plant Journal, 2009, 57(3): 413-425.

[22]Wang L,  Xu X,  Lin F,  Pan Q. Characterization of rice blast resistance genes in the Pik cluster and fine mapping of the Pik-p locus. Phytopathology, 2009, 99(8): 900-905.

[23]张莺莺, 昝林森, 王洪宝. 利用基因芯片技术筛选秦川牛公牛与阉牛肌肉组织差异表达基因. 遗传, 2010, 32(11): 1166-1174.

Zhang Y Y, Zan L S, Wang H B. Genome array on differentially expressed genes of muscle tissue in intact male and castrated Qinchuan cattle. Hereditas, 2010, 32(11): 1166-1174. (in Chinese)

[24]孙伟, 倪蓉, 殷金凤, 丁家桐, 张有法, 陈玲, 吴文忠, 周洪. 湖羊不同花纹皮肤组织差异表达基因的筛选. 中国农业科学, 2013, 46(2): 376-384.

Sun W, Ni R, Yin J F, Ding J T, Zhang Y F, Chen L, Wu W Z, Zhou H. Screening differentially expressed genes of skin tissue of different flowers patterns of Hu sheep. Scientia Agricultura Sinica, 2013, 46(2): 376-384. (in Chinese)

[25]Li Q, Chen F, Sun L, Zhang Z, Yang Y, He Z. Expression profiling of rice genes in early defense responses to blast and bacterial blight pathogens using cDNA microarray. Physiological and Molecular Plant Pathology, 2006, 68(1/3): 51-60.

[26]Grewal R K, Gupta S, Das S. Xanthomonas oryzae pv. oryzae triggers immediate transcriptomic modulations in rice. BMC Genomics, 2012, 13: 49.

[27]Vergne E, Ballini E, Marques S, Mammar B S, Droc G, Gaillard S, Bourot S, DeRose R, Tharreau D, Nottéghem J L, Lebrun M H, Morel J B. Early and specific gene expression triggered by rice resistance gene Pi33 in response to infection by ACE1 avirulent blast fungus. New Phytologist, 2007, 174: 159-171.

[28]Sharaf A N, Abdelkader H S, El-Hadi A A, Ahmed D S. Overexpression of rice chitinase gene: evaluation of chitinase ability as a bio-antifungal agent. Arab Journal of Biotechnology, 2009, 12(1): 85-98.

[29]许明辉, 唐祚舜, 谭亚玲, 田颖川, 李成云, 张树华, 陈正华, 田文忠. 几丁质酶-葡聚糖酶双价基因导入滇型杂交稻恢复系提高稻瘟病抗性的研究. 遗传学报, 2003, 30(4): 330-334.

Xu M H, Tang Z S, Tan Y L, Tian Y C, Li C Y, Zhang S H, Chen Z H, Tian W Z. A study on introduction of chitinase gene and β-1,3-glucanase gene into restorer line of dian-type hybrid rice (Oryza sativa L.) and enhanced resistance to blast (Magnaporthe grisea). Acta Genetica Sinica, 2003, 30(4): 330-334. (in Chinese)

[30]Zhang Y L, Tessaro M J, Lassner M, Li X. Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance. The Plant Cell, 2003, 15(11): 2647-2653.

[31]Lorenzo O, Piqueras R, Sánchez-Serrano, Solano R. Ethylene response factor1 integrates signals from ethylene and jasmonate pathways in plant defense. The Plant Cell, 2003, 15(1): 165-178.

[32]Wei T, Ou B, Li J, Zhao Y, Guo D, Zhu Y, Chen Z, Gu H, Li C, Qin G, Qu L J. Transcriptional profiling of rice early response to Magnaporthe oryzae identified OsWRKYs as important regulators in rice blast resistance. Plos ONE, 2013, 8(3): e59720.

[33]Gupta S K, Rai A K, Kanwar S S, Sharma T R. Comparative analysis of zinc finger proteins involved in plant disease resistance. Plos ONE, 2012, 7(8): e42578.

[34]Wu L, Zhong G, Wang J, Li X, Song X, Yang Y. Arabidopsis WRKY28 transcription factor is required for resistance to necrotrophic pathogen, Botrytis cinerea. African Journal of Microbiology Research, 2011, 5(30): 5481-5488.

[35]Guo M, Chen Y, Du Y, Dong Y, Guo W, Zhai S, Zhang H, Dong S, Zhang Z, Wang Y, Wang P, Zheng X. The bZIP transcription factor MoAP1 mediates the oxidative stress response and is critical for pathogenicity of the rice blast fungus Magnaporthe oryzae. PLoS Pathogens, 2011, 7(2): e1001302.

[36]Estes K A, Dunbar T L, Powell J R, Ausubel F M, Troemel E R. bZIP transcription factor zip-2 mediates an early response to Pseudomonas aeruginosa infection in Caenorhabditis elegans. Proceedings of the National Academy of the Sciences of the United States of America, 2010, 107(5): 2153-2158.

[37]Shao M, Wang J, Dean R A, Lin Y, Gao X, Hu S. Expression of a harpin-encoding gene in rice confersdurable nonspecific resistance to Magnaporthe grisea. Plant Biotechnology Journal, 2008, 6: 73-81.
[1] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
[2] SHA YueXia, HUANG ZeYang, MA Rui. Control Efficacy of Pseudomonas alcaliphila Strain Ej2 Against Rice Blast and Its Effect on Endogenous Hormones in Rice [J]. Scientia Agricultura Sinica, 2022, 55(2): 320-328.
[3] WU YunYu,XIAO Ning,YU Ling,CAI Yue,PAN CunHong,LI YuHong,ZHANG XiaoXiang,HUANG NianSheng,JI HongJuan,DAI ZhengYuan,LI AiHong. Construction and Analysis of Broad-Spectrum Resistance Gene Combination Pattern for Japonica Rice in Lower Region of the Yangtze River, China [J]. Scientia Agricultura Sinica, 2021, 54(9): 1881-1893.
[4] WANG FangQuan,CHEN ZhiHui,XU Yang,WANG Jun,LI WenQi,FAN FangJun,CHEN LiQin,TAO YaJun,ZHONG WeiGong,YANG Jie. Development and Application of the Functional Marker for the Broad-Spectrum Blast Resistance Gene PigmR in Rice [J]. Scientia Agricultura Sinica, 2019, 52(6): 955-967.
[5] SHA YueXia,SUI ShuTing,ZENG QingChao,SHEN RuiQing. Biocontrol Potential of Bacillus velezensis Strain E69 Against Rice Blast and Other Fungal Diseases [J]. Scientia Agricultura Sinica, 2019, 52(11): 1908-1917.
[6] XU BingXia, YIN MeiQiang, WEN YinYuan, PEI ShuaiShuai, KE ZhenJin, ZHANG Bin, YUAN XiangYang. Gene Expression Profiling of Foxtail Millet (Setaria italica L.) Under Drought Stress During Germination [J]. Scientia Agricultura Sinica, 2018, 51(8): 1431-1447.
[7] WANG WenJuan,SU Jing,YANG JianYuan,WEI XiaoYan,CHEN KaiLing,CHEN Zhen,CHEN Shen,ZHU XiaoYuan. Analysis of Magnaporthe oryzae Avirulent Genes in the Infected Hybrid Rice Combinations Derived from a Sterile Line of Guang 8 A [J]. Scientia Agricultura Sinica, 2018, 51(24): 4633-4646.
[8] LIU LiNa, YANG Jing, XU LiuYan, LI ChengYun. Genetic Diversity Analysis of Pi-ta Gene 3′-UTR in Rice Landraces [J]. Scientia Agricultura Sinica, 2017, 50(15): 2851-2860.
[9] ZHANG Min-xiu, XIE Zhi-xun, DENG Xian-wen, XIE Zhi-qin, XIE Li-ji, HUANG Li, HUANG Jiao-ling . Establishment of a GeXP Analyser-Based Multiplex PCR Assay for Detection of Eight Reproductive and Respiratory Swine Pathogens [J]. Scientia Agricultura Sinica, 2015, 48(24): 4996-5006.
[10] WANG Bo, YAO Yun, XU Ze-wei, LIN Xin-da . Molecular Cloning and Function of the Yellow Gene from Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2015, 48(15): 2976-2984.
[11] WEI Jin-jin, CAO De-pan, YANG Ting, WANG Gui-rong. Cloning and Spatio-Temporal Expression of the Thermoreceptor Gene Painless in Pea Aphids (Acyrthosiphon pisum) [J]. Scientia Agricultura Sinica, 2014, 47(19): 3799-3809.
[12] LIU Lu-ning,TU Yan-la,ZHANG Jing-ze . Biocontrol Potential of Trichoderma virens Strain TY009 Against Rice Sheath Blight and Other Main Fungal Diseases
[J]. Scientia Agricultura Sinica, 2010, 43(10): 2031-2038 .
[13]

. [J]. Scientia Agricultura Sinica, 2008, 41(8): 2258-2262 .
[14] . Marker-assisted Selection and Application for Rice Blast Resistance Gene pib [J]. Scientia Agricultura Sinica, 2008, 41(1): 9-14 .
[15] 第一作者,第一作者,第一作者,,,. Application of the Candidate Resistance Genes to Genetic Diversity in Rice [J]. Scientia Agricultura Sinica, 2005, 38(11): 2227-2232 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!