Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (22): 4584-4600.doi: 10.3864/j.issn.0578-1752.2020.22.006

• PLANT PROTECTION • Previous Articles     Next Articles

Transcriptome Analysis of Citrus reticulata Blanco, cv. Hongjv Infected with Alternaria alternata Tangerine Pathotype

TANG KeZhi,ZHOU ChangYong   

  1. Citrus Research Institute, Southwest University, Chongqing 400712
  • Received:2020-01-19 Accepted:2020-03-27 Online:2020-11-16 Published:2020-11-28
  • Contact: ChangYong ZHOU

Abstract:

【Objective】The objective of this study is to reveal the gene expression pattern at transcriptional level of tangerine (Citrus reticulata Blanco, cv. Hongjv) after inoculated with the brown spot pathogen (Alternaria alternata tangerine pathotype), and to identify the key genes of tangerine responding to the pathogen infection.【Method】Detached leaves of tangerine were inoculated with A. alternata tangerine pathotype for 28 h and used for RNA extraction and transcriptome sequencing. Sequencing results were verified by quantitative real-time PCR (qRT-PCR). Differentially expressed genes (DEGs) were screened with |log2 fold change|≥1, q-value≤0.01 as threshold and clean reads were compared with genome of sweet orange (Citrus sinensis). GO database was used to perform functional classification of DEGs, KEGG was used to analyze metabolic pathways, and MapMan software was used to analyze the expression changes of genes related to biological stress signaling pathways.【Result】A large number of DEGs related to stress were produced at 28 h post inoculation, 5 173 up-regulated and 6 555 down-regulated genes were obtained. GO functional classification showed that the DEGs were mainly related to protein binding, membrane and oxidation-reduction process. KEGG enrichment and MapMan software analysis revealed that the basic metabolism of tangerine was severely damaged during the stress of A. alternata tangerine pathotype. The expression of multiple genes in host defense-related plant hormone signal transduction pathways such as ethylene (ET), salicylic acid (SA) and auxin (AUX) varied to some extent, of which ET plays a key role. The three members of the ET receptor ETR were activated to different degrees, among which downstream kinases and ET response factors were up-regulated, whereas most key signal genes of AUX, most members of AUX response factor ARF and genes in SA synthesis pathway were all down-regulated. Meanwhile, genes related to flavonol, anthocyanins, terpenoids and alkaloid synthesis were drastically changed by the fungus. Most genes of terpenoid synthesis were down-regulated, while the number and expression trend of up-regulated genes related to flavonoid synthesis were stronger than those of the down-regulated genes. Glucosinolate genes with anti-insect and antibacterial effects were up-regulated. Furthermore, a large number of transcription factors involved in stress resistance processes such as WRKY, bZIP, ERF, MYB and NAC were induced and activated. Most members of WRKY and bZIP transcription factors were positively regulated by the fungus, and the expressions of more than 50% of the ERF family genes were up-regulated. Under the regulation of transcription factors, PTI and ETI response genes such as receptor kinases, R proteins and NBS anti-disease proteins were largely expressed, multiple resistance PR genes were up-regulated and the expressions of 22 POD genes of antioxidant protective enzyme systems were largely activated by reactive oxygen species. The above results indicated that A. alternata tangerine pathotype infection had a great effect on the physiological state of citrus plants. To validate the findings, 19 DEGs related to anti-disease were selected for further analyses using qRT-PCR. The result was fairly consistent with that of transcriptional sequencing.【Conclusion】The DEGs and the significantly up-regulated expression genes obtained in C. reticulata Blanco, cv. Hongjv were mainly involved in the metabolic process, the response to stress and the transcriptional regulation. The synergistic regulation of these genes is an important mechanism of defense reaction to A. alternata tangerine pathotype.

Key words: Citrus reticulata Blanco, cv. Hongjv, Alternaria alternata tangerine pathotype, transcriptome, differentially expressed gene (DEG)

Table 1

Genes selection and primers design for qRT-PCR"

基因ID Gene ID 引物序列 Primer sequence (5′-3′) 产物长度 Length of product (bp)
Cs4g12760 F: TTCGTCTTGCTCTTCGGATAA R: GCACTCCAACGGAATCTCTAA 202
Cs2g09310 F: GGTGTCATTCCTCCTCCTACC R: GCAGTTCCCTCGCCTATTCT 198
Cs5g15470 F: CAGCCTTGTCGGTATGAGAA R: CAACACCCAATCTTCCTTGAG 151
Cs5g21860 F: GCTCTTGTGGGCATTCTTGC R: CTCTCGTGTAGAAGCTCTTGCC 142
Cs7g20700 F: ACGGTTCAGGCTCATTTCAG R: TGGGATTTGGCATCATCAAT 185
Cs3g10430 F: TGGAGACGTAGAGGCTGTCAA R: CATACCAATATTTTGAGCATTTT 121
Cs6g07410 F: GGAGAGTGGTGGAATGCTGAT R: CACTTCGAGCGTGTAGGTTTG 150
Cs6g20850 F: CCAGCAGGCATGAGAAATTA R: TGACCATCGTGGGAACAGTA 229
Cs1g01180 F: TGCAGTAGAAGTTGATGGTGATG R: AATGAGCCGTTAGCGACAAG 165
Cs1g04680 F: AGCTGCAAGGGTTTGGTTAG R: GAATTTGCGTTTGGTGATGA 150
Cs8g13680 F: GCCTATGCTTGCTGTTGTTTC R: GAAGGCAGTCCATCCATACTTC 194
orange1.1t03118 F: CAAGCTCTCCAGGCAAGAGT R: GGTCCACGGCCATAGTAGAA 247
orange1.1t03618 F: CGGGATGAACATTTGGTTTA R: CTAGCCTTCTGATCTTGACACA 184
orange1.1t05311 F: GCTGGGATATAACTCCTTCTCA R: TTCCGCTAAACCAATCACTT 172
Cs2g06120 F: GCACAAGGAAATGGGTTTGT R: GAAACACGCTGGGATCACTT 229
Cs6g07400 F: ACATGGCTGCAAGAGCATAC R: CCATTGAGGTCCACCACTTA 197
orange1.1t00214 F: ACGCTCTGTCCCTCAACAAG R: CCGCTACTGCCTCCTGTATC 171
orange1.1t02319 F: GGGATCTACTGCCGACACTC R: CGACGACGACCTTTGATCTT 245
orange1.1t03603 F: GGACAATGCTGATCCGAAAG R: TCAACCAAGCCTCCTGAAAC 203
CitActin F: CATCCCTCAGCACCTTCC R: CCAACCTTAGCACTTCTCC 191

Table 2

Summary of genome mapping"

样本
Sample
总序列数
Total reads
比对上序列比例
Total mapped reads (%)
比对上唯一位置序列比例
Unique mapped reads (%)
双端比对上序列比例
Reads mapped in paired (%)
C0_1 47713764 90.30 86.99 84.18
C0_2 54696950 88.96 85.64 82.20
C0_3 52284118 89.93 86.59 83.36
ZC_1 55857454 75.22 71.84 69.94
ZC_2 53372222 74.18 70.98 68.37
ZC_3 57202046 74.31 70.99 68.87

Fig. 1

Volcano plot of DEGs of tangerine inoculated with A. alternata tangerine pathotype Each point in the figure represents a gene, and the blue and red dots represent significant differentially expressed genes (DEGs), the red dot indicates that the gene expression level is up-regulated, the blue dot indicates that the gene expression level is down-regulated, the green dot indicates that these genes are not significant difference"

Fig. 2

DEGs GO enrichment"

Fig. 3

WEGO classification of DEGs"

Fig. 4

GO classification of DEGs"

Fig. 5

KEGG pathway analysis of DEGs"

Fig. 6

DEGs involved in plant hormone signal transduction analyzed by KEGG map"

Fig. 7

DEGs involved in transcription factor analyzed by MapMan"

Fig. 8

DEGs involved in secondary metabolite biosynthesis analyzed by MapMan"

Fig. 9

DEGs involved in host-pathogen interaction analyzed by MapMan"

Fig. 10

Identification of DEGs by qRT-PCR"

[1] KOHMOTO K, SCHEFFER R P, WHITESIDE J O . Host-selective toxins from Alternaria citri. Phytopathology, 1979,69(6):667-671.
doi: 10.1094/Phyto-69-667
[2] NISHIMURA S, KOHMOTO K . Host-specific toxins and chemical structures from Alternaria species. Annual Review of Phytopathology, 1983,21:87-116.
doi: 10.1146/annurev.py.21.090183.000511 pmid: 25946338
[3] 李红叶, 梅秀凤, 符雨诗, 黄峰, 陈再廖, 杨小平, 王一光, 黄海华 . 柑橘链格孢褐斑病的发生危害风险和治理对策. 果树学报, 2015,32(5):969-976.
LI H Y, MEI X F, FU Y S, HUANG F, CHEN Z L, YANG X P, WANG Y G, HUANG H H . Alternaria brown spot of citrus: The risk and management strategy. Journal of Fruit Science, 2015,32(5):969-976. (in Chinese)
[4] COBB N . Letters on the diseases of plants- Alternaria of the citrus tribe. Agricultural Gazette of New South Wales, 1903,14:955-986.
[5] WANG X F, LI Z A, TANG K Z, ZHOU C Y, YI L . First report of Alternaria brown spot of citrus caused by Alternaria alternata in Yunnan Province, China. Plant Disease, 2010,94(3):375.
doi: 10.1094/PDIS-94-3-0375B pmid: 30754225
[6] 陈昌胜, 黄峰, 程兰, 冯春刚, 黄涛江, 李红叶 . 红橘褐斑病病原鉴定. 植物病理学报, 2011,41(5):449-455.
CHEN C S, HUANG F, CHENG L, FENG C G, HUANG T J, LI H Y . Identification of the pathogenic fungus causing brown spot on tangerine ( Citrus reticulate cv. Hongjv). Acta Phytopathologica Sinica, 2011,41(5):449-455. (in Chinese)
[7] 黄峰, 朱丽, 侯欣, 李红叶 . 瓯柑褐斑病病原鉴定. 浙江农业科学, 2012(9):1281-1282.
HUANG F, ZHU L, HOU X, LI H Y . Identification of the pathogenic fungus causing brown spot onCitrus suavissima Hort. ex Tanaka. Zhejiang Agricultural Sciences, 2012(9):1281-1282. (in Chinese)
[8] 赵圆, 王玲杰, 王雪峰, 唐科志, 周常勇, 李太盛 . 杂柑褐斑病的病原鉴定. 果树学报, 2014,31(2):292-295.
ZHAO Y, WANG L J, WANG X F, TANG K Z, ZHOU C Y, LI T S . Identification of the pathogenic fungus causing brown spot in two tangerine hybrid varieties. Journal of Fruit Science, 2014,31(2):292-295. (in Chinese)
[9] CHUNG K R . Mitogen-activated protein kinase signaling pathways of the tangerine pathotype of Alternaria alternate. MAP Kinase, 2013,2(4):16-23.
[10] YANG S L, YU P L, CHUNG K R . The glutathione peroxidase- mediated reactive oxygen species resistance, fungicide sensitivity and cell wall construction in the citrus fungal pathogen Alternaria alternate. Environmental Microbiology, 2016,18(3):923-935.
doi: 10.1111/1462-2920.13125 pmid: 26567914
[11] 唐飞艳, 孔向雯, 吕韦玮, 唐科志 . 柑橘褐斑病菌AaSIP2基因生物学功能初步研究. 园艺学报, 2018,45(12):2358-2370.
TANG F Y, KONG X W, LÜ W W, TANG K Z . Preliminary studies on the function of AaSIP2 gene in the tangerine pathotype of Alternaria alternata. Acta Horticulturae Sinica, 2018,45(12):2358-2370. (in Chinese)
[12] MA H J, ZHANG B, GAI Y P, SUN X P, CHUNG K R , LI H Y. Cell-wall-degrading enzymes required for virulence in the host selective toxin-producing necrotroph Alternaria alternata of citrus. Frontiers in Microbiology, 2019, 10: Article 2514.
[13] WANG M S, SUN X P, YU D L, XU J P, CHUNG K R, LI H Y . Genomic and transcriptomic analyses of the tangerine pathotype of Alternaria alternata in response to oxidative stress. Scientific Reports, 2016,6:32437.
doi: 10.1038/srep32437 pmid: 27582273
[14] 王明爽 . 柑橘褐斑病菌比较基因组和转录组分析及柑橘绿霉病菌产孢中心调控途径和高渗甘油途径的功能基因研究[D]. 杭州: 浙江大学, 2016.
WANG M S . Comparative genome and transcriptome analysis of the tangerine pathotype of Alternaria alternate and functional analysis of genes involved in the central regulatory pathway of conidiation and the high osmolarity glycerol pathway in Penicillium digitatum[D]. Hangzhou: Zhejiang University, 2016. (in Chinese)
[15] WU J, ZHANG Y L, ZHANG H Q, HUANG H, FOLTA K M, LU J . Whole genome wide expression profiles of Vitis amurensis grape responding to downy mildew by using Solexa sequencing technology. BMC Plant Biology, 2010,10:234.
doi: 10.1186/1471-2229-10-234 pmid: 21029438
[16] XU L, ZHU L F, TU L L, LIU L L, YUAN D J, LIN L, LONG L, ZHANG X L . Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. Journal of Experimental Botany, 2011,62(15):5607-5621.
doi: 10.1093/jxb/err245
[17] WARD J A, WEBER C A . Comparative RNA-seq for the investigation of resistance to Phytophthora root rot in the red raspberry ‘Latham’. Acta Horticulturae, 2012,946(946):67-72.
[18] WANG Y S, ZHOU L J, YU X Y, STOVER E, LUO F , DUAN Y P. Transcriptome profiling of Huanglongbing ( HLB) tolerant and susceptible Citrus plants reveals the role of basal resistance in HLB tolerance. Frontiers in Plant Science, 2016, 7: Article 933.
[19] 李湘龙, 柏斌, 吴俊, 邓启云, 周波 . 第二代测序技术用于水稻和稻瘟菌互作早期转录组的分析. 遗传, 2012,34(1):102-112.
LI X L, BAI B, WU J, DENG Q Y, ZHOU B . Transcriptome analysis of early interaction between rice and Magnaporthe oryzae using next-generation sequencing technology. Hereditas, 2012,34(1):102-112. (in Chinese)
[20] KIM D, LANGMEAD B, SALZBERG S L . HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 2015,12(4):357-360.
doi: 10.1038/nmeth.3317 pmid: 25751142
[21] MATSUKAWA M, SHIBATA Y, OHTSU M, MIZUTANI A, MORI H, WANG P, OJIKA M, KAWAKITA K, TAKEMOTO D . Nicotiana benthamiana calreticulin 3a is required for the ethylene-mediated production of phytoalexins and disease resistance against oomycete pathoge. Phytophthora infestans. Molecular Plant-Microbe Interactions, 2013,26(8):880-892.
[22] GUNDLACH H , MÜLLER M J, KUTCHAN T M, ZENK M H. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proceedings of the National Academy of Sciences of the United States of America, 1992,89(6):2389-2393.
doi: 10.1073/pnas.89.6.2389 pmid: 11607285
[23] NOJIRI H, SUGIMORI M, YAMANE H, NISHIMURA Y, YAMADA A, SHIBUYA N, KODAMA O, MUROFUSHI N, OMORI T . Involvement of jasmonic acid in elicitor-induced phytoalexin production in suspension-cultured rice cells. Plant Physiology, 1996,110(2):387-392.
doi: 10.1104/pp.110.2.387 pmid: 12226190
[24] VAN WEES S C M, CHANG H S, ZHU T, GLAZEBROOK J . Characterization of the early response of Arabidopsis t. Alternaria brassicicola infection using expression profiling. Plant Physiology, 2003,132(2):606-617.
doi: 10.1104/pp.103.022186 pmid: 12805591
[25] VAHABI K, REICHELT M, SCHOLZ S S, FURCH A C U, MATSUO M, JOHNSON J M, SHERAMETI I, GERSHENZON J , OELMULLER R. Alternaria brassicae induces systemic jasmonate responses in Arabidopsis which travel to neighboring plants via a Piriformsopora indica hyphal network and activate abscisic acid responses. Frontiers in Plant Science, 2018, 9: Article 626.
[26] DESMOND O J, EDGAR C I, MANNERS J M, MACLEAN D J, SCHENK P M, KAZAN K . Methyl jasmonate induced gene expression in wheat delays symptom development by the crown rot pathogen Fusarium pseudograminearum. Physiological and Molecular Plant Pathology, 2006,67:171-179.
doi: 10.1016/j.pmpp.2005.12.007
[27] JAYARAJ J, MUTHUKRISHNAN S, LIANG G H, VELAZHAHAN R . Jasmonic acid and salicylic acid induce accumulation of β-1,3-glucanase and thaumatin-like proteins in wheat and enhance resistance against Stagonospora nodorum. Biologia Plantarum, 2004,48(3):425-430.
doi: 10.1023/B:BIOP.0000041097.03177.2d
[28] PANDEY S P, SOMSSICH I E . The role of WRKY transcription factors in plant immunity. Plant Physiology, 2009,150(4):1648-1655.
doi: 10.1104/pp.109.138990 pmid: 19420325
[29] LI J, BRADER G, PALVA E T . The WRKY70 transcription factor: A node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. The Plant Cell, 2004,16(2):319-331.
doi: 10.1105/tpc.016980 pmid: 14742872
[30] ABUQAMAR S, CHEN X, DHAWAN R, BLUHM B, SALMERON J, LAM S, DIETRICH R A, MENGISTE T . Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response t. Botrytis infection. The Plant Journal, 2006,48(1):28-44.
doi: 10.1111/j.1365-313X.2006.02849.x pmid: 16925600
[31] ZHEN Z Y, QAMAR S A, CHEN Z X, MENGISTE T . Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. The Plant Journal, 2006,48(4):592-605.
doi: 10.1111/j.1365-313X.2006.02901.x pmid: 17059405
[32] ANDREASSON E, JENKINS T, BRODERSEN P, THORGRIMSEN S, PETERSEN N H, ZHU S, QIU J L, MICHEELSEN P, ROCHER A, PETERSEN M, NEWMAN M A, NIELSEN H B, HIRT H, SOMSSICH I, MATTSSON O, MUNDY J . The map kinase substrate MKS1 is a regulator of plant defense responses. The EMBO Journal, 2005,24(14):2579-2589.
doi: 10.1038/sj.emboj.7600737 pmid: 15990873
[33] QIU J L, FIIL B K, PETERSEN K, NIELSEN H B, BOTANGA C J, THORGRIMSEN S, PALMA K , SUAREZ-RODRIGUEZ M C, SANDBECH-CLAUSEN S, LICHOTA J, BRODERSEN P, GRASSER K D, MATTSSON O, GLAZEBROOK J, MUNDY J, PETERSEN M. Arabidopsis map kinase 4 regulates gene expression through transcription factor release in the nucleus. The EMBO Journal, 2008,27(16):2214-2221.
doi: 10.1038/emboj.2008.147 pmid: 18650934
[34] LIU Y, XIN J, LIU L, SONG A, GUAN Z, FANG W, CHEN F . A temporal gene expression map of chrysanthemum leaves infected with Alternaria alternata reveals different stages of defense mechanisms. Horticulture Research, 2020,7:23.
doi: 10.1038/s41438-020-0245-0 pmid: 32140232
[35] FAN Q, SONG A, XIN J, CHEN S, JIANG J, WANG Y, LI X, CHEN F . Cmwrky15 facilitate. Alternaria tenuissima infection of chrysanthemum. PLoS ONE, 2015,10(11):e0143349.
[36] PRE M, ATALLAH M, CHAMPION A, DE VOS M, PIETERSE C M, MEMELINK J . The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiology, 2008,147(3):1347-1357.
doi: 10.1104/pp.108.117523 pmid: 18467450
[37] PIETERSE C M, LEON-REYES A , VAN DER ENT S, VAN WEES S C. Networking by small-molecule hormones in plant immunity. Nature Chemical Biology, 2009,5(5):308-316.
doi: 10.1038/nchembio.164 pmid: 19377457
[38] GUTTERSON N, REUBER T L . Regulation of disease resistance pathways by AP2/ERF transcription factors. Current Opinion in Plant Biology, 2004,7(4):465-471.
doi: 10.1016/j.pbi.2004.04.007
[39] YU W Q, ZHAO R R, SHENG J P, SHEN L . SLERF2 is associated with methyl jasmonate-mediated defense response agains. Botrytis cinerea in tomato fruit. Journal of Agricultural and Food Chemistry, 2018,66(38):9923-9932.
[40] BERROCAL-LOBO M, MOLINA A . Ethylene response factor 1 mediates Arabidopsis resistance to the soilborne fungu. Fusarium oxysporum. Molecular Plant-Microbe Interactions, 2004,17(7):763-770.
doi: 10.1094/MPMI.2004.17.7.763 pmid: 15242170
[41] BERROCAL-LOBO M, MOLINA A, SOLANO R . Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 i. Arabidopsis confers resistance to several necrotrophic fungi. The Plant Journal, 2002,29(1):23-32.
doi: 10.1046/j.1365-313x.2002.01191.x pmid: 12060224
[42] LEON-REYES A, DU Y J, KOORNNEEF A, PROIETTI S, KORBES A P, MEMELINK J, PIETERSE C M, RITSEMA T . Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic acid. Molecular Plant-Microbe Interactions, 2010,23(2):187-197.
doi: 10.1094/MPMI-23-2-0187 pmid: 20064062
[43] FERRER J L, AUSTIN M B, STEWART Jr . C, NOEL J P. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiology and Biochemistry, 2008,46(3):356-370.
doi: 10.1016/j.plaphy.2007.12.009
[44] ZHU L, NI W, LIU S, CAI B, XING H , WANG S. Transcriptomics analysis of apple leaves in response to Alternaria alternata apple pathotype infection. Frontiers in Plant Science, 2017, 8: Article 22.
[45] DORIA M S, GUEDES M S , DE ANDRADE SILVA E M, DE OLIVEIRA T M, PIROVANI C P, KUPPER K C, BASTIANEL M, MICHELI F. Comparative proteomics of two citrus varieties in response to infection by the fungus Alternaria alternata. International Journal of Biological Macromolecules, 2019,136:410-423.
doi: 10.1016/j.ijbiomac.2019.06.069 pmid: 31199975
[46] SUN H H, WANG L, ZHANG B Q, MA J H, HETTENHAUSEN C, CAO G Y, SUN G L, WU J Q, WU J S . Scopoletin is a phytoalexin against Alternaria alternata in wild tobacco dependent on jasmonate signalling. Journal of Experimental Botany, 2014,65(15):4305-4315.
doi: 10.1093/jxb/eru203
[47] THOLL D . Biosynthesis and biological functions of terpenoids in plants. Advances in Biochemical Engineering/Biotechnology, 2015,148:63-106.
doi: 10.1007/10_2014_295 pmid: 25583224
[48] SONG N, MA L, WANG W, SUN H, WANG L, BALDWIN I T, WU J S . An ERF2-like transcription factor regulates production of the defense sesquiterpene capsidiol upon Alternaria alternata infection. Journal of Experimental Botany, 2019,70(20):5895-5908.
[49] CHEN X, CHEN H, YUAN J S, KOLLNER T G, CHEN Y, GUO Y, ZHUANG X, CHEN X, ZHANG Y J, FU J , NEBENFÜHR A, GUO Z, CHEN F. The rice terpene synthase gene OsTPS19 functions as an( S)-limonene synthase in planta, and its overexpression leads to enhanced resistance to the blast fungus Magnaporthe oryzae.Plant Biotechnology Journal 2018, 16(10):1778-1787.
[50] HAMMERBACHER A, COUTINHO T A, GERSHENZON J . Roles of plant volatiles in defense against microbial pathogens and microbial exploitation of volatiles. Plant, Cell and Environment, 2019,42(10):2827-2843.
doi: 10.1111/pce.13602 pmid: 31222757
[51] HUANG H, ULLAH F, ZHOU D X, YI M , ZHAO Y. Mechanisms of ROS regulation of plant development and stress responses. Frontiers in Plant Science, 2019, 10: Article 800.
[52] MARINO D, DUNAND C, PUPPO A, PAULY N . A burst of plant NADPH oxidases. Trends in Plant Science, 2012,17(1):9-15.
doi: 10.1016/j.tplants.2011.10.001
[53] TORRES M A . ROS in biotic interactions. Physiologia Plantarum, 2010,138(4):414-429.
doi: 10.1111/j.1399-3054.2009.01326.x pmid: 20002601
[54] KUŹNIAK E . The ascorbate-gluathione cycle and related redox signals in plant pathogen interactions//ANJUM N A. Ascorbate- Glutathione Pathway and Stress Tolerance in Plants. Springer Science+Business Media B. V, 2010: 115-136.
责任编辑: 岳梅
[1] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[2] YOU JiaLing,LI YouMei,SUN MengHao,XIE ZhaoSen. Analysis Reveals the Differential Expression of Genes Related to Starch Accumulation in Chloroplast of Leaf with Different Ages in Pinot Noir Grape [J]. Scientia Agricultura Sinica, 2022, 55(21): 4265-4278.
[3] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[4] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[5] GUO YongChun, WANG PengJie, JIN Shan, HOU Binghao, WANG ShuYan, ZHAO Feng, YE NaiXing. Identification of Co-Expression Gene Related to Tea Plant Response to Glyphosate Based on WGCNA [J]. Scientia Agricultura Sinica, 2022, 55(1): 152-166.
[6] HuaZhi CHEN,YuanChan FAN,HaiBin JIANG,Jie WANG,XiaoXue FAN,ZhiWei ZHU,Qi LONG,ZongBing CAI,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Improvement of Nosema ceranae Genome Annotation Based on Nanopore Full-Length Transcriptome Data [J]. Scientia Agricultura Sinica, 2021, 54(6): 1288-1300.
[7] DU Yu,ZHU ZhiWei,WANG Jie,WANG XiuNa,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,CHEN HuaZhi,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Construction and Annotation of Ascosphaera apis Full-Length Transcriptome Utilizing Nanopore Third-Generation Long-Read Sequencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(4): 864-876.
[8] ZHAO WeiSong,GUO QingGang,DONG LiHong,WANG PeiPei,SU ZhenHe,ZHANG XiaoYun,LU XiuYun,LI SheZeng,MA Ping. Transcriptome and Proteome Analysis of Bacillus subtilis NCD-2 Response to L-proline from Cotton Root Exudates [J]. Scientia Agricultura Sinica, 2021, 54(21): 4585-4600.
[9] LIU Lian,TANG ZhiPeng,LI FeiFei,XIONG Jiang,LÜ BiWen,MA XiaoChuan,TANG ChaoLan,LI ZeHang,ZHOU Tie,SHENG Ling,LU XiaoPeng. Fruit Quality in Storage, Storability and Peel Transcriptome Analysis of Rong’an Kumquat, Huapi Kumquat and Cuimi Kumquat [J]. Scientia Agricultura Sinica, 2021, 54(20): 4421-4433.
[10] LIN Bing,CHEN YiQuan,ZHONG HuaiQin,YE XiuXian,FAN RongHui. Analysis of Key Genes About Flower Color Variation in Iris hollandica [J]. Scientia Agricultura Sinica, 2021, 54(12): 2644-2652.
[11] QIN QiuHong,HE XuJiang,JIANG WuJun,WANG ZiLong,ZENG ZhiJiang. The Capping Pheromone Contents and Putative Biosynthetic Pathways in Larvae of Honeybees Apis cernana [J]. Scientia Agricultura Sinica, 2021, 54(11): 2464-2475.
[12] LONG Qin,DU MeiXia,LONG JunHong,HE YongRui,ZOU XiuPing,CHEN ShanChun. Effect of Transcription Factor CsWRKY61 on Citrus Bacterial Canker Resistance [J]. Scientia Agricultura Sinica, 2020, 53(8): 1556-1571.
[13] CaiLing TENG,Xi ZHONG,HaoDi WU,Yan HU,ChangYong ZHOU,XueFeng WANG. Biologic and Transcriptomic Analysis of Citrus hystrix Responses to ‘Candidatus Liberibacter asiaticus’ at Different Infection Stages [J]. Scientia Agricultura Sinica, 2020, 53(7): 1368-1380.
[14] KunNeng ZHOU,JiaFa XIA,Peng YUN,YuanLei WANG,TingChen MA,CaiJuan ZHANG,ZeFu LI. Transcriptome Research of Erect and Short Panicle Mutant esp in Rice [J]. Scientia Agricultura Sinica, 2020, 53(6): 1081-1094.
[15] Dan HE,DongBo XIE,JiaoRui ZHANG,SongLin HE,ChaoMei LI,YunBing ZHENG,Zheng WANG,YiPing LIU,Yan LI,JiuXing LU. Selected Related Genes about Incompatibility of Distant Hybridization in Paeonia by iTRAQ Analysis and Transcriptome [J]. Scientia Agricultura Sinica, 2020, 53(6): 1234-1246.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!