芒属,能源植物,层次分析法,评价体系," /> 芒属,能源植物,层次分析法,评价体系,"/> Construction of Energy Potential Evaluation System for <em>Miscanthus</em>

Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (24): 4687-4700.doi: 10.3864/j.issn.0578-1752.2016.24.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Construction of Energy Potential Evaluation System for Miscanthus

XIANG Wei1, YI Zi-li1,2, XIAO Liang2, LIU Qing-bo1, QIN Jing-ping1   

  1. 1College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128
    2Hunan Engineering Laboratory for Ecological Application of Miscanthus Resources, Changsha 410128
  • Received:2016-07-07 Online:2016-12-16 Published:2016-12-16

Abstract: 【Objective】Miscanthus (Miscanthus spp.) as a promising energy crop, nowadays research on it is a hot spot in the bioenergy field. Worldwide, there are 14 species in the Miscanthus genus and they can cross interspecies. The interspecific hybridization can create many natural hybrids, including some productive hybrids that can be directly used as commercial varieties. Screening productive natural hybrids is an efficient way to shorten the Miscanthus breeding process, however, prior to the screening process, a scientific energy potential evaluation system is required. 【Method】The present work firstly summarized 23 traits that related to the energy potential (including the production potential of electric, ethanol, methane and bio-oil) of Miscanthus through literature survey, questionnaire investigation and expert consultation. They are: The agronomic traits including dry matter yield, canopy height, panicle height, stem diameter, base diameter, tillering number, leaf/stem ratio, senescence score, deciduous score; the energy quality traits including moisture content, ash content, volatile solid content, fixed carbon content, calorific value, cellulose content, hemicellulose content, lignin content, mineral element content; and the stress resistance traits including saline-alkali tolerance, drought resistance, cold resistance, submerge tolerance, disease and insect resistance. Based on these traits and using the analytic hierarchy process (AHP) method, a scientific energy potential evaluation system for Miscanthus was constructed. Besides, a measurement standard was draw up and a system to calculate the Miscanthus energy potential index was established. To show how this system work, energy potential of five typical Miscanthus germplsams collected from the Nursery Garden of Miscanthus Germplsams in Hunan Agricultural University were measured and evaluated. The five germplsams were: B 0340 (Miscanthus sinensis), A0504 (Miscanthus floridulus), A0123 (Miscanthus sacchariflorus), A0118 (Miscanthus lutarioriparius) and D0302 (Miscanthus × giganteus). Their energy potentials in terms of power generation, ethanol and methane production were calculated and compared with precious results collected from literatures. 【Result】Miscanthus energy potential index was divided into four levels: very suitable (75-100 points), suitable (50-74 points), general (25-49 points), and unsuitable (0-24 points). Through calculation, for the genotype of A0504, its power generation point (PGP) was 60.73, ethanol production point (EPP) of 60.14 and biogas production point (BPP) of 60.27, extract bio-oil point (EBP) of 57.19. For the genotype of A0118, its PGP, EPP, BPP, and EBP were 64.32, 58.45, 58.20 and 60.01, respectively. For the genotype of D0302, only its PGP (54.06) and EBP (50.33) were above the level of suitable. As can be seen, plants of A0504, A0118, and D0302 can be used as energy crop; Within, material of A0504 (M. floridulus) is suitable for cellulosic ethanol and methane production, while biomass of A0118 (M. lutarioriparius) is suitable for power generation and bio-oil extraction. These results are consistent with the evaluation results that calculated using the theoretical energy production yield formula. In addition, the evaluation system established in this study can more comprehensively evaluate the energy production potential than the calculated results by the theoretical yield formula. 【Conclusion】Miscanthus energy potential evaluation system built from the agronomic, quality, resistance traits can objectively evaluate the suitability of Miscanthus in generate power, produce ethanol and methane, extract bio-oil.This evaluation system can provide a scientific guidance for Miscanthus germplsam selection and breeding of new varieties.

Key words: Miscanthus, energy plant, analytic hierarchy process (AHP), evaluation system

[1] 易自力. 芒属能源植物资源的开发与利用. 湖南农业大学学报(自然科学版), 2012, 38(5): 455-463. 
YI Z L. Exploitation and utilization of Miscanthus as energy plant. Journal of Hunan Agricultural University (Natural Sciences), 2012, 38(5): 455-463. (in Chinese) 
[2] 席庆国, 洪浩. 外来植物奇岗的生物学特征. 草业科学, 2008, 25(2): 26-28. 
XI Q G, HONG H. Description of an introduced plant Miscanthus×giganteus. Pratacultural Science, 2008, 25(2): 26-28. (in Chinese) 
[3] 余燕春. 能源农业发展战略的国际比较及启示. 中国农村经济, 2007(7): 76-80. 
YU Y C. International comparison of energy agricultural development strategy. Chinese Rural Economy, 2007(7): 76-80. (in Chinese) 
[4] 侯维, 肖亮, 易自力, 覃静萍, 杨塞, 郑铖, 陈智勇. 7种能源草在酸性红壤中的性状比较及适应性评价. 草业学报, 2015, 24(12): 237-244. 
HOU W, XIAO L, YI Z L, QIN J P, YANG S, ZHENG C, CHEN Z Y. Evaluation of the adaptability of bioenergy grasses in acidic red soil. Acta Prataculturae Sinica, 2015, 24(12): 237-244. (in Chinese) 
[5] 王青, 戴思兰, 何晶, 季玉山, 王朔. 灰色关联法和层次分析法在盆栽多头小菊株系选择中的应用. 中国农业科学, 2012, 45(17): 3653-3660. 
WANG Q, DAI S L, HE J, JI Y S, WANG S. Application of grey correlation analysis and AHP method in selection of potted chrysanthemum. Scientia Agricultura Sinica, 2012, 45(17): 3653-3660. (in Chinese) 
[6] 陈丽娜, 方沩, 司海平, 陈彦清, 曹永生. 国家农作物种质资源平台服务绩效评价体系构建. 中国农业科学, 2016, 49(13): 2459-2468. 
CHEN L N, FANG W, SI H P, CHEN Y Q, CAO Y S. A service performance evaluation system of National Crop Germplasm Resources Infrastructure. Scientia Agricultura Sinica, 2016, 49(13): 2459-2468. (in Chinese) 
[7] RAMÍREZ-GARCÍA J, CARRILLO J M, RUIZ M, ALONSO- AYUSO M, QUEMADA M. Multicriteria decision analysis applied to cover crop species and cultivars selection. Field Crops Research, 2015(175): 106-115. 
[8] ZHANG J Q, SU Y R, WU J S, LIANG H B. GIS based land suitability assessment for tobacco production using AHP and fuzzy set in Shandong province of China. Computers and Electronics in Agriculture, 2015(114): 202-211. 
[9] ABDOLLAHZADEH G, DAMALAS C A, SHARIFZADEH M S, AHMADI-GORGI H. Selecting strategies for rice stem borer management using the Analytic Hierarchy Process. Crop Protection, 2016(84): 27-36. 
[10] Veisia H, Liaghatia H, Alipour A. Developing an ethics-based approach to indicators of sustainable agriculture using analytic hierarchy process. Ecological Indicators, 2016(60): 644-654. 
[11] 孙卫民, 黄国勤, 程建峰, 刘彬彬. 江西省双季稻田多作复合种植系统的能值分析. 中国农业科学, 2014, 47(3): 514-527. 
SUN W M, HUANG G Q, CHENG J F, LIU B B. Analyses on the emergies of multiple compound cropping systems from double- cropping paddy fields in Jiangxi province. Scientia Agricultura Sinica, 2014, 47(3): 514-527. (in Chinese) 
[12] HADIAN S, MADANI K. A system of systems approach to energy sustainability assessment: Are all renewables really green? Ecological Indicators, 2015(52): 194-206. 
[13] PETRILLO A, DE FELICE F, JANNELLI E, AUTORINO C, MINUTILLO M, LAVADERA A L. Life cycle assessment (LCA) and life cycle cost (LCC) analysis model for a stand-alone hybrid renewable energy system. Renewable Energy, 2016(95): 337-355. 
[14] NOTARNICOLA B, TASSIELLI G, RENZULLI P A, MONFORTI F. Energy flows and greenhouses gases of EU (European Union) national breads using an LCA (Life Cycle Assessment) approach. Journal of Cleaner Production, 2016: 1-15. 
[15] 李高扬, 李建龙, 王艳, 潘永年, 窦观一. 优良能源植物筛选及评价指标探讨. 可再生能源, 2007, 25(6): 84-89. LI G Y, LI J L, WANG Y, PAN Y N, DOU G Y. Study on the selection and evaluation on fine energy plants. Renewable Energy Resources, 2007, 25(6): 84-89. (in Chinese) 
[16] 李聪敏, 蒋猛, 杨晓红, 郝春梅. 三峡库区能源植物资源评价原则与指标探讨. 安徽农业科学, 2008, 36(34): 15163-15164. 
LI C M, JIANG M, YANG X H, HAO C M. Discussion on evaluation principles and indices of energy plant resources in the Three Gorges Reservoir. Journal of Anhui Agricultural Sciences, 2008, 36(34): 15163-15164. (in Chinese) 
[17] 潘伟彬. 能源植物狼尾草品种筛选评价指标分析. 漳州师范学院学报(自然科学版), 2009, 22(4): 87-91. 
PAN W B. The analysis of evaluating indicator of screening kinds of energy plant pennisetum. Journal of Zhangzhou Normal University (Natural Sciences), 2009, 22(4): 87-91. (in Chinese) 
[18] 李峰. 北方能源草的筛选及其评价[D]. 兰州: 甘肃农业大学, 2009. 
LI F. Selection and evaluation of energy plants in north of China [D]. Lanzhou: Gansu Agricultural University, 2009. (in Chinese) 
[19] 侯新村, 范希峰, 武菊英, 朱毅, 张永侠, 赵春桥. 边际土地草本能源植物应用潜力评价. 中国农业大学学报, 2013, 18(1): 172-177. 
HOU X C, FAN X F, WU J Y, ZHU Y, ZHANG Y X, ZHAO C Q. Evaluation of application potential of herbaceous bioenergy plant on marginal land. Journal of China Agricultural University, 2013, 18(1): 172-177. (in Chinese) 
[20] 曾汉元. 基于纤维素能源利用的芦竹生物学特性研究[D]. 长沙: 湖南农业大学, 2013. 
ZENG H Y. Biological characters of Arundo donax based on cellulosic bioenergy use [D]. Changsha: Hunan Agricultural University, 2013. (in Chinese) 
[21] 沈光, 徐海军, 周琳, 于志民, 吕品. 论能源植物的定义及其评价指标体系的建立. 国土与自然资源研究, 2014(1): 64-67. 
SHEN G, XU H J, ZHOU L, YU Z M, LÜ P. Discussion on definition of energy plant and its evaluation indicator system. Territory & Natural Resources Study, 2014(1): 64-67. (in Chinese) 
[22] WERNERA A, WERNER A, WIELAND R, KERSEBAUM K C, MIRSCHEL W, ENDE H P, WIGGERING H. Exante assessment of crop rotations focusing on energy crops using a multi-attribute decision-making method. Ecological Indicators, 2014(45): 110-122. 
[23] 张玉兰. 我国生物质能主要能源品种的综合效益评价[D]. 南京: 南京航空航天大学, 2011. 
ZHANG Y L. The comprehensive evaluation on the benefits of the main biomass energy in China [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011. (in Chinese) 
[24] 王慧. 纤维素乙醇转化评价体系的建立及利用其对秸秆颗粒的探索[D]. 北京: 北京化工大学, 2013. 
WANG H. Building cellulosic ethanol conversion evaluation system and its exploration on straw particles [D]. Beijing: Beijing University of Chemical Technology, 2013. (in Chinese) 
[25] TURCKSIN L, MACHARIS C, LEBEAU K, BOUREIMA F, VAN MIERLO J, BRAM S, DE RUYCK J, MERTENS L, JOSSART J M, GORISSEN L, PELKMANS L. A multi-actor multi-criteria framework to assess the stakeholder support for different biofuel options: The case of Belgium. Energy Policy, 2011(39): 200-214. 
[26] COBULOGLU H I, BÜYÜKTAHTAKIN I E. A stochastic multi- criteria decision analysis for sustainable biomass crop selection. Expert Systems with Applications, 2015(42): 6065-6074. 
[27] 张军, 夏训峰, 席北斗, 贾春蓉, 李铁松. 基于全生命周期评价的燃料乙醇能值分析——以木薯为例. 国土与自然资源研究, 2010(1): 55-57. 
ZHANG J, XIA X F, XI B D, JIA C R. LI T S. Based on the life cycle emergy analysis of fuel ethanol —— a case of cassava. Territory & Natural Resources Study, 2010(1): 55-57. (in Chinese) 
[28] 杨慧. 基于能值分析的植物生物质能评价的研究——以木薯燃料乙醇为例[D]. 广州: 华南理工大学, 2011. YANG H. Emergy-based evaluation research on plant bioenergy- cassava-based fuel ethanol[D]. Guangzhou: South China University of Technology, 2011. (in Chinese) 
[29] FAZIO S, BARBANTI L. Energy and economic assessments of bio-energy systems based on annual and perennial crops for temperate and tropical areas. Renewable Energy, 2014(69): 233-241. 
[30] 范希峰, 侯新村, 左海涛, 武菊英. 段留生. 三种草本能源植物在北京地区的产量和品质特性. 中国农业科学, 2010, 43(16): 3316-3322. 
FAN X F, HOU X C, ZUO H T, WU J Y, DUAN L S. Biomass yield and quality of three kinds of bioenergy grasses in Beijing of China. Scientia Agricultura Sinica, 2010, 43(16): 3316-3322. (in Chinese) 
[31] 张树振, 金樑, 黄利春, 王文斌, 王晓娟. 不同紫花苜蓿栽培品种生物能源性状评价. 兰州大学学报(自然科学版), 2012, 48(4): 72-79. 
ZHANG S Z, JIN L, HUANG L C, WANG W B, WANG X X. Estimation of biofuel traits of alfalfa cultivars in Medicago sativa L.. Journal of Lanzhou University (Natural Sciences), 2012, 48(4): 72-79. (in Chinese) 
[32] 刘建乐, 白昌军, 严琳玲. 割手密种质资源的产能潜力评价. 广东农业科学, 2014(24): 21-27. LIU J L, BAI C J, YAN L L. Energy productivity potential assessment of Saccharum spontaneum L. germplasm resource. Guangdong Agricultural Sciences, 2014(24): 21-27. (in Chinese) 
[33] BALEZENTIENE L, STREIMIKIENE D, BALEZENTIS T. Fuzzy decision support methodology for sustainable energy crop selection. Renewable and Sustainable Energy Reviews, 2013, 17: 83-93. 
[34] GIULIANO S, RYAN M R, VÉRICEL G, RAMETTI G, PERDRIEUX F, JUSTES E, ALLETTO L. Low-input cropping systems to reduce input dependency and environmental impacts in maize production: A multi-criteria assessment. European Journal of Agronomy, 2016, 76: 160-175. 
[35] XUE S, LEWANDOWSKI I, WANG X Y, YI Z L. Assessment of the production potentials of Miscanthus on marginal land in China. Renewable and Sustainable Energy Reviews, 2016, 54: 932-943. 
[36] ZHAO Y L, DOLAT A, STEINBERGER Y, WANG X, OSMAN A, XIE G H. Biomass yield and changes in chemical composition of sweet sorghum cultivars grown for biofuel. Field Crops Research, 2009, 111: 55-64. 
[37] 张庭婷, 李嘉薇, 王双飞. 几种生物质原料厌氧发酵制取沼气能量转换效率的比较. 造纸科学与技术, 2009, 28(3): 36-41. 
ZHANG T T, LI J W, WANG S F. Study on the energy conversion efficiency of biogas from anaerobic fermentation with several biomass materials. Paper Science & Technology, 2009, 28(3): 36-41. (in Chinese) 
[38] 曹宏, 章会玲, 盖琼辉, 陈红, 赵满来. 22个紫花苜蓿品种的引种试验和生产性能综合评价. 草业学报, 2011, 20(6): 219-229. 
CAO H, ZHANG H L, GAI Q H, CHEN H, ZHAO M L. Test and comprehensive assessment on the performance of 22 alfalfa varieties. Acta Prataculturae Sinica, 2011, 20(6): 219-229. (in Chinese) 
[39] ROBSON P, JENSEN E, HAWKINS S, WHITE S R, KENOBI K, CLIFTON-BROWN J, DONNISON L, FARRAR K. Accelerating the domestication of a bioenergy crop: Identifying and modelling morphological targets for sustainable yield increase in Miscanthus. Journal of Experimental Botany, 2013, 64: 4143-4155. 
[40] FRIEDL A, PADOUVAS E, ROTTER H, VARMUZA K. Prediction of heating values of biomass fuel from elemental composition. Analytica Chimica Acta, 2005, 544: 191-198. 
[41] DEMIRBAS A. Relationships between heating value and lignin, fixed carbon, and volatile material contents of shells from biomass products. Energy Sources, 2003, 25(7): 629-635. 
[42] DEMIRBAS A. Relationships between heating value and lignin, moisture, ash and extractive contents of biomass fuels. Energu Exploration & Exploitation, 2002; 20(1): 105-111. 
[43] MONTI A, DI VIRGILIO N, VENTURI G. Mineral composition and ash content of six major energy crops. Biomass & Bioenergy, 2008, 32: 216-223. 
[44] SOMMERSACHER P, BRUNNER T, OBERNBERGER I, KIENZL N, KANZIAN W. Combustion related characterisation of Miscanthus peat blends applying novel fuel characterisation tools. Fuel, 2015, 158: 253-262. 
[45] ARNOULT S, OBEUF A, BÉTHENCOURT L, MANSARD M C, BRANCOURT-HULMEL M. Miscanthus clones for cellulosic bioethanol production: Relationships between biomass production, biomass production components, and biomass chemical composition. Industrial Crops and Products, 2015(63): 316-328. 
[46] LEMUS R, BRUMMER E C, MOORE K J, MOLSTAD N E, BURRAS C L, BARKER M F. Biomass yield and quality of 20 switchgrass populations in southern Iowa, USA. Biomass and Bioenergy, 2002(23): 433-442. 
[47] KLIMIUK E, POKÓJ T, BUDZYNSKI W, DUBIS B. Theoretical and observed biogas production from plant biomass of different fibre contents. Bioresource Technology, 2010(101): 9527-9535. 
[48] LAIRD D A, BROWN R C, AMONETTE J E, LEHMANN J. Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels Bioproducts & Biorefining, 2009, 3: 547-562. 
[49] FAHMI R, BRIDGWATER A V, DONNISON I. The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel, 2008, 87: 1230-1240. 
[50] KAN T, STREZOV V, EVANS T J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews, 2016, 57: 1126-1140. 
[51] 薛帅, 秦烁, 王继师, 梁振兴, 谢光辉. 灰色系统理论在非粮柴油植物评价与筛选中的应用. 中国农业大学学报, 2012, 17(6): 225-230. 
XUE S, QIN S, WANG J S, LIANG Z X, XIE G H. Application of grey system theory in evaluation and screening of no-food biodiesel plant resources. Journal of China Agricultural University, 2012, 17(6): 225-230. (in Chinese) 
[52] 徐超华, 陆鑫, 马丽, 刘新龙, 刘洪博, 苏火生, 林秀琴, 蔡青. 斑茅种质资源的表型性状及遗传多样性. 湖南农业大学学报(自然科学版), 2014, 40(2):117-121. 
XU C H, LU X, MA L, LIU X L, LIU H B, SU H S, LIN X Q, CAI Q. Phenotypic traits and genetic diversity of Erianthus arundinaceum germplasm. Journal of Hunan Agricultural University(Natural Sciences), 2014, 40(2): 117-121. (in Chinese)
[1] CHEN Li-na, FANG Wei, SI Hai-ping, CHEN Yan-qing, CAO Yong-sheng. A Service Performance Evaluation System of National Crop Germplasm Resources Infrastructure [J]. Scientia Agricultura Sinica, 2016, 49(13): 2459-2468.
[2] FAN Xi-feng,HOU Xin-cun,ZUO Hai-tao,WU Ju-ying,DUAN Liu-sheng
.

Biomass Yield and Quality of Three Kinds of Bioenergy Grasses in Beijing of China

[J]. Scientia Agricultura Sinica, 2010, 43(16): 3316-3322 .
[3] ,,,,,,,,. Establishment of a risk assessment framework for analysis of the spread of highly pathogenic avian influenza [J]. Scientia Agricultura Sinica, 2006, 39(10): 2114-2117 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!