Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (11): 1908-1917.doi: 10.3864/j.issn.0578-1752.2019.11.006

• PLANT PROTECTION • Previous Articles     Next Articles

Biocontrol Potential of Bacillus velezensis Strain E69 Against Rice Blast and Other Fungal Diseases

SHA YueXia1(),SUI ShuTing2,ZENG QingChao2,SHEN RuiQing1   

  1. 1 Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750011
    2 College of Plant Protection, China Agricultural University, Beijing 100193
  • Received:2019-01-29 Accepted:2019-03-11 Online:2019-06-01 Published:2019-06-11
  • Contact: YueXia SHA E-mail:yuexiasha@126.com

Abstract:

【Objective】 The objective of this study is to clarify the antagonistic effect of Bacillus velezensis strain E69 isolated from rice endophytic bacteria against various fungal plant pathogens in vitro, especially the control efficacy of B. velezensis E69 on rice blast, and to reduce the use of chemical pesticides.【Method】 B. velezensis E69 and B. subtilis (most commonly used microorganisms in biological control of rice blast) E66 strains were isolated from endophytic bacteria of rice leaf tissue. The antagonistic effect of strains E69 and E66 and their fermented liquid, sterile supernatant against Magnaporthe oryzae was tested by confrontation culture method. Also, the antagonistic effect of strains E69 and E66 against other 11 pathogenic fungi, such as Rhizoctonia solani, Fusarium spp., Botrytis cinerea, Colletotrichum gloeospoioides, Phytophthora parasitica var. nicotianae, Alternaria alternate, F. oxysporum, et al., was determined. The preventive efficacy of E69 and E66 was tested for the control of rice leaf blast under greenhouse condition. The field experiments were conducted to evaluate the preventive efficacy of E69 and E66 against rice leaf blast and neck blast. The inhibitory effect of E69 and E66 against conidial germination and appressorial formation of M. oryzae was assessed in laboratory. The colonization of GFP-marked strain E69 in rice stem was observed by laser scanning confocal microscope.【Result】 Strains E69 and E66 significantly suppressed the mycelia growth rate of M. oryzae P131, the preventive efficacy against rice blast under greenhouse condition was 83.24% and 76.57%, respectively. The preventive efficacy of E69, E66 against rice leaf blast and neck blast in field was 85.97%, 79.76% and 69.67%, 68.82%, respectively. The preventive effect of E69 on leaf blast was significantly higher than that of 75% tricyclozole wettable powder, but there was no significant difference between the preventive efficacy of strain E69 and 75% tricyclazole powder against rice neck blast. E69 and E66 had significant antagonistic effects against 11 plant pathogens, such as R. solani, Fusarium spp., B. cinerea, C. gloeospoioides, P. parasitica var. nicotianae, A. alternate, F. oxysporum, et al. The antagonistic effect of E69 was higher than that of E66. E69 and E66 could strongly inhibit the conidial germination and appressorial formation of M. oryzae P131, the inhibitory effect of E69 fermented liquid was 95.28% and 94.16%, respectively, and the inhibitory effect of E69 sterile supernatant was 85.36% and 84.31%, respectively. The inhibitory effect of E66 fermented liquid was 89.15% and 87.38%, respectively, and the inhibitory effect of E66 sterile supernatant were 79.65% and 72.45%, respectively. The GFP-marked strain E69 showed good colonization ability in rice stem, and could be stably colonized in rice stem epidermis, parenchyma and vascular bundles. 【Conclusion】 B. velezensis strain E69 is a potential biocontrol strain with obvious preventive effects, which has the application potential of preventing rice blast, sheath blight and other fungal diseases.

Key words: Bacillus velezensis, rice blast, plant pathogenic fungi, biological control, colonization ability

Fig. 1

The mycelia growth rate of M. oryzae P131 inhibited by endophytice bacteria of rice"

Table 1

The preventive efficacy of rice endophytic bacteria against rice blast under greenhouse condition"

处理Treatment 病情指数Disease index 预防效果Preventive efficacy (%)
E69 3.71±1.11b 83.24±1.41a
E66 5.18±1.05b 76.57±1.15b
75%三环唑Tricyclazole 4.88±1.14b 77.91±1.43b
绿地康Lvdikang 3.42±0.52b 84.51±0.69a
清水对照Water control 22.09±2.43a

Table 2

The preventive efficacy of rice endophytic bacteria against rice blast in the field"

处理
Treatment
叶瘟Rice leaf blast 穗颈瘟Rice neck blast
病情指数
Disease index
预防效果
Preventive efficacy (%)
病情指数
Disease index
预防效果
Preventive efficacy (%)
E69 4.66±0.53b 85.97±0.96a 16.56±2.62b 69.67±2.41a
E66 8.79±2.53b 79.76±2.96b 16.48±4.66b 68.82±4.41a
绿地康Lvdikang 4.04±1.29b 88.74±2.65a 16.03±1.77b 69.67±1.54a
75%三环唑Tricyclazole 10.06±2.19b 77.01±2.01b 15.76±1.15b 70.18±1.08a
清水对照Water control 36.15±2.25a 52.86±3.06a

Table 3

The antagonistic effect of strains E69 and E66 against various fungal plant pathogens in vitro"

病原菌
Target fungal pathogen
抑菌效果
Antagonistic effect
E66 E69
Fusarium oxysporum N16-2-1 ++ ++++
Fusarium solani N18-1-2 + ++++
Fusarium moniliforme N19-2-2 + ++++
Rhizoctonia solani RS8 +++ +++
Botrytis cinerea ZDP4 + +++
Colletotrichum gloeospoioides ZDP21 + ++
Alternaria alternate BJ-A5 ++ +++
Alternaria alternate BJ-ST24 + +
Alternaria alternate BJ-H9 ++ +++
Fusarium oxysporum f. sp. niveum M8 ++ ++
Phytophthora parasitica var. nicotianae T15 + ++

Table 4

Inhibitory activity of rice endophytic bacteria against conidial germination and appressorial formation of M. oryzae"

处理
Treatment
分生孢子Conidium 附着胞Appressorium
萌发率
Germination rate (%)
抑制率
Inhibition rate (%)
形成率
Formation rate (%)
抑制率
Inhibition rate (%)
E69发酵液E69 fermented liquid 4.67±0.82d 95.28±0.83a 5.02±1.14d 94.16±0.15a
E69无菌上清液E69 sterile supernatant 14.49±0.19c 85.36±0.19bc 13.49±0.48bc 84.31±10.55b
E66发酵液E66 fermented liquid 10.74±1.73c 89.15±1.23ab 10.85±0.36c 87.38±0.41b
E66无菌上清液E66 sterile supernatant 20.15±3.44b 79.65±3.47c 23.69±1.59b 72.45±1.86c
清水对照Water control 99.00±0.76a 86.00±2.67a

Fig. 2

Images from a confocal microscope of rice stems inoculated with GFP-marked strains"

[1] DAGDAS Y F, YOSHINO K, DAGDAS G, RYDER L S, BIELSKA E, STEINBERG G, TALBOT N J . Septin-mediated plant cell invasion by the rice blast fungus,Magnaporthe oryzae. Science, 2012,336(6088):1590-1595.
doi: 10.1126/science.1222934
[2] HUANG J, SI W, DENG Q, LI P, YANG S . Rapid evolution of avirulence genes in rice blast fungus Magnaporthe oryzae. BMC Genetics, 2014,15:45.
[3] CHAIHARN M, CHUNHALEUCHANON S, LUMYONG S . Screening siderophore producing bacteria as potential biological control agent for fungal rice pathogens in Thailand. World Journal of Microbiology and Biotechnology, 2009,25(11):1919-1928.
doi: 10.1007/s11274-009-0090-7
[4] MENG X K, YU J J, YU M N, YIN X L, LIU Y F . Dry flowable formulations of antagonistic Bacillus subtilis strain T429 by spray drying to control rice blast disease. Biological Control, 2015,85:46-51.
doi: 10.1016/j.biocontrol.2015.03.004
[5] 沙月霞, 曾庆超, 王昕, 沈瑞清, 刘浩, 王喜刚 . 防治稻瘟病芽胞杆菌的筛选及效果评价. 中国生物防治学报, 2018,34(3):414-422.
SHA Y X, ZENG Q C, WANG X, SHEN R Q, LIU H, WANG X G . Screening and control efficiency evaluation ofBacillus against rice blast Magnaporthe oryzae. Chinese Journal of Biological Control, 2018,34(3):414-422. (in Chinese)
[6] 刘诗胤 . 生防菌MF-91对水稻主要病害防治效果、根际微生物多样性及稻米品质的影响[D]. 杭州: 杭州师范大学, 2012.
LIU S Y . Effects of biocontrol bacteria MF-91 on the control efficiency of main diseases, rhizosphere microbial diversity and rice quality of Oryza sativa[D]. Hangzhou: Hangzhou Normal University, 2012. (in Chinese)
[7] RAIS A, SHAKEEL M, MALIK K, HAFEEZ F Y, YASMIN H, MUMTAZ S, HASSAN M N . Antagonistic Bacillus spp. reduce blast incidence on rice and increase grain yield under field conditions. Microbiological Research, 2018,208:54-62.
doi: 10.1016/j.micres.2018.01.009 pmid: 29551212
[8] SAIKIA R, GOGOI D K, MAZUMDER S, YADAV A, SARMA R K, BORA T C, GOGOI B K . Brevibacillus laterosporus strain BPM3, a potential biocontrol agent isolated from a natural hot water spring of Assam, India. Microbiological Research, 2011,166(3):216-225.
doi: 10.1016/j.micres.2010.03.002
[9] 沙月霞, 王琦, 李燕 . 稻瘟病生防芽胞杆菌的筛选及防治效果. 中国生物防治学报, 2016,32(4):474-484.
SHA Y X, WANG Q, LI Y . Screening and prevention of Bacillus biocontrol against rice blast. Chinese Journal of Biological Control, 2016,32(4):474-484. (in Chinese)
[10] TAGHAVI S, GARAFOLA C, MONCHY S, NEWMAN L, HOFFMAN A, WEYENS N, BARAC T, VANGRONSVELD J, VAN DER LELIE D . Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Applied and Environmental Microbiology, 2009,75(3):748-757.
doi: 10.1128/AEM.02239-08
[11] PRASANNA R, NAIN L, PANDEY A K, SAXENA A K . Microbial diversity and multidimensional interactions in the rice ecosystem. Archives of Agronomy and Soil Science, 2012,58(7):723-744.
doi: 10.1080/03650340.2010.537325
[12] TANG Q, PURI A, PADDA K P, CHANWAY C P . Biological nitrogen fixation and plant growth promotion of lodgepole pine by an endophytic diazotrophPaenibacillus polymyxa and its GFP-tagged derivative. Botany, 2017,95(6):611-619.
doi: 10.1139/cjb-2016-0300
[13] JI S H, GURURANI M A, CHUN S C . Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiological Research, 2014,169(1):83-98.
doi: 10.1016/j.micres.2013.06.003
[14] OWNLEY B H, GWINN K D, VEGA F E . Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. BioControl, 2010,55(1):113-128.
doi: 10.1007/s10526-009-9241-x
[15] LIU Y, BAI F R, LI N, WANG W P, CHENG C . Identification of endophytic bacterial strain RSE1 from seeds of super hybrid rice Shenliangyou 5814 (Oryza sativa L.) and evaluation of its antagonistic activity. Plant Growth Regulation, 2017,82(3):403-408.
doi: 10.1007/s10725-017-0265-4
[16] SHYLLA A, SHIVAPRAKASH M K, SHASHIDHAR H E, VISHWAKARMA P, SUDRADHAR M . Production of phytohormones by endophytic bacteria isolated from aerobic rice. Journal of Pure and Applied Microbiology, 2016,10(3):2127-2133.
[17] SHAHZAD R, WAQAS M, KHAN A L, AL-HOSNI K, KANG S M, SEO C W, LEE I J . Indoleacetic acid production and plant growth promoting potential of bacterial endophytes isolated from rice (Oryza sativa L.) seeds. Acta Biologica Hungarica, 2017,68(2):175-186.
doi: 10.1556/018.68.2017.2.5
[18] 杨波, 陈晏, 李霞, 任承钢, 戴传超 . 植物内生菌促进宿主氮吸收与代谢研究进展. 生态学报, 2013,33(9):2656-2664.
doi: 10.5846/stxb201202050147
YANG B, CHEN Y, LI X, REN C G, DAI C C . Research progress on endophyte-promoted plant nitrogen assimilation and metabolism. Acta Ecologica Sinica, 2013,33(9):2656-2664. (in Chinese)
doi: 10.5846/stxb201202050147
[19] RANGJAROEN C, RERKASEM B, TEAUMROONG N, SUNGTHONG R, LUMYONG S . Comparative study of endophytic and endophytic diazotrophic bacterial communities across rice landraces grown in the highlands of northern Thailand. Archives of Microbiology, 2014,196(1):35-49.
doi: 10.1007/s00203-013-0940-4
[20] PHAM V T K, REDIERS H, GHEQUIRE M G K, NGUYEN H H, DE MOT R, VANDERLEYDEN J, SPAEPEN S . The plant growth-promoting effect of the nitrogen-fixing endophytePseudomonas stutzeri A15. Archives of Microbiology, 2017,199(3):513-517.
doi: 10.1007/s00203-016-1332-3
[21] SHAHZAD R, KHAN A L, BILAL S, WAQAS M, KANG S M, LEE I J . Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environmental and Experimental Botany, 2017,136:68-77.
doi: 10.1016/j.envexpbot.2017.01.010
[22] KLAYRAUNG S, NIAMSUP P, POONNOY P, TOPOONYANONT N . Diversity and control of bacterial contamination of plants propagated in temporary immersion bioreactor system. Acta Horticulturae, 2017,1155:439-446.
[23] XU T, LI Y, ZENG X D, YANG X L, YANG Y Z, YUAN S S, HU X C, ZENG J R, WANG Z Z, LIU Q, LIU Y Q, LIAO H D, TONG C Y, LIU X M, ZHU Y H . Isolation and evaluation of endophytic Streptomyces endus OsiSh-2 with potential application for biocontrol of rice blast disease. Journal of the Science of Food and Agriculture, 2017,97(4):1149-1157.
doi: 10.1002/jsfa.7841 pmid: 27293085
[24] DEFEZ R, ANDREOZZI A, BIANCO C . The overproduction of indole-3-acetic acid (IAA) in endophytes upregulates nitrogen fixation in both bacterial cultures and inoculated rice plants. Microbial Ecology, 2017,74(2):441-452.
doi: 10.1007/s00248-017-0948-4
[25] JHA Y, SUBRAMANIAN R B . Endophytic Pseudomonas pseudoalcaligenes shows better response against the Magnaporthe oryzae than a rhizospheric Bacillus pumilus in Oryza sativa(rice). Archives of Phytopathology and Plant Protection, 2011,44(6):592-604.
doi: 10.1080/03235400903145400
[26] ZHU X J, HU Y F, CHEN X, WANG Y H, FANG W P, LI X H . Endophytic fungi from Camellia sinensis show an antimicrobial activity against the rice blast pathogen Magnaporthe grisea. International Journal of Experimental Botany, 2014,83:57-63.
[27] 李永刚, 宋兴舜, 赵雪莹, 马凤鸣 . 生防枯草芽孢杆菌L1特性的初步研究. 植物保护, 2008,34(1):57-61.
LI Y G, SONG X S, ZHAO X Y, MA F M . Preliminary characterization of Bacillus subtilis strain L1. Plant Protection, 2008,34(1):57-61. (in Chinese)
[28] 王光华 , RAAIJMAKERS J M. 生防细菌产生的拮抗物质及其在生物防治中的作用. 应用生态学报, 2004,15(6):1100-1104.
WANG G H, RAAIJMAKERS J M . Antibiotics production by bacterial agents and its role in biological control. Chinese Journal of Applied Ecology, 2004,15(6):1100-1104. (in Chinese)
[29] PALAZZINI J M, DUNLAP C A, BOWMAN M J, CHULZE S N . Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: Genome sequencing and secondary metabolite cluster profiles. Microbiological Research, 2016,192:30-36.
doi: 10.1016/j.micres.2016.06.002
[30] 宗英, 赵月菊, 刘阳, 杨庆利 . 一株贝莱斯芽孢杆菌抑制禾谷镰刀菌的研究. 核农学报, 2018,32(2):310-317.
doi: 10.11869/j.issn.100-8551.2018.02.0310
ZONG Y, ZHAO Y J, LIU Y, YANG Q L . Study on the inhibitory effect of Bacillus velezensis on Fusarium graminearum. Journal of Nuclear Agricultural Sciences, 2018,32(2):310-317. (in Chinese)
doi: 10.11869/j.issn.100-8551.2018.02.0310
[31] 孙平平, 崔建潮, 贾晓辉, 王文辉 . 贝莱斯芽孢杆菌L-1 对梨灰霉和青霉病菌的抑制作用评价及全基因组分析. 微生物学报, 2018,58(9):1637-1646.
doi: 10.13343/j.cnki.wsxb.20170605
SUN P P, CUI J C, JIA X H, WANG W H . Complete genome analysis of Bacillus velezensis L-1 and its inhibitory effect on pear gray and blue mold. Acta Microbiologica Sinica, 2018,58(9):1637-1646. (in Chinese)
doi: 10.13343/j.cnki.wsxb.20170605
[32] SHAN H Y, ZHAO M M, CHEN D X, CHENG J L, LI J, FENG Z Z, MA Z Y, AN D R . Biocontrol of rice blast by the phenaminomethylacetic acid producer of Bacillus methylotrophicus strain BC79. Crop Protection, 2013,44:29-37.
doi: 10.1016/j.cropro.2012.10.012
[33] SHA Y X, WANG Q, LI Y . Suppression of Magnaporthe oryzae and interaction between Bacillus subtilis and rice plants in the control of rice blast. SpringerPlus, 2016,5(1):1238.
doi: 10.1186/s40064-016-2858-1
[34] 徐婷, 朱天辉, 李姝江, 谯天敏 . 贝莱斯芽孢杆菌Bacillus velezensis YB15 β-葡聚糖酶的抑菌作用与基因克隆. 中国生物防治学报, 2014,30(2):276-281.
XU T, ZHU T H, LI S J, QIAO T M . Fungus-inhibitory activity and gene cloning of β-glucanase from Bacillus velezensis YB15. Chinese Journal of Biological Control, 2014,30(2):276-281. (in Chinese)
[35] 李湘民, 许志刚 MEW T W, . 稻株上拮抗细菌的定殖及其对土著细菌的影响. 生态学报, 2008,28(8):3868-3874.
LI X M, XU Z G, MEW T W . Colonization of antagonistic bacteria on rice plants and their influence on native bacteria. Acta Ecologica Sinica, 2008,28(8):3868-3874. (in Chinese)
[36] 赵达, 傅俊范, 裘季燕, 刘伟成 . 枯草芽孢杆菌在植病生防中的作用机制与应用. 辽宁农业科学, 2007(1):46-48.
ZHAO D, FU J F, QIU J Y, LIU W C . Bio-control mechanism and application ofBacillus subtilis in plant disease. Liaoning Agricultural Sciences, 2007(1):46-48. (in Chinese)
[37] RENGPIPAT S, WONGTANGPRASERT N, PALAGA T . The use of green fluorescent protein as a marker for monitoring a probiotic Bacillus S11 in the black tiger shrimp Penaeus monodon. Aquaculture Nutrition, 2009,15(3):297-305.
doi: 10.1111/anu.2009.15.issue-3
[38] PADDA K P, PURI A, ZENG Q W, CHANWAY C P, WU X Q . Effect of GFP-tagging on nitrogen fixation and plant growth promotion of an endophytic diazotrophic strain of aenibacillus polymyxa. PBotany, 2017,95(9):933-942.
doi: 10.1139/cjb-2017-0056
[39] ZIMMER M . Green fluorescent protein (GFP): application, structure, and related photophysical behavior. Chemical Reviews, 2002,102(3):759-781.
doi: 10.1021/cr010142r
[40] LIU X M, ZHAO H X, CHEN S F . Colonization of maize and rice plants by strain Bacillus megaterium C4. Current Microbiology, 2006,52(3):186-190.
doi: 10.1007/s00284-005-0162-3 pmid: 16502291
[41] NG L C, SARIAH M, SARIAM O, RADZIAH O, ZAINAL ABIDIN M A . Bio-efficacy of microbial-fortified rice straw compost on rice blast disease severity, growth and yield of aerobic rice. Australasian Plant Pathology, 2012,41(5):541-549.
doi: 10.1007/s13313-012-0145-3
[42] KANJANAMANEESATHIAN M, CHUMTHONG A, PENGNOO A, WIWATTANAPATAPEE R . Bacillus megaterium suppresses major Thailand rice diseases. Asian Journal of Food and Agro-Industry, 2009,2(Special Issue):S154-S159.
[43] KYUNG-SEOK P, DIBY P, WAN-HAE Y . Bacillus vallismortis EXTN-1-mediated growth promotion and disease suppression in rice. The Plant Pathology Journal, 2006,22(3):278-282.
doi: 10.5423/PPJ.2006.22.3.278
[1] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
[2] SHA YueXia, HUANG ZeYang, MA Rui. Control Efficacy of Pseudomonas alcaliphila Strain Ej2 Against Rice Blast and Its Effect on Endogenous Hormones in Rice [J]. Scientia Agricultura Sinica, 2022, 55(2): 320-328.
[3] WU YunYu,XIAO Ning,YU Ling,CAI Yue,PAN CunHong,LI YuHong,ZHANG XiaoXiang,HUANG NianSheng,JI HongJuan,DAI ZhengYuan,LI AiHong. Construction and Analysis of Broad-Spectrum Resistance Gene Combination Pattern for Japonica Rice in Lower Region of the Yangtze River, China [J]. Scientia Agricultura Sinica, 2021, 54(9): 1881-1893.
[4] CHEN Yang,ZHAO HongYi,YAN JunJie,HUANG Jian,GAO YuLin. Chemical Synthesis View on Sex Pheromones of Potato Tuberworm (Phthorimaea operculella) [J]. Scientia Agricultura Sinica, 2021, 54(3): 556-572.
[5] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[6] WEI YanXia,LI ZhuoRan,ZHANG Bin,YUAN YuJin,YU WeiWei,CHANG RuoKui,WANG YuanHong. Screening and Function of Plant Immune Proteins from Bacillus velezensis LJ02 [J]. Scientia Agricultura Sinica, 2021, 54(16): 3451-3460.
[7] HU ChangXiong,FAN Wei,ZHANG Qian,CHEN GuoHua,YIN HongHui,XU TianYang,YANG JinBo,YANG Hang,WU DaoHui,ZHANG XiaoMing. Control Effect of Orius similis on Frankliniella occidentalis Based on the Two-Sex Life Table and the Age-Stage-Specific Predation Rate [J]. Scientia Agricultura Sinica, 2021, 54(13): 2769-2780.
[8] LI YangFan,SHAO MeiQi,LIU CHANG,GUO QingGang,WANG PeiPei,CHEN XiuYe,SU ZhenHe,MA Ping. Identification of the Antifungal Active Compounds from Bacillus amyloliquefaciens Strain HMB33604 and Its Control Efficacy Against Potato Black Scurf [J]. Scientia Agricultura Sinica, 2021, 54(12): 2559-2569.
[9] LI Shu,WANG Jie,HUANG NingXing,JIN ZhenYu,WANG Su,ZHANG Fan. Research Progress and Prospect on Banker Plant Systems of Predators for Biological Control [J]. Scientia Agricultura Sinica, 2020, 53(19): 3975-3987.
[10] ZHANG Lei,JIA Qi,WU Wei,ZHAO LuPing,XUE Bing,LIU HuanHuan,SHANG Jing,YONG TaiWen,LI Qing,YANG WenYu. Species Identification and Virulence Determination of Beauveria bassiana Strain BEdy1 from Ergania doriae yunnanus [J]. Scientia Agricultura Sinica, 2020, 53(14): 2974-2982.
[11] WANG FangQuan,CHEN ZhiHui,XU Yang,WANG Jun,LI WenQi,FAN FangJun,CHEN LiQin,TAO YaJun,ZHONG WeiGong,YANG Jie. Development and Application of the Functional Marker for the Broad-Spectrum Blast Resistance Gene PigmR in Rice [J]. Scientia Agricultura Sinica, 2019, 52(6): 955-967.
[12] WANG WenJuan,SU Jing,YANG JianYuan,WEI XiaoYan,CHEN KaiLing,CHEN Zhen,CHEN Shen,ZHU XiaoYuan. Analysis of Magnaporthe oryzae Avirulent Genes in the Infected Hybrid Rice Combinations Derived from a Sterile Line of Guang 8 A [J]. Scientia Agricultura Sinica, 2018, 51(24): 4633-4646.
[13] LI YuJia, LI Qian, ZHANG ZhiXiang, LI ShiFang. Screening and identification of peach endophytic bacteria with antagonism against Agrobacterium tumefaciens [J]. Scientia Agricultura Sinica, 2017, 50(20): 3918-3929.
[14] LIU LiNa, YANG Jing, XU LiuYan, LI ChengYun. Genetic Diversity Analysis of Pi-ta Gene 3′-UTR in Rice Landraces [J]. Scientia Agricultura Sinica, 2017, 50(15): 2851-2860.
[15] LU Hui-hui, LIN Zhi-qiang, TAN Wan-zhong, LUO Hua-dong, XIAN Fei, BI Chao-wei, YU Yang, YANG Yu-heng. Insecticidal Protein Genes of Bacillus thuringiensis Strain CPB012 and Its Effects in Controlling Different Insect Pests [J]. Scientia Agricultura Sinica, 2015, 48(6): 1112-1121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!