Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (19): 3988-3995.doi: 10.3864/j.issn.0578-1752.2020.19.012

• PLANT PROTECTION • Previous Articles     Next Articles

The Persistent Infection and Detection of Cnaphalocrocis medinalis Granulovirus in Cnaphalocrocis medinalis

HAN GuangJie(),LIU Qin,LI ChuanMing,QI JianHang,XU Bin,LU YuRong,XU Jian()   

  1. Jiangsu Lixiahe District Institute of Agricultural Sciences/National Agricultural Experimental Station for Agricultural Microbiology, Yangzhou, Yangzhou 225007, Jiangsu
  • Received:2020-02-15 Accepted:2020-03-16 Online:2020-10-01 Published:2020-10-19
  • Contact: Jian XU E-mail:hanguangjie177@163.com;bio-xj@163.com

Abstract:

【Objective】Cnaphalocrocis medinalis granulovirus (CnmeGV) is a specific pathogenic microorganism of Cnaphalocrocis medinalis. Persistent infection of baculovirus plays an important role in pest population control. The objective of this study is to construct the detection method of persistent infection with CnmeGV, analyze the control effect of viral persistent infection on pest population, and to provide a theoretical basis for the application of viral pesticides.【Method】The largely diverged regions were selected to design CnmeGV nested PCR primers based on multiple comparisons of granulin gene sequences of granulovirus. The sensitivity and reliability of probes were further evaluated. The maize leaves were used to feed C. medinalis in the laboratory. The 4th instar larvae were singled out, and then fed with maize leaves soaked by CnmeGV with a sublethal concentration of 106 OB/mL. The infected C. medinalis were reared to adult stage, and the emergence rate was counted. After treating the insect body surface with 10% formaldehyde, the carrying CnmeGV rates of larvae, pupae, pupal molts and adults in persistent infection population of C. medinalis were analyzed using these probes. The prevalence rate of larvae and carrying rate of soil in the next year after using CnmeGV were also detected.【Result】The probes of CnmeGV nested PCR were constructed including the outer primer Cm-gran1 and the inner primer Cm-gran2. The sensitivity of nested PCR was 0.85 fg·μL -1 genomic DNA, which was 1 000 times higher than that of the conventional PCR. The probes were highly reliable, and no target fragment was detected in the food sources of C. medinalis (rice and maize), other polyhedrosis and granulosis viruses. The target fragments of CnmeGV were not detected in larvae after treated with 10% formaldehyde for 10, 30 min and 16 h, respectively. However, the pupa of C. medinalis could not emerge after 16 h of treatment. The detection rate of CnmeGV was 100% in the larvae of infected population treated with sublethal concentration of CnmeGV for 96 h. After pupation and emergence, the detection rates of pupae, pupal molts and adults were 87.5%, 83.3% and 16.7%, respectively. The detection rate of CnmeGV had no significant change from larva to pupa stage (χ 2=3.2, P=0.234) by Chi-square test. However, the detection rate of CnmeGV decreased significantly (χ 2=32.356, P=0) from pupa to adult stage, indicating that most of the viruses were excreted from the body with pupal molt during metamorphosis. The emergence rate of adult in infected population (30.8%) was significantly lower than that of the control (93.4%). Field tests showed that the prevalence rate of C. medinalis larvae in the field at one year following CnmeGV treatment was 4%, and the rate of soil carrying CnmeGV was 58%, suggesting that CnmeGV could survive in the soil and continue to infect C. medinalis through horizontal transmission.【Conclusion】The sensitivity of constructed nested PCR probes is high and can be used for the detection of CnmeGV persistent infection. Persistent infection of CnmeGV can effectively control the population development of C. medinalis, and adult metamorphosis plays an important role in removing pathogens.

Key words: Cnaphalocrocis medinalis, granulovirus, persistent infection, latent infection, molecular marker, horizontal transmission, insect metamorphosis

Table 1

The primers designed in this study"

引物
Primer
序列
Sequence (5′→3′)
产物大小
Product size (bp)
Cm-gran1 F: TGATGCCGAGTATGAACCG 541
R: TTCCTCAACCTCTCCCGTAG
Cm-gran2 F: CGCATCACTCTGTTCAAGG 422
R: ACGAGAGGACGGTAGAAGTAG

Fig. 1

The molecular marker based on granulin of C. medinalis CnmeGV: KP658210.1:1-750; AdorGV: AF547984.1:1-747; ChocGV: NC_008168.1:1-747; ClanGV: HQ116624.1:1-747; CrleGV: AY229987.1:1-747; EpapGV: JN408834.1:1-747; HearGV: EU255577.1:1-747; PiraGV: AY428513.1:1-744"

Fig. 2

The sensitivity of granulin molecular marker"

Fig. 3

Detection of CnmeGV on the surface of pupa treated with different ways"

Table 2

Statistics analysis of the positive rate of CnmeGV at different stages of C. medinalis"

变态
Metamorphosis
样本类型
Sample
总样本数
Total number
阳性样本数
Number of positives
检出率
Positive rate (%)
卡方值
χ2 value
P
P value
幼虫-蛹Larva-pupa 幼虫Larva 24 24 100 3.2 0.234
蛹Pupa 24 21 87.5
蛹-成虫Pupa-adult 蛹Pupa 24 21 87.5 32.356 0
蛹蜕Pupal molt 24 20 83.3
成虫Adult 24 4 16.7

Fig. 4

The emergence rate of infected and healthy populations of C. medinalis"

Fig. 5

Characterization (A) and prevalence rate (B) of C. medinalis in the field"

Fig. 6

The rate of soil carrying CnmeGV in the field at one year following CnmeGV treatment"

[1] 陆明红, 刘万才, 胡高, 翟保平, TUAN H A, KHANH D H. 中越水稻迁飞性害虫稻飞虱、稻纵卷叶螟发生关系分析. 植物保护, 2018, 44(3): 31-36, 60.
LU M H, LIU W C, HU G, ZHAI B P, TUAN H A, KHANH D H. Analysis of the relationships of rice planthopper and rice leaf folder occurrence between China and Vietnam. Plant Protection, 2018, 44(3): 31-36, 60. (in Chinese)
[2] 徐健, 李传明, 韩光杰, 徐彬, 祁建杭, 孙俊, 刘琴. 颗粒体病毒(CnmeGV)对稻纵卷叶螟的感染及害虫种群增长的影响. 江苏农业学报, 2018, 34(1): 29-33.
XU J, LI C M, HAN G J, XU B, QI J H, SUN J, LIU Q. The effect of Cnaphalocrocis medinalis granulovirus (CnmeGV) on larva infection and population regulation of rice leaffolder. Jiangsu Journal of Agricultural Sciences, 2018, 34(1): 29-33. (in Chinese)
[3] ZHOU M Z, SUN X L, SUN X C, VLAK J M, HU Z H, VAN DER WERF W. Horizontal and vertical transmission of wild-type and recombinant Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus. Journal of Invertebrate Pathology, 2005, 89(2): 165-175.
doi: 10.1016/j.jip.2005.03.005 pmid: 15893760
[4] WILLIAMS T, VIRTO C, MURILLO R, CABALLERO P. Covert infection of insects by baculoviruses. Frontiers in Microbiology, 2017, 8: 1337.
doi: 10.3389/fmicb.2017.01337 pmid: 28769903
[5] 翁庆北, 庞义. 杆状病毒在昆虫中的持续感染. 环境昆虫学报, 2010, 32(1): 90-95.
WENG Q B, PANG Y. Persistent infection of baculoviruses in insects. Journal of Environmental Entomology, 2010, 32(1): 90-95. (in Chinese)
[6] CORY J, MYERS J H. The ecology and evolution of insect baculoviruses. Annual Review of Ecology, Evolution, and Systematics, 2003, 34: 239-272.
doi: 10.1146/annurev.ecolsys.34.011802.132402
[7] 蒋杰贤, 胡颂平, 季香云, 刘劲军, 袁永达. 甜菜夜蛾核型多角体病毒对宿主种群的控制作用. 植物保护学报, 2004, 31(4): 383-389.
JIANG J X, HU S P, JI X Y, LIU J J, YUAN Y D. The control effect of Spodoptera exigua nuclear polyhedrosis virus on its host population. Acta Phytophylacica Sinica, 2004, 31(4): 383-389. (in Chinese)
[8] IL’INYKH A V, POLENOGOVA O V. Demonstration of the remote effect of baculovirus vertical transmission, with gypsy moth Lymantria dispar L.(Lepidoptera, Lymantriidae) as an example. Zhurnal Obshchei Biologii, 2012, 73(5): 389-395.
pmid: 23136793
[9] LAREM A, BEN TIBA S, FRITSCH E, UNDORF-SPAHN K, WENNMANN J T, JEHLE J A. Effects of a covert infection with Phthorimaea operculella granulovirus in insect populations of Phthorimaea operculella. Viruses, 2019, 11(4): 337.
doi: 10.3390/v11040337
[10] 曲良建, 张永安, 王玉珠, 王登元. PCR法证实棉铃虫核型多角体病毒对棉铃虫经卵和蛹的垂直传播. 中国生物防治学报, 2005, 21(1): 45-48.
QU L J, ZHANG Y A, WANG Y Z, WANG D Y. Identification of the vertical transmission of HaNPV in Helicoverpa armigera by PCR assay. Chinese Journal of Biological Control, 2005, 21(1): 45-48. (in Chinese)
[11] 张彦. 家蚕核型多角体病毒在家蚕中的垂直传播及检测技术研究[D]. 合肥: 安徽农业大学, 2014.
ZHANG Y. Study on vertical transmission and detection technique of BmNPV in the silkworm, Bombyx mori L.[D]. Hefei: Anhui Agricultural University, 2014. (in Chinese)
[12] HAN G J, XU J, LIU Q, LI C M, XU H X, LU Z X. Genome of Cnaphalocrocis medinalis granulovirus, the first Crambidae-infecting betabaculovirus isolated from rice leaffolder to sequenced. PLoS ONE, 2016, 11(2): e0147882.
doi: 10.1371/journal.pone.0147882 pmid: 26848752
[13] 王艳, 刘琴, 徐健, 李传明, 韩光杰, 徐彬, 祁建杭, 孙俊. 颗粒体病毒(CnmeGV)对稻纵卷叶螟的感染及影响因素研究. 扬州大学学报(农业与生命科学版), 2019, 40(1): 107-111.
WANG Y, LIU Q, XU J, LI C M, HAN G J, XU B, QI J H, SUN J. The infectivity and influence factors of Cnaphalocrocis medinalis granulovirus (CnmeGV) to larva of rice leaffolder. Journal of Yangzhou University (Agricultural and Life Science Edition), 2019, 40(1): 107-111. (in Chinese)
[14] XU J, LIU Q, LI C M, HAN G J. Field effect of Cnaphalocrocis medinalis granulovirus (CnmeGV) on the pest of rice leaffolder. Journal of Integrative Agriculture, 2019, 18(9): 2115-2122.
doi: 10.1016/S2095-3119(18)62097-0
[15] XU J, LI C M, YANG Y J, QI J H, ZHENG X S, HU R L, LU Z X, LIU Q. Growth and reproduction of artificially fed Cnaphalocrocis medinalis. Rice Science, 2012, 19(3): 247-251.
doi: 10.1016/S1672-6308(12)60047-X
[16] 苏志坚, 庞义, 余健秀, 陈其津, 毛文富, 李广宏. 污染寄主卵面的斜纹夜蛾核型多角体病毒PCR检测及其消除. 农业生物技术学报, 2001, 9(2): 119-122.
SU Z J, PANG Y, YU J X, CHEN Q J, MAO W F, LI G H. PCR- detection and DNase-elimination of Spodoptera litura nucleopolyhedrovirus attached to host-eggs surface. Journal of Agricultural Biotechnology, 2001, 9(2): 119-122. (in Chinese)
[17] 李文学, 肖瑞刚, 吕苗苗, 丁宁, 石华荣, 顾沛雯. 葡萄霜霉病菌实时荧光定量PCR检测体系的建立和应用. 中国农业科学, 2019, 52(9): 1529-1540.
doi: 10.3864/j.issn.0578-1752.2019.09.005
LI W X, XIAO R G, LÜ M M, DING N, SHI H R, GU P W. Establishment and application of real-time PCR for quantitatively detecting Plasmopara viticloa in Vitis vinifera. Scientia Agriculture Sinica, 2019, 52(9): 1529-1540. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.09.005
[18] 陈俊杰, 李媛媛, 阳瑞雪, 古晶晶, 汪开毓, 耿毅, 欧阳萍. 锦鲤疱疹病毒潜伏感染实时荧光定量PCR检测方法的建立. 湖南农业大学学报(自然科学版), 2017, 43(3): 310-314.
CHEN J J, LI Y Y, YANG R X, GU J J, WANG K Y, GENG Y, OUYANG P. Method of real-time PCR for the detecting latent infection of koi herpesvirus. Journal of Hunan Agricultural University (Natural Sciences), 2017, 43(3): 310-314. (in Chinese)
[19] 陈细红, 杨小龙, 廖富荣, 高芳銮, 沈建国. 美人蕉黄斑驳病毒巢式PCR检测方法的建立. 植物保护, 2019, 45(4): 162-165.
CHEN X H, YANG X L, LIAO F R, GAO F L, SHEN J G. Development of nested PCR assay for detection of canna yellow mottle virus. Plant Protection, 2019, 45(4): 162-165. (in Chinese)
[20] KHURAD A M, MAHULIKAR A, RATHOD M K, RAI M M, KANGINAKUDRU S, NAGARAJU J. Vertical transmission of nucleopolyhedrovirus in the silkworm, Bombyx mori L. Journal of Invertebrate Pathology, 2004, 87(1): 8-15.
doi: 10.1016/j.jip.2004.05.008 pmid: 15491594
[21] BURDEN J P, GRIFFITHS C M, CORY J S, SMITH P, SAIT S M. Vertical transmission of sublethal granulovirus infection in the Indian meal moth, Plodia interpunctella. Molecular Ecology, 2002, 11(3): 547-555.
doi: 10.1046/j.0962-1083.2001.01439.x pmid: 11918789
[22] HAKIM R S, BALDWIN K, SMAGGHE G. Regulation of midgut growth, development, and metamorphosis. Annual Review of Entomology, 2010, 55: 593-608.
doi: 10.1146/annurev-ento-112408-085450 pmid: 19775239
[23] GRAHAM R I, TUMMALA Y, RHODES G, CORY J S, SHIRRAS A, GRZYWACZ D, WILSON K. Development of a real-time qPCR assay for quantification of covert baculovirus infections in a major African crop pest. Insects, 2015, 6(3): 746-759.
doi: 10.3390/insects6030746 pmid: 26463414
[24] ILYINYKH A V. Vertical transmission of baculoviruses. Biology Bulletin, 2019, 46(3): 302-310.
doi: 10.1134/S1062359019030038
[25] 肖留斌, 柏立新, 谭永安, 赵洪霞. 核多角体病毒对斜纹夜蛾成虫及其后代的影响. 中国生物防治学报, 2011, 27(1): 136-139.
XIAO L B, BAI L X, TAN Y A, ZHAO H X. Effects of SpltMNPV on survival, fecundity, development of Spodoptera litura adults and their progeny. Chinese Journal of Biological Control, 2011, 27(1): 136-139. (in Chinese)
[26] 庞义, 赖涌流, 刘炬, 叶育昌. 稻纵卷叶螟幼虫颗粒体病毒. 微生物学通报, 1981(3): 103-104.
PANG Y, LAI Y L, LIU J, YE Y C. A new granulovirus from naturally-infected Asiatic rice leafroller,Cnaphalocrocis medinalis. Microbiology China, 1981(3): 103-104. (in Chinese)
[27] 张珊, 贾茜雯, 孙士锋, 庞义, 陈其津, 杨凯. 一株稻纵卷叶螟颗粒体病毒的系统发育分析和流行病学调查. 环境昆虫学报, 2014, 36(5): 756-762.
ZHANG S, JIA X W, SUN S F, PANG Y, CHEN Q J, YANG K. Phylogenetic analysis and epidemiologic investigation of a Cnaphalocrocis medinalis granulovirus strain. Journal of Environmental Entomology, 2014, 36(5): 756-762. (in Chinese)
[28] SINGH J, SINGH C P, BHAVANI A, NAGARAJU J. Discovering microRNAs from Bombyx mori nucleopolyhedrosis virus. Virology, 2010, 407(1): 120-128.
doi: 10.1016/j.virol.2010.07.033 pmid: 20800868
[29] VIRTO C, NAVARRO D, TELLEZ M M, MURILLO R, WILLIAMS T, CABALLERO P. Chemical and biological stress factors on the activation of nucleopolyhedrovirus infections in covertly infected Spodoptera exigua. Journal of Applied Entomology, 2017, 141(5): 384-392.
doi: 10.1111/jen.2017.141.issue-5
[30] MURILLO R, HUSSEY M S, POSSEE R D. Evidence for covert baculovirus infections in a Spodoptera exigua laboratory culture. The Journal of General Virology, 2011, 92(5): 1061-1070.
doi: 10.1099/vir.0.028027-0
[1] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[2] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[3] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[4] DUAN YaRu,GAO MeiLing,GUO Yu,LIANG XiaoXue,LIU XiuJie,XU HongGuo,LIU JiXiu,GAO Yue,LUAN Feishi. Map-Based Cloning and Molecular Marker Development of Watermelon Fruit Shape Gene [J]. Scientia Agricultura Sinica, 2022, 55(14): 2812-2824.
[5] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[6] PeiPei ZHU,YiJia LUO,Wen XIANG,MingLei ZHANG,JianXia ZHANG. Rescue and Molecular Marker Assisted-Selection of the Cold-Resistant Seedless Grape Hybrid Embryo [J]. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228.
[7] XI Ling, WANG YuQi, YANG Xiu, ZHU Wei, CHEN GuoYue, WANG Yi, QIN Peng, ZHOU YongHong, KANG HouYang. Evaluation of Resistance to Stripe Rust and Molecular Detection of Resistance Gene(s) in 243 Common Wheat Landraces from the Yunnan Province [J]. Scientia Agricultura Sinica, 2021, 54(4): 684-695.
[8] CHEN DouDou, GUAN LiPing, HE LiangLiang, SONG YinHua, ZHANG Peng, LIU SanJun. Commonality Identification of Molecular Markers Linked to Seedless Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(22): 4880-4893.
[9] NIU Hao,PING JunAi,WANG YuBin,ZHANG FuYao,LÜ Xin,LI HuiMing,CHU JianQiang. Molecular Aided Breeding System of Photosensitive Forage Sorghum Based on SSR [J]. Scientia Agricultura Sinica, 2020, 53(14): 2795-2803.
[10] LI WenXue, XIAO RuiGang, LÜ MiaoMiao, DING Ning, SHI HuaRong, GU PeiWen. Establishment and Application of Real-Time PCR for Quantitatively Detecting Plasmopara viticola in Vitis vinifera [J]. Scientia Agricultura Sinica, 2019, 52(9): 1529-1540.
[11] WANG FangQuan,CHEN ZhiHui,XU Yang,WANG Jun,LI WenQi,FAN FangJun,CHEN LiQin,TAO YaJun,ZHONG WeiGong,YANG Jie. Development and Application of the Functional Marker for the Broad-Spectrum Blast Resistance Gene PigmR in Rice [J]. Scientia Agricultura Sinica, 2019, 52(6): 955-967.
[12] WU BingChao, TONG Lei, DU ZhaoChang, HU JiaLing, ZHANG Huan, CHEN Yi, LIU Wei, ZHANG XinQuan, HUANG LinKai. Mutagenic Effects of 60Co-γ-rays on Two Species of Pennisetum Genus Forages [J]. Scientia Agricultura Sinica, 2019, 52(3): 414-427.
[13] WANG Jia, ZENG ZhaoQiong, LIANG JianQiu, YU XiaoBo, WU HaiYing, ZHANG MingRong. Development New Molecular Markers for Quantitative Trait Locus (QTL) Analysis of the Seed Protein Content Based on Whole Genome Re-Sequencing in Soybean [J]. Scientia Agricultura Sinica, 2019, 52(16): 2743-2757.
[14] HAN Ran, LI TianYa, GONG WenPing, LI HaoSheng, SONG JianMin, LIU AiFeng, CAO XinYou, CHENG DunGong, ZHAO ZhenDong, LIU Cheng, LIU JianJun. New Resistance Sources of Wheat Stem Rust and Molecular Markers Specific for Relative Chromosomes That the Resistance Genes are Located on [J]. Scientia Agricultura Sinica, 2018, 51(7): 1223-1232.
[15] ZHOU JunFei, CUI YeHan, TANG Hao, LI Lun, CHEN Hong, WEN Wen, HAN RuiXi, HUANG SiSi, FANG ZhiWei, PENG Hai. Utilizing Probability Estimation Improves the Accuracy of Plant Variety Identification by Molecular Markers [J]. Scientia Agricultura Sinica, 2018, 51(6): 1013-1019.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!