Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (16): 2743-2757.doi: 10.3864/j.issn.0578-1752.2019.16.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Development New Molecular Markers for Quantitative Trait Locus (QTL) Analysis of the Seed Protein Content Based on Whole Genome Re-Sequencing in Soybean

WANG Jia,ZENG ZhaoQiong,LIANG JianQiu,YU XiaoBo,WU HaiYing,ZHANG MingRong()   

  1. Soybean Research Institute, Nanchong Academy of Agricultural Sciences/Nanchong comprehensive experimental station of National Soybean Industry Technology System, Nanchong 637000, Sichuan
  • Received:2019-03-25 Accepted:2019-05-07 Online:2019-08-16 Published:2019-08-21
  • Contact: MingRong ZHANG E-mail:zhangminron@126.com

Abstract:

【Objective】 Based on the results of genome-wide re-sequencing, molecular markers closely related to high protein, shade tolerance, lodging resistance and other traits were developed. At the same time, At the same time, genetic linkage maps were constructed using the developed molecular markers, and seed protein content was mapped by QTL, providing reference and molecular marker resources for subsequent research on high protein, shade tolerance and lodging resistance breeding. 【Method】 A F2 segregating population derived from the cross of Nandou 12 and Shiyuehuang consists of 672 individuals, and two parents were re-sequenced. With the published genome as a reference, the obtained data were assembled with BWA, and explored for the SNP and InDel by GATK and SV by Breakdancer. Carry out expression pattern analysis toward mutational storage proteins and genes related to environmental adaptation by combining with the transcriptome data obtained from different development stages and shade processing of seeds and qRT-PCR, At the same time, based on the resequencing data, excavate the SNP sites in the gene coding region between the parents, analyze the restriction enzyme cutting site and transform the SNP markers into CAPS or dCAPS markers. In addition, search the insertion/deletion mutation site and design primer development InDel marker in highly conserved regions on both sides of the insertion/deletion site. Perform polymorphism screening on the CAPS markers and InDel markers developed, select the CAPS molecular markers and InDel markers with polymorphism and carry out genotyping toward F2 materials. Utilize JoinMap 4.0 software to construct the genetic linkage map according to the genotyping result. Obtain the seed protein content data of F2 material according to the genetic map constructed by combining with the near-infrared analysis and use Windows QTL Cartographer V2.5 to carry out QTL analysis toward soybean seed protein content. 【Result】 The results showed that a large number of storage proteins and important genes or homologous genes related to environmental adaptation mutated in Nandou 12. The results of transcriptome data analysis showed that some variant genes showed different expression patterns and significant differences and the results were further validated by qRT-PCR analysis. In addition, 332 of the 540 CAPS molecular markers had polymorphic, and 201 of 300 pairs of InDel primers could amplify polymorphism. A genetic linkage map containing 20 linkage groups was constructed based on polymorphic molecular markers, covering 2973.87 cM with an average genetic distance of 5.58 cM. Using this map to map the seed protein content of soybean, six QTL loci were detected, which could explain 4.68%-18.25% phenotypic variation.【Conclusion】 Based on the variation loci among parents, 533 polymorphic molecular markers (including 8 gene-specific molecular markers) were developed. Six QTL loci were detected for seed protein content in soybean, including one major QTL locus (qSPC-6).

Key words: soybean, whole genome re-sequencing, relay intercropping, high protein, shade tolerant, lodging resistance, molecular marker

Table 1

Primer information of candidate genes"

基因ID
Gene ID
基因名称
Gene name
正向引物
Forward primer (5'-3')
反向引物
Reverse primer (5'-3')
Glyma.18G176100 ABI3 CTCATCATGCAAATCCTACAGC CTATCTGATGCAACTCGACTCT
Glyma.13G123500 Gy5 CAGATATAGAGCACCCAGAGAC GGTGTTGAAGGATTGTGCTAAG
Glyma.18G175500 MAG2 CAAATTTGGGGCATGGCTAATA CTTGAAAATTGTTTCGGTTGCG
Glyma.18G226500 CRA1 CTGCAAGAAGTGGTCGTTTTTA ATTTCAGTTGTTCCATGTTCCG
Glyma.02g248300 PAT2 AAAGGCGTTGAAGCTGGATATA AATCTCCTATCTGGATCTCCGA
Glyma.11g112800 BBX21 CACAACAGGTTTCTTCTCACTG TGTTCTTTCTTCAATGGCAGTG
Glyma.14g062100 COI1 GTACATACACGACTCCAAGGAC TTTCCCTTCAGGTTTAACGACT
Glyma.05g062700 SAV1 GTGGGTCTCCAATGTTTTGTAC GCAAATTGTTTCAATGGGTGTG
Glyma.18g043000 KAN TTGGAGTTCACATTAGGGAGAC AAGTTTGTCACATGTTACCGTG
Glyma.03g227300 PHYA CAAAGTCTGATAGAGCAGCAAC CTCACTGTAAGCGATGACCTTA
ACT11 CGGTGGTTCTATCTTGGCATC GTCTTTCGCTTCAATAACCCTA

Fig. 1

Whole genome annotation results of Nandou 12 a: Whole genome annotation results of Nandou 12; b: Diagram of gene variations identified in four variations on Nandou 12 coding region; c: Classification of gene variations compared with COG database by blast; d: Classification of gene variations compared with KEGG database by blast"

Table 2

Top 10 genes that are highly polymorphic between Nandou 12 and Shiyuehuang by non-syn SNPs"

基因ID
Gene ID
基因名称
Gene name
注释
Annotation
基因区域内的SNP数目
Genic SNP
CDS中的SNP
SNP in CDS
非同义替换SNP
Non-syn SNP
Glyma.18G176100 ABI3 ABI3-like转录因子家族成员,促进种子储藏蛋白的积累
A member of ABI3-like transcription factor family, promoting the accumulation of seed storage proteins
72 31 20
Glyma.13G123500 Gy5 大豆球蛋白基因家族成员之一,编码一个11S球蛋白亚基 Encodes an 11S globulin subunit, a member of the soybean globulin gene family 46 33 18
Glyma.11G112800 BBX21 编码B-box锌指转录因子bbx21,与cop1基因相互作用调节避荫
Encodes a B-box zinc finger transcription factor BBX21, genetically interacts with COP1 to regulate shade avoidance.
30 29 16
Glyma.18G175500 MAG2 参与种子贮藏蛋白从内质网到液泡的运输
Involved in transportation of seed storage proteins from the ER to the vacuole
36 27 14
Glyma.13G335200 OBP3 编码一个主要在根中表达的包含转录因子的核定位Dof域 Encodes a nuclear localized Dof domain containing transcription factor expressed primarily in roots. 35 35 14
Glyma.02G057500 SAV1 编码一个油菜素类固醇生物合成途径的限速酶22α羟化酶 Encodes a 22α hydroxylase whose reaction is a rate-limiting step in brassinosteroid biosynthetic pathway 51 29 12
Glyma.08G171800 GA2OX4 编码作用于赤霉素C19的赤霉素2-氧化酶
Encodes a gibberellin 2-oxidase that acts on C19 gibberellins
88 26 11
Glyma.20G048500 VPS26B 细胞内蛋白转运 Intracellular protein transport 32 25 11
Glyma.18G226500 CRA1 编码一个12S种子储存蛋白 Encodes a 12S seed storage protein 72 26 10
Glyma.14G062100 COI1 避荫 Shade avoidance 28 25 10

Fig. 2

Expression heatmap of mutant genes and validation of transcriptome sequencing data by qRT-PCR a: Expression heatmap of related to protein synthesis and accumulation gene during seed development; b: Expression pattern of shade regulation related genes in mature and young leaves under shading treatment; c, d: Validation of transcriptome sequencing data by qRT-PCR"

Fig. 3

Development and polymorphism analysis of CAPS and InDel markers a: Alignment of the partial sequence of containing the SNP which resulted in the creation of the restriction sites (BanⅡ) between Nandou 12 and Shiyuehuang in Gy1. Lines represent the resriction sites, while arrows indicate the position of digesting site; b: Sequence alignment results of BBX21 gene containing InDel in Nandou 12 and Shiyuehuang; c: Detection of CAPS labeled enzyme digestion targeting Gy1 gene; d: The results of InDel markers amplification for targeting BBX21 gene were analyzed by agarose gel electrophoresis. S: Shiyuehuang, N: Nandou 12, Figure exhibited partial verifying lines (code number: 1-10)"

Table 3

Phenotypic analysis of crude protein contents in the two parents and F2 population (%)"

性状
Trait
亲本 Parent F2群体 F2 population
南豆12
Nandou 12
十月黄
Shiyuehuang
范围
Range
均值
Mean
方差
Variance
标准差
SD
变异系数
CV
偏度
Skewness
峰度
Kurtosis
蛋白质含量
Protein contents
50.96 41.35 40.34—51.72 45.37 3.47 1.86 4.10 0.16 -0.09

Table 4

Putative QTL detected by composite interval mapping for crude protein contents"

数量性状座位
QTL
染色体
Chromosome
标记区间
Position (cM)
置信区间
Confidence interval
LOD 加性效应
Additive
贡献率
R2 (%)
qSPC-1 Gm06(C2) 34.01 GmIn063—GmCA130 8.09 -0.23 5.39
qSPC-2 Gm07(M) 46.71 GmCA168—GmCA171 5.26 0.22 5.36
qSPC-3 Gm15(E) 26.51 GmIn149—GmIn150 4.53 0.21 4.68
qSPC-4 Gm15(E) 72.21 GmIn152—GmIn163 9.93 -0.29 9.32
qSPC-5 Gm20(I) 35.61 GmCA493—GmIn285 8.40 -0.47 12.04
qSPC-6 Gm20(I) 103.41 GmdCA522—GmCA537 15.06 -0.68 18.86

Fig. 4

Putative QTL locations of seed protein content on the genetic map Seed protein content"

[1] 周新安, 年海, 杨文钰, 韩天富 . 南方间套作大豆生产发展的现状与对策(Ⅰ). 大豆科技, 2010(3):1-2.
ZHAOU X A, NIAN H, YANG W Y, HAN T F . Current situation and countermeasures of intercropping soybean production in the south(Ⅰ). Soybean Science and Technology, 2010(3):1-2. (in Chinese)
[2] 周新安, 年海, 杨文钰, 韩天富 . 南方间套作大豆生产发展的现状与对策(Ⅱ). 大豆科技, 2010(4):1-3.
ZHOU X A, NIAN H, YANG W Y, HAN T F . Current situation and countermeasures of intercropping soybean production in the south(Ⅱ). Soybean Science and Technology, 2010(4):1-3. (in Chinese)
[3] 周新安, 年海, 杨文钰, 韩天富 . 南方间套作大豆生产发展的现状与对策(Ⅲ). 大豆科技, 2010(5):1-2.
ZHOU X A, NIAN H, YANG W Y, HAN T F . Current situation and countermeasures of intercropping soybean production in the south(Ⅲ). Soybean Science and Technology, 2010(5):1-2. (in Chinese)
[4] 刘广才 . 不同间套作系统种间营养竞争的差异性及其机理研究[D]. 兰州: 甘肃农业大学, 2005.
LIU G C . Difference and its mechanism of interspecific nutrition competition in different intercropping systems[D]. Lanzhou: Gansu Agricultural University, 2005. (in Chinese)
[5] 杨文钰, 雍太文, 任万军, 樊高琼, 牟锦毅, 卢学兰 . 发展套作大豆, 振兴大豆产业. 大豆科学, 2008,27(1):1-7.
YANG W Y, YONG T W, REN W J, FAN G Q, MOU J Y, LU X L . Develop relay-planting soybean, revitalize soybean industry. Soybean Science, 2008,27(1):1-7. (in Chinese)
[6] YANG F, HUANG S, GAO R C, LIU W G, YONG T W, WANG X C, WU X L, YANG W Y . Growth of soybean seedlings in relay strip intercropping system in relation to light quantity and red: far-red ratio. Field Crops Research, 2014,155(155):245-253.
[7] 张彦威, 李伟, 张礼凤, 王彩洁, 戴海英, 徐冉 . 基于重测序的大豆新品种齐黄34的全基因组变异挖掘. 中国油料作物学报, 2016,38(2):150-158.
doi: 10.7505/j.issn.1007-9084.2016.02.003
ZHANG Y W, LI W, ZHANG L F, WANG C J, DAI H Y, XU R . Genome-wide variations of soybean cultivar Qihuang 34 by whole genome re-sequencing. Chinese Journal of Oil Crop Sciences, 2016,38(2):150-158. (in Chinese)
doi: 10.7505/j.issn.1007-9084.2016.02.003
[8] LAI J, LI R, XU X, JIN W, XU M, ZHAO H, XIANG Z, SONG W, YING K, ZHANG M, JIAO Y, NI P, ZHANG J, LI D, GUO X, YE K, JIAN M, WANG B, ZHENG H, LIANG H, ZHANG X, WANG S, CHEN S, LI J, FU Y, SPRINGER N M, YANG H, WANG J, DAI J, SCHNABLE P S, WANG J . Genome-wide patterns of genetic variation among elite maize inbred lines. Nature Genetics, 2010,42(11):1027-1030.
[9] 杜龙岗, 王美兴 . 玉米SLAF标记的开发及其在玉米果皮纤维素含量BSA分析中的应用. 中国农业科学, 2018,51(8):1421-1430.
doi: 10.3864/j.issn.0578-1752.2018.08.001
DU L G, WANG M X . SLAF-marker development and its application in BSA analysis of cellulose content in pericarp of maize kernel. Scientia Agricultura Sinica, 2018,51(8):1421-1430. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.08.001
[10] CHIA J M, SONG C, BRADBURY P J, COSTICH D, DE LEON N, DOEBLEY J, ELSHIRE R J, GAUT B, GELLER L, GLAUBITZ J C, GORE M, GUILL K E, HOLLAND J, HUFFORD M B, LAI J, LI M, LIU X, LU Y, MCCOMBIE R, NELSON R, POLAND J, PRASANNA B M, PYHAJARVI T, RONG T, SEKHON R S, SUN Q, TENAILLON M I, TIAN F, WANG J, XU X, ZHANG Z, KAEPPLER S M, ROSS-IBARRA J, MCMULLEN M D, BUCKLER E S, ZHANG G, XU Y, WARE D . Maize hap map2 identifies extant variation from a genome in flux. Nature Genetics, 2012,44(7):803-807.
[11] TAKAGI H, ABE A, YOSHIDA K, KOSUGI S, NATSUME S, MITSUOKA C, UEMURA A, UTSUSHI H, TAMIRU M, TAKUNO S, INNAN H, CANO L M, KAMOUN S, TERAUCHI R . QTL-seq: Rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. The Plant Journal, 2013,74(1):174-183.
[12] MUKESH J, KANHU C M, RAMA S, ROMIKA K, ROHINI G . Genome wide discovery of DNA polymorphisms in rice cultivars with contrasting drought and salinity stress response and their functional relevance. Plant Biotechnology Journal, 2014,12(2):253-264.
[13] XU X, LIU X, GE S, JENSEN D J, HU F J, LI X, DONG Y, GUTENKUNST R N, FANG L, HUANG L, LI J X, HE W M, ZHANG G J, ZHENG X M, ZHANG F M, LI Y R, YU C, KRISTIANSEN K, ZHANG X Q, WANG J, WRIGHT M, MCCOUCH S, NIELSEN R, WANG J, WANG W . Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nature Biotechnology, 2012,30(1):105-111.
[14] BAI H, CAO Y G, QUAN J Z, DONG L, LI Z Y, ZHU Y B, ZHU L H, DONG Z P, LI D Y . Identifying the genome-wide sequence variations and developing new molecular markers for genetics research by re-sequencing a landrace cultivar of foxtail millet. PLoS ONE, 2013,8(9):e73514.
[15] 赵庆英, 张瑞娟, 王瑞良, 高建华, 韩渊怀, 杨致荣, 王兴春 . 基于名优谷子品种晋谷21全基因组重测序的分子标记开发. 作物学报, 2018,44(5):686-696.
ZHAO Q Y, ZHANG R J, WANG R L, GAO J H, HAN Y H, YANG Z R, WANG X C . Genome-wide identification of molecular markers based on genomic re-sequencing of foxtail millet elite cultivar Jingu 21. Acta Agronomica Sinica, 2018,44(5):686-696. (in Chinese)
[16] 岳晓鹏 . 基于甘蓝型油菜基因组重测序开发InDel标记[D]. 武汉: 华中农业大学, 2014.
YUE X P . Development of Indel markers based on whole genome resequencing in Brassica napus[D]. Wuhan: Huazhong Agricultural University, 2014. (in Chinese)
[17] LIN T, ZHU G, ZHANG J, XU X, YU Q, ZHENG Z, ZHANG Z, LUN Y, LI S, WANG X, HUANG Z, LI J, ZHANG C, WANG T, ZHANG Y, WANG A, ZHANG Y, LIN K, LI C, XIONG G, XUE Y, MAZZUCATO A, CAUSSE M, FEI Z, GIOVANNONI J J, CHETELAT R T, ZAMIR D, STÄDLER T, LI J, YE Z, DU Y, HUANG S . Genomic analyses provide insights into the history of tomato breeding. Nature Genetics, 2014,46(11):1220-1226.
[18] KANG Y J, AHN Y K, KIM K T, JUN T H . Resequencing of Capsicum annuum parental lines (YCM334 and Taean) for the genetic analysis of bacterial wilt resistance. BMC Plant Biology, 2016,16(1):235.
[19] 束永俊, 李勇, 柏锡, 才华, 纪巍, 朱延明 . 基于基因重测序信息的大豆基因靶向CAPS标记开发. 作物学报, 2009,35(11):2015-2021.
doi: 10.3724/SP.J.1006.2009.02015
SHU Y J, LI Y, BAI X, CAI H, JI W, ZHU Y M . Development of soybean gene-driven functional caps markers based on gene resequencing. Acta Agronomica Sinica, 2009,35(11):2015-2021. (in Chinese)
doi: 10.3724/SP.J.1006.2009.02015
[20] SONG X, WEI H, CHENG W, YANG S, ZHAO Y, LI X, LUO D, ZHANG H, FENG X . Development of INDEL markers for genetic mapping based on whole genome resequencing in soybean. G3-Genes Genomes Genetics, 2015,5(12):2793-2799.
[21] DIERS B W, KEIM P, FEHR W R, SHOEMAKER R C . RFLP analysis of soybean seed protein and oil content. Theoretical and Applied Genetics, 1992,83:608-612.
[22] 魏荷, 王金社, 卢为国 . 大豆子粒蛋白质含量分子遗传研究进展. 中国油料作物学报, 2015,37(3):394-410.
doi: 10.7505/j.issn.1007-9084.2015.03.021
WEI H, WANG J S, LU W G . Molecular genetics advances in soybean seed protein. Chinese Journal of Oil Crop Sciences, 2015,37(3):394-410. (in Chinese)
doi: 10.7505/j.issn.1007-9084.2015.03.021
[23] 颜彦, 周加权 . 南豆12不同播期的产量效应初探. 种子科技, 2018,36(1):115-116.
YAN Y, ZHOU J Q . A preliminary study on the yield effect of different sowing dates of Nandou 12. Seed Technology, 2018,36(1):115-116. (in Chinese)
[24] 罗玲, 于晓波, 万燕, 蒋涛, 杜俊波, 邹俊林, 杨文钰, 刘卫国 . 套作大豆苗期倒伏与茎秆内源赤霉素代谢的关系. 中国农业科学, 2015,48(13):2528-2537.
doi: 10.3864/j.issn.0578-1752.2015.13.005
LUO L, YU X B, WAN Y, JIANG T, DU J B, ZOU J L, YANG W Y, LIU W G . The relationship between lodging and stem endogenous gibberellins metabolism pathway of relay intercropping soybean at seedling stage. Scientia Agricultura Sinica, 2015,48(13):2528-2537. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.13.005
[25] 张明荣, 吴海英 . 四川间套作大豆生产现状与发展分析. 中国种业, 2009,10:16-18.
ZHANG M R, WU H Y . Analysis of production status and development of relay cropping soybean in Sichuan. China Seed, 2009,10:16-18. (in Chinese)
[26] STEWART C N J, VIA L E . A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. BioTechniques, 1993,14:748-750.
[27] GRANT D, NELSON R T, CANNON S B, SHOEMAKER R C . SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Research, 2010,38(suppl. 1):843-846.
[28] LI H, DURBIN R . Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009,25:1754-1760.
[29] MC K A, HANNA M, BANKS E, SIVACHENKO A, CIBULSKIS K, KERNYTSKY A, GARIMELLA K, ALTSHULER D, GABRIELS, D M, DEPRISTO M A . The genome analysis toolkit: A map reduces frame-work for analyzing next-generation DNA sequencing data. Genome Research, 2010,20(9):1297-1303.
[30] CHEN K, WALLIS J W, MCLELLAN M D, LARSON D E, KALICKI J M, POHL C S, MCGRATH S D, WENDL M C, ZHANG Q Y, LOCKE D P, SHI X Q, FULTON R S, LEY T J, WILSON R K, DING L, MARDIS E R . BreakDancer: An algorithm for high- resolution mapping of genomic structural variation. Nature Methods, 2009,6(9):677-681.
[31] GONG W Z, QI P, DU J B, SUN X, WU X L, SONG C, LIU W G, WU Y S, YU X B, YONG T W, WANG X C, YANG F, YAN Y H and YANG W Y . Transcriptome analysis of shade-induced inhibition on leaf size in relay intercropped soybean. PLoS ONE, 2014,9(6):e98465.
[32] NEFF M M, TURK E, KALISHMAN M . Web-based primer design for single nucleotide polymorphism analysis. Trends in Genetics, 2002,18:613-615.
[33] LANDER E S, BOTSTEIN D . Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989,121:185-199.
[34] DU R C, KHAN A, QIAO Y G, YI Y Y, WANG L, LIU X Y, LI H Q, WANG J S . Expression pattern of abscisic acid insensitive 3 & IT;(ABI3 & IT;) in:Soybean & IT;(Glycine max)& IT; and its interaction mechanism between storage protein gene promoter. International Journal of Agriculture and Biology, 2018,20(4):833-838.
[35] 刘春, 王显生, 麻浩 . 大豆种子贮藏蛋白遗传改良研究进展. 大豆科学, 2008,27(5):866-873.
LIU C, WANG X S, MAO H . Genetic improvement on soybean seed storage proteins. Soybean Science, 2008,27(5):866-873. (in Chinese)
[36] VAN K, MCHALE L K . Meta-analyses of QTLs associated with protein and oil contents and compositions in soybean [Glycine max(L.) Merr.] seed. International Journal of Molecular Sciences, 2017,18(6):1180.
[37] MCKENDRY A L, MC VETTY P B, VOLDENG H D . Inheritance of seed protein and seed oil content in early maturing soybean. Canadian Journal of Genetics and Cytology, 1985,27(5):603-607.
[38] KARIKARI B, LI S G, BHAT J A, CAO Y G, KONG J J, YANG J Y, GAI J Y, ZHAO T J . Genome-wide detection of major and epistatic effect QTLs for seed protein and oil content in soybean under multiple environments using high-density Bin map. International Journal of Molecular Sciences, 2019,20(4):979.
[39] JEONG S C, SAGHAI-MAROOF M A . Detection and genotyping of SNPs tightly linked to two disease resistance loci, Rsv1 and Rsv3, of soybean. Plant Breeding, 2004,123(4):305-310.
[40] ZENG D L, TIAN Z X, RAO Y C, DONG G J, YANG Y L, HUANG L C, LENG Y J, XU J, SUN C, ZHANG G G, HU J, ZHU L, GAO Z Y, HU X M, GUO L B, XIONG G S, WANG Y H, LI J Y, QIAN Q . Rational design of high-yield and superior-quality rice. Nature Plants, 2017,3:17031.
[41] ZHANG Y H, LIU M F, HE J B, WANG Y F, XING G N, LI Y, YANG S P, ZHAO T J, GAI J Y . Marker‑assisted breeding for transgressive seed protein content in soybean [Glycine max(L.) Merr.]. Theoretical and Applied Genetics, 2015,128(6):1061-1072.
[42] 向达兵 . 钾对套作大豆的抗倒伏效应与提高产量的机理研究[D]. 成都: 四川农业大学, 2012.
XIANG D B . Studies on effect and mechanism of potassium on lodging-resistance and yield improvement in relay strip intercropped soybean[D]. Chengdu: Sichuan Agricultural University, 2012. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[3] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[4] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[5] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[6] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[7] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[8] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[9] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[10] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[11] GENG WenJie,LI Bin,REN BaiZhao,ZHAO Bin,LIU Peng,ZHANG JiWang. Regulation Mechanism of Planting Density and Spraying Ethephon on Lignin Metabolism and Lodging Resistance of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(2): 307-319.
[12] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[13] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[14] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[15] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!