Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (22): 4561-6130.doi: 10.3864/j.issn.0578-1752.2020.22.004

• TILLAGE & CULTIVATION?PHYSIOLOGY & BIOCHEMISTRY?AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Critical Phosphorus Concentration Dilution Model and Phosphorus Nutrition Diagnosis in Two Cotton Cultivars with Different Phosphorus Sensitivity

PANG BaoGang,CAO Nan,ZHOU ZhiGuo,ZHAO WenQing()   

  1. College of Agriculture, Nanjing Agricultural University/Key Laboratory of Crop Ecophysiology and Management, Ministry of Agriculture/Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Nanjing 210095
  • Received:2020-02-10 Accepted:2020-05-05 Online:2020-11-16 Published:2020-11-28
  • Contact: WenQing ZHAO E-mail:zhaowenqing@njau.edu.cn

Abstract:

【Objective】In order to provide a theoretical basis for optimum application of phosphorus fertilizer in cotton, the critical phosphorus concentration (CPC) dilution curve of two cotton cultivars with different phosphorus sensitivity and calculated phosphorus nutrition index (PNI) were established and compared. 【Method】In 2017 and 2018, the field experiments with five phosphorus (P) levels (0, 50, 100, 150, and 200 kg P2O5·hm -2) were conducted by `using two cotton cultivars with different phosphorus sensitivity, Lu 54 and Yuzaomian 9110, at Dafeng, Jiangsu province.【Result】Phosphorus application had no significant effect on cotton boll weight, but the application of 150 and 200 kg P2O5·hm -2 significantly increased cotton boll number and seedcotton yield. With phosphorus application increasing, cotton boll number and seedcotton yield of phosphorus sensitive cotton variety (Lu 54) were increased by 16.0%-37.9% and 16.6%-44.9%, respectively, which was higher than the increase of Yuzaomian 9110. Cotton biomass increased while phosphorus concentration decreased as cotton plant growing under all P treatments. At the same sampling day, cotton shoot biomass and phosphorus concentration raised with the phosphorus application increasing and peaked at 150 and 200 kg P2O5·hm -2. Based on the relationship between the shoot biomass and phosphorus concentration in 2017, the critical phosphorus dilution curve models for the two varieties were established (Lu 54: Pc=0.784W -0.221; Yuzaomian 9110: Pc=0.774W -0.198). The RMSE of the two dilution curve models were 0.1296 and 0.1383, and the n-RMSE were 17.8504% and 18.5447%, respectively, indicating that the model was stability, and the stability of Lu 54 was slightly higher than that of Yuzaomian 9110. Compared with the model parameters of Yuzaomian 9110, parameter a and b of Lu 54 was increased by 1.29% and 11.62%, respectively. PNI increased and then decreased with the growth process, and augmented with the increase of phosphorus application at the same sampling day. PNI was also positively correlated with relative aboveground biomass. 【Conclusion】 Phosphorus application had no significant effects on cotton boll weight, but significantly increased boll number, and consequently increased seedcotton yield. Phosphorus-sensitive variety Lu 54 had a faster decline in phosphorus concentration per unit of dry matter accumulation than Yuzaomian 9110. CPC and PNI of two cotton varieties could diagnose and evaluate the phosphorus nutrition status of cotton plants. According to the results of seedcotton yield and PNI, the application of 150 kg·hm -2 phosphorus fertilizer was suitable for cotton in this region.

Key words: cotton, phosphorus rates, phosphorus concentration, critical phosphorus dilution curve, phosphorus nutrition index

Table 1

Effects of phosphorus application rate on cotton yield and yield components"

品种
Variety
施磷量
Phosphorus application rate
(kg P2O5·hm-2)
2017 2018
铃数
Boll number
(×104·hm-2)
铃重
Seedcotton
weight per boll (g)
籽棉产量
Seedcotton
yield (kg·hm-2)
铃数
Boll number
(×104·hm-2)
铃重
Seedcotton
weight per boll (g)
籽棉产量
Seedcotton
yield (kg·hm-2)
豫早棉9110
Yuzaomian 9110
0 87.1±1.0b 4.0±0.0a 3459.5±33.6c 92.6±0.9d 4.2±0.1a 3869.3±55.4d
50 93.5±1.0b 4.0±0.0a 3760.8±47.2b 98.4±1.3c 4.2±0.2a 4124.9±65.9c
100 110.6±7.2a 4.0±0.1a 4459.0±79.8a 109.6±0.9b 4.3±0.0a 4681.6±58.6b
150 115.2±4.0a 4.0±0.1a 4643.1±71.9a 113.9±2.8a 4.3±0.0a 4897.2±87.4a
200 115.5±1.6a 4.1±0.1a 4691.7±53.7a 116.3±3.3a 4.3±0.0a 4991.9±93.5a
鲁54
Lu 54
0 90.0±2.1d 3.7±0.1a 3366.1±59.9d 91.4±1.5d 3.9±0.1a 3538.1±49.5d
50 104.6±3.8c 3.8±0.1a 3924.9±75.6c 108.9±2.2c 3.9±0.2a 4257.7±58.5c
100 115.5±4.0b 3.8±0.0a 4342.0±70.0b 120.3±2.9b 4.0±0.1a 4762.3±79.1b
150 122.7±1.1a 3.8±0.0a 4686.3±84.4a 127.4±1.9a 4.0±0.0a 5107.6±72.4a
200 123.5±2.5a 3.8±0.1a 4705.7±47.9a 126.0±1.6a 4.0±0.0a 5127.9±81.2a
方差分析ANOVA
品种Variety (V) ** ** NS ** ** NS
施磷量P rate ** NS ** ** NS **
品种×施磷量V×P rate ** NS ** ** NS **

Fig. 1

Effects of phosphorus application on the dynamics of aboveground dry matter SS, PSS, PFS, PBS and BOS represented cotton seedling stage, peak squaring stage, peak flowering stage, peak boll setting stage and boll opening stage, respectively. The same as below"

Fig. 2

Effects of phosphorus application on the dynamics changes of aboveground biomass phosphorus content in 2017"

Table 2

The parameters of phosphorus dilution model"

品种
Variety
磷稀释模型
Phosphorus dilution model
a b R2
鲁54
Lu 54
Pmin 0.599 0.139 0.945**
Pmax 0.798 0.217 0.852*
Pc 0.784 0.221 0.858*
豫早棉9110 Pmin 0.584 0.320 0.978**
Yuzaomian 9110 Pmax 0.782 0.201 0.838*
Pc 0.774 0.198 0.845*

Fig. 3

The phosphorus dilution model of cotton aboveground biomass in 2017"

Table 3

Observed and simulated values of critical phosphorus concentrations in cotton in 2018"

生育期
Stage
鲁54 Lu 54 豫早棉9110 Yuzaomian 9110
测定值
Observed value
模拟值
Simulated value
误差
Error
测定值
Observed value
模拟值
Simulated value
误差
Error
苗期 Seedling stage 1.3500 1.4292 0.0560 1.2800 1.3045 0.0173
盛蕾期Peak squaring stage 0.9200 0.7979 0.0863 0.9300 0.7658 0.1161
盛花期Peak flowering stage 0.5800 0.5262 0.0381 0.6265 0.5833 0.0305
盛铃期Peak boll setting stage 0.4000 0.4363 0.0257 0.4734 0.4853 0.0084
吐絮期Boll opening stage 0.3800 0.4167 0.0259 0.4181 0.4473 0.0207
RMSE 0.1296 0.1383
n-RMSE 17.8504% 18.5447%

Fig. 4

Changes of phosphorus nutrition indices (PNI) of cotton"

Fig. 5

Relationship between phosphorus nutrition index (PNI) and relative shoot biomass (RDW) of cotton n=10, R20.05 = 0.399, R20.01 = 0.586. *, significantly different at P<0.05; **, significantly different at P<0.01"

[1] 张炎, 毛端明, 王讲利, 付明鑫, 李磐 . 新疆棉花平衡施肥技术的发展现状. 中国土壤与肥料, 2003(4):7-10, 23.
ZHANG Y, MAO D M, WANG J L, FU M X, LI P . Developing status of balanced fertilization technology of cotton in Xinjiang. Soils and Fertilizers Science in China, 2003(4):7-10, 23. (in Chinese)
[2] VANCE C P, UHDE-STONE C, ALLAN D L . Phosphorus acquisition and use: Critical adaptation by plants for securing a non-renewable resource. New Phytologist, 2003,157:423-447.
doi: 10.1046/j.1469-8137.2003.00695.x
[3] STIAN G, ALEJANDRA Z F, GASTON M, PABLO C, ALEYSIA K, ALEX V . Photosynthetic metabolism during phosphate limitation in a legume from the Mediterranean-type Fynbos ecosystem. Journal of Plant Physiology, 2019,243:153051.
doi: 10.1016/j.jplph.2019.153051 pmid: 31639535
[4] DODDS W K, BOUSKA W W, EITZMANN J L, PILGER T J, PITTS K L, PILEY A J, SCHLOESSER J T, THORNBRUGH D J . Eutrophication of us freshwaters: Analysis of potential economic damages. Environmental Science and Technology, 2009,43(1):12-19.
doi: 10.1021/es801217q pmid: 19209578
[5] LEMERCIER B, GAUDIN L, WALTER C, AUROUSSEAU P, ARROUAYS D, SCHVARTZ C, SABY N P A, FOLLAIN S, ABRASSART J,. Soil phosphorus monitoring at the regional level by means of a soil test database. Soil Use and Management, 2008,24(2):131-138.
doi: 10.1111/j.1475-2743.2008.00146.x
[6] RAUT P . Determining a critical phosphorus dilution curve for spring wheat[D]. Norway: Norwegian University of Life Sciences, As, 2017.
[7] WU Y, LI Y, LI Y, MA Y, ZHAO Y, WANG Y, CHI H, CHEN M, DING Y, GUO X, MIN L, ZHANG X . Proteomic analysis reveals that sugar and fatty acid metabolisms play a central role in sterility of the male-sterile line 1355A of cotton. Journal of Biological Chemistry, 2019,294(17):7057-7067.
doi: 10.1074/jbc.RA118.006878
[8] 张旺锋, 李蒙春, 勾玲, 杜亮 . 北疆高产棉花养分吸收特性的研究. 棉花学报, 1998, 10(2): 33-37, 39-40.
ZHANG W F, LI M C, GOU L, DU L. Study on the nutrient absorbtion aharacters of cotton with higher productivity in north Xinjiang. Cotton Science, 1998, 10(2): 33-37, 39-40. (in Chinese)
[9] 刘艳飞 . 中国磷矿供需趋势研究[D]. 北京: 中国地质大学, 2016.
LIU Y F . Study on supply and demand trend of phosphate rock in China[D]. Beijing: China University of Geosciences, 2016. (in Chinese)
[10] 杜会英, 冯洁, 郭海刚, 王风, 张克强 . 麦季牛场肥水灌溉对冬小麦-夏玉米产量与磷吸收利用及土壤剖面分布的影响. 应用生态学报, 2015,26(8):2379-2386.
DU H Y, FENG J, GUO H G, WANG F, ZHANG K Q . Effects of irrigation using dairy effluent on grain yield, phosphorus utilization and distribution in soil profile in winter wheat-summer maize rotation system. Chinese Journal of Applied Ecology, 2015,26(8):2379-2386. (in Chinese)
[11] 张学昕, 刘淑英, 王平 . 施磷量对棉花磷素吸收利用和产量的影响. 农业科技与信息, 2019(10):36-41.
ZHANG X X, LIU S Y, WANG P . Effects of phosphorus application on phosphorus uptake, utilization and yield of cotton. Agricultural Technology and Information, 2019(10):36-41. (in Chinese)
[12] SALEEM M F, CHEEMA M A, BILAL M F, ANJUM S A, SHAHID M Q, KHURSHID I . Fiber quality of cotton cultivars under different phosphorus levels. The Journal of Animal and Plant Sciences, 2011,21(1):26-30.
[13] 孙淼, 李鹏程, 郑苍松, 刘帅, 刘爱忠, 韩慧敏, 刘敬然, 董合林 . 低磷胁迫对不同基因型棉花苗期根系形态及生理特性的影响. 棉花学报, 2018,30(1):45-52.
doi: 10.11963/1002-7807.smdhl.20180103
SUN M, LI P C, ZHENG C S, LIU S, LIU A Z, HAN H M, LIU J R, DONG H Z . Effects of low phosphorus stress on root morphology and physiological characteristics of different cotton genotypes at the seedling stage. Cotton Science, 2018,30(1):45-52. (in Chinese)
doi: 10.11963/1002-7807.smdhl.20180103
[14] 戴婷婷, 盛建东, 陈波浪 . 磷肥不同用量对棉花干物质及氮磷钾吸收分配的影响. 棉花学报, 2010,22(5):466-470.
doi: 1002-7807(2010)05-0466-05
DAI T T, SHENG J D, CHEN B L . Effect of different phosphorus fertilizer rate on dry matter accumulation and the absorption and distribution of nitrogen, phosphorous, potassium of cotton. Cotton Science, 2010,22(5):466-470. (in Chinese)
doi: 1002-7807(2010)05-0466-05
[15] 唐保善, 杨安民, 邢宏宜, 贺道华 . 磷钾肥对棉花产量构成因素及产量的影响. 西北农业学报, 2016,25(11):1629-1635.
TANG B S, YANG A M, XING H Y, HE D H . Effects of P, K fertilizers on cotton yield and yield component factors. Acta Agriculture Boreali-Occidentalis Sinica, 2016, 25(11):1629-1635. (in Chinese)
[16] 胡国智, 张炎, 胡伟, 李青军, 汤明尧, 齐桂红 . 施磷对棉花磷素吸收、利用和产量的影响. 中国土壤与肥料, 2010(4):27-31.
HU G Z, ZHANG Y, HU W, LI Q J, TANG M Y, QI G H . Effects of phosphate fertilizer application on P absorption, utilization and yield of cotton.Soils and Fertilizers Science in China, 2010(4):27-31. (in Chinese)
[17] 胡国智 . 磷肥运筹对棉花生长发育、磷素吸收及产量的影响研究[D]. 新疆: 新疆农业大学, 2010.
HU G Z . The effect of phosphate fertilizer operations on the cotton growth phosphorus uptake and yield[D]. Xinjiang: Xinjiang Agricultural University, 2010. (in Chinese)
[18] 杨鸿杰, 王琪贞 . 盐碱地棉花经济施用磷肥的研究. 中国棉花, 1984(3):39-40.
YANG H J, WANG Q Z . Study on economical application of phosphate fertilizer to cotton in saline alkali soil.China Cotton, 1984(3):39-40. (in Chinese)
[19] 王海洋, 陈建平, 张萼, 蔡立旺, 戚永奎, 施庆华 . 氮磷钾肥施用量及配比对棉花产量的影响. 江西棉花, 2011,33(4):25-28.
WANG H Y, CHEN J P, ZHANG E, CAI L W, QI Y K, SHI Q H . Effect of nitrogen, phosphorus and potassium fertilizer application rate and proportion on cotton yield. Jiangxi Cottons, 2011,33(4):25-28. (in Chinese)
[20] 龚江, 王桂花, 谢海霞, 吕新 . 膜下滴灌氮、磷、钾耦合对杂交棉产量的影响. 新疆农业科学, 2010,47(9):1878-1881.
GONG J, WANG G H, XIE H X, LÜ X . Effect of nitrogen, phosphorus, kalium coupling on the yield of hybrid cotton under film drip irrigation. Xinjiang Agricultural Sciences, 2010,47(9):1878-1881. (in Chinese)
[21] 姚银坤, 张炎, 胡伟, 高媛, 祁永春, 曾雄, 文启凯 . 施磷对长绒棉干物质积累、分配比例和产量的影响. 中国土壤与肥料, 2008(5):36-40.
YAO Y K, ZHANG Y, HU W, GAO Y, QI Y C, ZENG X, WEN Q K . Effects of phosphorus application on biomass accumulation, distribution rate and yield of sea island cotton.Soils and Fertilizers Science in China, 2008(5):36-40. (in Chinese)
[22] BELANGER G, ZIADI N . Phosphorus and nitrogen relationships during spring growth of an aging timothy sward. Agronomy Journal, 2008,100:1757-1762.
doi: 10.2134/agronj2008.0132
[23] ZAMUNER E C, LLOVERAS J, ECHEVERRIA H E . Use of a critical phosphorus dilution curve to improve potato crop nutritional management. American Journal of Potato Research, 2016,93:392-403.
doi: 10.1007/s12230-016-9514-8
[24] BELANGER G, ZIADI N, PAGEAU D, GRANT C, HOGNASBACKA M, VIRKAJARVI P, HU Z, LU J, LAFONG J, NYIRANEZA J . A model of critical phosphorus concentration in the shoot biomass of wheat. Agronomy Journal, 2015,107:963-970.
doi: 10.2134/agronj14.0451
[25] GOMES M I, MAGNITSKIY S, RODRIGUEZ L E . Critical dilution curves for nitrogen, phosphorus, and potassium in potato group andigenum. Soil Fertility and Crop Nutrition, 2019,111:419-427.
[26] LI H J, WANG J W, SAIF A, BABAR I, ZHANG H, WANG S S, CHEN B L, ZHOU Z G . Agronomic traits at the seedling stage, yield and fiber quality in two cotton ( Gossypium hirsutum L.) cultivars in response to phosphorus deficiency. Soil Science and Plant Nutrition, 2019,66(2):308-316.
doi: 10.1080/00380768.2019.1709543
[27] JUSTES E, MARY B, MEYNARD J M, MACHET J M, THELIER-HUCHE L . Determination of a critical nitrogen dilution curve for winter wheat crops. Annals of Botany, 1994,74(4):397-407.
doi: 10.1006/anbo.1994.1133
[28] XUE X, WANG J, WANG Z, GUO W, ZHOU Z . Determination of a critical dilution curve for nitrogen concentration in cotton. Journal of Plant Nutrition and Soil Science, 2007,170:811-817.
doi: 10.1002/jpln.v170:6
[29] WILLMOTT C J . Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society, 1982,63(11):1309-1369.
doi: 10.1175/1520-0477(1982)063&lt;1309:SCOTEO&gt;2.0.CO;2
[30] 刘其 . 基于过程的滴灌春小麦临界氮需求量定量化模拟模型[D]. 新疆: 石河子大学, 2013.
LIU Q . Process-based simulation model for the critical nitrogen demand of drip irrigation spring wheat[D]. Xinjiang: Shihezi University, 2013. (in Chinese)
[31] YANG J, GREENWOOD D J, ROWELL D L, WADSWORTH G A, BURNS I G . Statistical methods for evaluating a crop nitrogen simulation model. Agricultural Systems, 2000,64(1):37-53.
doi: 10.1016/S0308-521X(00)00010-X
[32] JAMIESON P D, PORTER J R, WILSON D R . A test of computer simulation model Arc-wheat1 on wheat crops grown in New Zealand. Field Crops Research, 1991,27(4):337-350.
doi: 10.1016/0378-4290(91)90040-3
[33] 安志超, 黄玉芳, 汪洋, 赵亚南, 岳松华, 师海斌, 叶优良 . 不同氮效率夏玉米临界氮浓度稀释模型与氮营养诊断. 植物营养与肥料学报, 2019,25(1):123-133.
AN Z C, HUANG Y F, WANG Y, ZHAO Y N, YUE S H, SHI H B, YE Y L . Critical nitrogen concentration dilution model and nitrogen nutrition diagnosis in summer maize with different nitrogen efficiencies. Journal of Plant Nutrition and Fertilizers, 2019,25(1):123-133. (in Chinese)
[34] 杨明花, 姜益娟, 聂万林, 郑明德 . 施磷量对膜下滴灌杂交棉氮磷钾养分吸收利用及产量的影响. 干旱地区农业研究, 2010,28(5):75-78.
YANG M H, JIANG Y J, NIE W L, ZHENG M D . Effect of phosphorus rates on nitrogen, phosphorus and potassium uptake and utilization and yield of hybrid cotton with drip irrigation under membrane. Agricultural Research in the Arid Areas, 2010,28(5):75-78. (in Chinese)
35 责任编辑: 杨鑫浩
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[3] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[4] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[5] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[6] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[7] WANG Ning,FENG KeYun,NAN HongYu,ZHANG TongHui. Effects of Combined Application of Organic Fertilizer and Chemical Fertilizer on Root Characteristics and Yield of Cotton Under Different Water Conditions [J]. Scientia Agricultura Sinica, 2022, 55(11): 2187-2201.
[8] QIN HongDe, FENG ChangHui, ZHANG YouChang, BIE Shu, ZHANG JiaoHai, XIA SongBo, WANG XiaoGang, WANG QiongShan, LAN JiaYang, CHEN QuanQiu, JIAO ChunHai. F1 Performance Prediction of Upland Cotton Based on Partial NCII Design [J]. Scientia Agricultura Sinica, 2021, 54(8): 1590-1598.
[9] TongYu HOU,TingLi HAO,HaiJiang WANG,Ze ZHANG,Xin LÜ. Advances in Cotton Growth and Development Modelling and Its Applications in China [J]. Scientia Agricultura Sinica, 2021, 54(6): 1112-1126.
[10] LOU ShanWei,DONG HeZhong,TIAN XiaoLi,TIAN LiWen. The " Short, Dense and Early" Cultivation of Cotton in Xinjiang: History, Current Situation and Prospect [J]. Scientia Agricultura Sinica, 2021, 54(4): 720-732.
[11] LI Qing,YU HaiPeng,ZHANG ZiHao,SUN ZhengWen,ZHANG Yan,ZHANG DongMei,WANG XingFen,MA ZhiYing,YAN YuanYuan. Optimization of Cotton Mesophyll Protoplast Transient Expression System [J]. Scientia Agricultura Sinica, 2021, 54(21): 4514-4524.
[12] NIE JunJun,DAI JianLong,DU MingWei,ZHANG YanJun,TIAN XiaoLi,LI ZhaoHu,DONG HeZhong. New Development of Modern Cotton Farming Theory and Technology in China - Concentrated Maturation Cultivation of Cotton [J]. Scientia Agricultura Sinica, 2021, 54(20): 4286-4298.
[13] ZHOU Meng,HAN XiaoXu,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Remote Sensing Estimation of Cotton Biomass Based on Parametric and Nonparametric Methods by Using Hyperspectral Reflectance [J]. Scientia Agricultura Sinica, 2021, 54(20): 4299-4311.
[14] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[15] ZHOU JingLong,FENG ZiLi,WEI Feng,ZHAO LiHong,ZHANG YaLin,ZHOU Yi,FENG HongJie,ZHU HeQin. Biocontrol Effect and Mechanism of Cotton Endophytic Bacterium YUPP-10 and Its Secretory Protein CGTase Against Fusarium Wilt in Cotton [J]. Scientia Agricultura Sinica, 2021, 54(17): 3691-3701.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!