Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (16): 3356-3371.doi: 10.3864/j.issn.0578-1752.2020.16.013

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Nano-Packaging Preservative Mechanism of Flammulina filiformis After Harvest Based on Mitochondrial Energy Status Pathways

MA Ning1(),WANG HeTong1,FANG DongLu2,ZHAO LiYan2,YANG WenJian1,PEI Fei1,HU QiuHui1   

  1. 1College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Control and Processing of Jiangsu Province, Nanjing 210023
    2College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095
  • Received:2020-03-21 Accepted:2020-05-27 Online:2020-08-16 Published:2020-08-27

Abstract:

【Objective】 The purposes of this study were to illuminate the effects of different packaging on energy metabolism of Flammulina filiformis from mitochondrial level, providing a new idea for further revealing the preservation mechanism of nano-package. 【Method】 In this experiment, F. filiformis was used as the research object. By using three common methods, including discontinuous density gradient centrifugation method (DDGCM), yeast mitochondrial extraction kit method (YMEKM) and improved Pulilai kit method (IPKM), the optimal way to extract F. filiformis mitochondria was determined. The regularity of post-harvest energy metabolism in packaged F. filiformis was expounded via measuring the content of ATP metabolism system substances (ATP, ADP, AMP and energy charge) and mitochondrial complex activity. 【Result】 The alcohol dehydrogenase activity in mitochondria and the cytochrome C oxidase activity in cytosol were the lowest, and mitochondrial respiration rates were the highest in IPKM extracted samples compared to other two methods, demonstrating the IPKM obtained mitochondria had the best membrane integrity. The mitochondrial superoxide dismutase activity extracted by IPKM was the highest, reaching 17.82 U·mg-1 pro, which was 7.31% and 25.59% higher than that extracted by DDGCM-1 and YMEKM, respectively. Combined with the results of transmission electron microscopy and Janus green B staining test showed that the IPKM treatment had the largest number of active mitochondria, and their mitochondrial structure was relatively complete. During the cold storage period of F. filiformis, the sample in nano-packaging (NP) groups showed that not only the ATP and energy content but also the activity of the main mitochondrial complex was significantly higher than those of polyethylene (PE) packaged bags (control). NP materials promoted the process of oxidative phosphorylation of mitochondria by maintaining a high level of ATP content and delaying the decline of energy charge. At the 21st day, the ATP content of NP groups was still 113.83 μg·g-1FW, which was higher than that of control, thus avoiding the reduction of the activity of F. filiformis mitochondrial complex I and Ⅲ, and slowing down the activity of mitochondrial complex Ⅳ. The mitochondrial complex Ⅳ activity of F. filiformis in the PE packaging groups reached the first peak at the 9th day, while NP groups reached the first peak at the 15th day, and the activity of the mitochondrial complex IV (5.14 U·mg-1 pro) in the NP materials reached the first peak on the 15th day, which was significantly higher than that in the PE packaging groups (1.12 U·mg-1 pro), with a difference of 78.23%. It proved that NP could effectively control the electron transfer in the mitochondrial respiratory chain without hindrance, ensure the energy supply of cells, thus better maintain the energy state of F. filiformis . 【Conclusion】 Compared with other methods, the mitochondria proposed by IPKM was the best approach for leading to the minimal damage on mitochondria structure and bioactivity, which laid the foundation of mitochondrial energy metabolism research on F. filiformis in the future. Meanwhile, the energy state of F. filiformis was maintained and its shelf-life was prolonged by NP treatment via improving ATP content and mitochondrial complex I, Ⅲ activities, and delaying the decline of energy charge and mitochondrial complex Ⅳ activity.

Key words: Flammulina filiformis, mitochondria, improved Pulilai method, storage, energy metabolism

Table 1

Standard curve line regression equations and correlation coefficients of ATP, ADP and AMP"

能量组分
Component of energy charge
回归方程
Regression equation
相关系数
Correlation coefficient
ATP y=29.933x-4.275 R2=0.9998
ADP y=27.48x+28.358 R2=1
AMP y=36.92x+12.892 R2=1

Fig. 1

Activity of alcohol dehydrogenase in mitochondria (A) and cytosol (B) of F. filiformis fruiting body Different letters on bars indicated significantly different among treatments (P<0.05). The same as below"

Fig. 2

Activity of alcohol dehydrogenase in mitochondria (A) and cytosol (B) of F. filiformis mycelium"

Fig. 3

Activity of Cytochrome C oxidase in mitochondria (A) and cytosol (B) of F. filiformis fruiting body"

Fig. 4

Activity of Cytochrome c oxidase in mitochondria (A) and cytosol (B) of F. filiformis mycelium"

Fig. 5

The number of active mitochondria extracted from the fruit body (A) and mycelium (B) of F. filiformis"

Fig. 6

TEM observation of mitochondrial microstructure Mitochondria; MF: Mitochondrial fragments; Magnification: 20000×"

Fig. 7

Activity of Superoxide dismutase in mitochondria of F. filiformis fruiting body (A) and mycelium (B)"

Fig. 8

Janus green B staining active mitochondria"

Fig. 9

The number of active mitochondria extracted from the fruit body (A) and mycelium (B) of F. filiformis by each extraction method"

Fig. 10

Effects of different packaging materials on appearance quality of F. filiformis during refrigeration"

Fig. 11

Effect of different packaging materials on changes of ATP content (A), ADP content (B), AMP content (C) and energy charges (D) of F. filiformis during refrigeration *means significant difference between PE and NP groups (P<0.05). The same as below"

Fig. 12

Effects of different packaging materials on changes of mitochondrial complex I (A), complex Ⅲ (B) and complex Ⅳ (C) of F. filiformis during refrigeration"

[1] YANG W J, PEI F, SHI Y, ZHAO L Y, FANG Y, HU Q H. Purification: Characterization and anti-proliferation activity of polysaccharides from Flammulina velutipes. Carbohydrate Polymers, 2012,88:474-480.
[2] 郑锦荣. 金针菇与巨大口蘑原生质体融合育种研究[D]. 广州: 华南农业大学, 2016.
ZHENG J R. Studies onFlammulina velutipes and Tricholoma giganteum massee protoplast fusion breeding [D]. Guangzhou: South China Agricultural University, 2016. (in Chinese)
[3] YANG W J, SHI C, HU Q H, WU Y Y, FANG D L, PEI F, MARIGA A M. Nanocomposite packaging regulate respiration and energy metabolism inFlammulina velutipes. Postharvest Biology and Technology, 2019,151:119-126.
[4] 杨燕婷, 杨芹, 杨方美, 辛志宏, 赵立艳, 郁志芳, 胡秋辉. 纳米包装材料对金针菇的保鲜作用. 中国农业科学, 2009,42(9):3250-3258.
YANG Y T, YANG Q, YANG F M, XIN Z H, ZHAO L Y, YU Z F, HU Q H. Effect of nano-packaging material on quality of Flammulina velutipes. Scientia Agricultura Sinica, 2009,42(9):3250-3258. (in Chinese)
[5] JIANG Y, QU H, DUAN X, LUO Y, JIANG W. Energy aspects in ripening and senescence of harvested horticultural crops. Stewart Postharvest Review, 2007,3(2):1-5.
[6] 王丹丹, 丁炳旭. 菠菜叶片线粒体DNA的提取及RAPD分析. 辽东学院学报(自然科学版), 2014,21(1):32-36.
WANG D D, DING B X. Extraction and RAPD analysis of mitochondrial DNA from spinach leaves. Journal of Eastern Liaoning University (Natural Science Edition), 2014,21(1):32-36. (in Chinese)
[7] 谭才邓. 植物线粒体提取的一种简捷方法. 广东轻工职业技术学院学报, 2007,6(1):26-28, 31.
TAN C D. A simple method for isolating mitochondrial from plant. Journal of Guangdong Industry Technical College, 2007,6(1):26-28, 31. (in Chinese)
[8] 密克, 王金子, 纪水养, 陈琦, 陈保善. 一种适用于双向电泳分析的高效真菌线粒体提取及蛋白质制样方法. 基因组学与应用生物学, 2013,32(1):105-110.
MI K, WANG J Z, JI S Y, CHEN Q, CHEN B S. An efficient method of isolation and protein preparation of fungal mitochondria for two-dimentional electophoresis. Genomics and Applied Biology, 2013,32(1):105-110. (in Chinese)
[9] ZHAO C Q, ZHANG Y H, JIANG S D, JIANG L S, DAI L Y. Both endoplasmic reticulum and mitochondria are involved in disc cell apoptosis and intervertebral disc degeneration in rats. Age, 2010,32(2):161-177.
pmid: 19960285
[10] GUIROLA M, BARRETO L, PAGANI A, ROMAGOSA M, CASAMAYOR A, ATRIAN S. Lack of DNA helicase Pif1 disrupts zinc and iron homoeostasis in yeast. Biochemical Journal, 2010,432(3):595-608.
pmid: 20858222
[11] 孙长娇, 崔海信, 王琰, 曾章华, 赵翔, 崔博. 纳米材料与技术在农业上的应用研究进展. 中国农业科技导报, 2016,18(1):18-25.
SUN C J, CUI H X, WANG Y, ZENG Z H, ZHAO X, CUI B. Studies on applications of nanomaterial and nanotechnology in agriculture. Journal of Agricultural Science and Technology, 2016,18(1):18-25. (in Chinese)
[12] 方东路, 常诗洁, 赵立艳, 安辛欣, 胡秋辉, 杨文建. 纳米包装材料对金针菇木质化及相关酶活性的影响. 食品科学, 2016,37(20):261-267.
FANG D L, CHANG S J, ZHAO L Y, AN X X, HU Q H, YANG W J. Effect of nano-packing on lignification and related enzyme activities of Flammulina velutipes. Food Science, 2016,37(20):261-267. (in Chinese)
[13] SHI C, WU Y Y, FANG D L, PEI F, MARIGA A M, YANG W J, HU Q H. Effect of nanocomposite packaging on postharvest senescence of Flammulina velutipes. Food Chemistry, 2018,246:414-421.
pmid: 29291867
[14] AGHDAM M S, JANNATIZADEH A, LUO Z S, PALIYATH G. Ensuring sufficient intracellular ATP supplying and friendly extracellular ATP signaling attenuates stresses, delays senescence and maintains quality in horticultural crops during postharvest life. Trends in Food Science & Technology, 2018,76:67-81.
[15] 刘亭, 钱政江, 杨恩, 吴富旺, 屈红霞, 蒋跃明. 呼吸活性和能量代谢与荔枝果实品质劣变的关系. 果树学报, 2010,27(6):946-951.
LIU T, QIAN Z J, YANG E, WU F W, QU H X, JIANG Y M. Respiratory activity and energy metabolism of harvested litchi fruit and their relationship to quality deterioration. Journal of Fruit Science, 2010,27(6):946-951. (in Chinese)
[16] FANG D L, YANG W J, KIMATU B M, KIMATU B M, AN X X, HU Q H, ZHAO L Y. Effect of nanocomposite packaging on postharvest quality and reactive oxygen species metabolism of mushrooms (Flammulina velutipes). Postharvest Biology and Technology, 2016,119:49-57.
[17] FANG D L, YANG W J, DENG Z L, AN X X, ZHAO L Y, HU Q H. Proteomic investigation of metabolic changes of mushroom (Flammulina velutipes) packaged with nanocomposite material during cold storage. Journal of Agricultural & Food Chemistry, 2017,65:10368-10381.
pmid: 29111700
[18] LIN Y F, LIN Y X, LIN H T, CHEN Y H, WANG Y H, SHI J. Application of propyl gallate alleviates pericarp browning in harvested longan fruit by modulating metabolisms of respiration and energy. Food Chemistry, 2018,240:863-869.
doi: 10.1016/j.foodchem.2017.07.118 pmid: 28946353
[19] LIN Y F, LIN Y X, LIN H T, RITENOUR M A, SHI J, ZHANG S, CHEN Y H, WANG H. Hydrogen peroxide-induced pericarp browning of harvested longan fruit in association with energy metabolism. Food Chemistry, 2017,225(15):31-36.
[20] LIN Y F, CHEN M Y, LIN H T, HUNG Y C, LIN Y X, CHEN Y H, WANG H, SHI J. DNP and ATP induced alteration in disease development of Phomopsis longanae Chi-inoculated longan fruit by acting on energy status and reactive oxygen species production- scavenging system. Food Chemistry, 2017,228:497-505.
doi: 10.1016/j.foodchem.2017.02.045 pmid: 28317755
[21] 阚娟, 王红梅, 金昌海, 黄力华. 桃果实成熟过程中活性氧和线粒体呼吸代谢相关酶的变化. 食品科学, 2009,30(8):275-279.
KAN J, WANG H M, JIN C H, HUANG L H. Changes of active oxygen and mitochondria respiratory metabolism-related enzymes during maturation of peach fruit. Food Science, 2009,30(8):275-279. (in Chinese)
[22] 吴媛, 董凌月, 安威, 安云庆. 几种不同提取线粒体的方法对线粒体含量及活性的影响. 首都医科大学学报, 2010,31(2):241-244.
WU Y, DONG L Y, AN W, AN Y Q. Comparison between different methods to extract mitochondria and its effects on mitochondria content and activity. Journal of Capital Medical University, 2010,31(2):241-244. (in Chinese)
[23] 蔺凯丽, 黄琦, 黄琦辉, 靳祯亮, 姜天甲, 郑小林. 麦角硫因抑制双孢蘑菇褐变及其与能量代谢关系. 中国农业科学, 2018,51(8):1568-1576.
LIN K L, HUANG Q, HUANG Q H, JIN Z L, JIANG T J, ZHENG X L. Browning inhibition and energy metabolism mechanism of Agaricus bisporus by ergothioneine treatment. Scientia Agricultura Sinica, 2018,51(8):1568-1576. (in Chinese)
[24] FANG D L, YANG W J, KIMATU B M, MARIGA A M, ZHAO L Y, AN X X, HU Q H. Effect of nanocomposite-based packaging on storage stability of mushrooms (Flammulina velutipes). Innovative Food Science and Emerging Technologies, 2016,33:489-497.
[25] 高永彬. 梨花粉管停止生长与线粒体的关系研究[D]. 南京: 南京农业大学, 2013.
GAO Y B. Relationship of cessation of pollen tube growth and mitochondria Pyrus L.[D]. Nanjing: Nanjing Agricultural University, 2013. (in Chinese)
[26] TARZE A, DENIAUD A, LE BRAS M, MAILLIER E, MOLLE D, LAROCHETTE N, ZAMZAMI N, JAN G, KROEMER G, BRENNER C. GAPDH, a novel regulator of the pro-apoptotic mitochondrial membrane permeabilization. Oncogene, 2007,26(18):2606-2620.
doi: 10.1038/sj.onc.1210074 pmid: 17072346
[27] 高永超, 张龙飞, 楚方旋, 王来. 小鼠神经组织线粒体提取方法研究. 河南大学学报(自然科学版), 2018,48(2):202-206.
GAO Y C, ZHANG L F, CHU F X, WANG L. Research of methods for isolation of mitochondrion from nervous tissue in mouse. Journal of Henan University (Natural Science Edition), 2018,48(2):202-206. (in Chinese)
[28] WU Y Y, HU Q H, LI Z X, PEI F, MARIGA A M, YANG W J. Effect of nanocomposite-based packaging on microstructure and energy metabolism ofAgaricus bisporus. Food Chemistry, 2019,276:790-796.
pmid: 30409664
[29] ALBA T G, EVA N, ABRIATA L A, VILA A J, HOSLER J, BARRIENTOS A. Mitochondrial cytochrome c oxidase biogenesis: Recent developments. Seminars in Cell & Developmental Biology, 2018,76:163-178.
pmid: 28870773
[30] 杨婕, 钟阳和. 担子菌菌丝体呼吸速率变化规律的研究. 中国生态农业学报, 2003(4):43-46.
YANG J, ZHONG Y H. A study on the breath rate change of basidiomycetes at mycelial stage. Chinese Journal of Eco-Agriculture, 2003(4):43-46. (in Chinese)
[31] 胡一鸿, 牛健康. 超氧化物歧化酶研究进展. 生物学教学, 2005(1):2-4.
HU Y H, NIU J K. Progress in research on superoxide dismutase. Biology teaching, 2005(1):2-4. (in Chinese)
[32] 付汉维, 彭礼飞. 锰超氧化物歧化酶的研究进展. 公共卫生与预防医学, 2010,21(4):69-72.
FU H W, PENG L F. Progress in research on Mn-superoxide dismutase. Journal of Public Health and Preventive Medicine, 2010,21(4):69-72. (in Chinese)
[33] BEEVERS H. Respiratory metabolism in plants. Quarterly Review of Biology, 1961,191:1031.
[34] 齐振华, 李迎春, 黄凤兰, 刘立琨, 孟凡娟. 刺槐线粒体的提取方法研究. 北方农业学报, 2013(4):28-29.
QI Z H, LI Y C, HUANG F L, LIU L K, MENG F J. The extract method of robinia pseudoacacia mitochondria. Inner Mongolia Agricultural Science and Technology, 2013(4):28-29. (in Chinese)
[35] 肖明明. 线粒体中C1QBP相互作用蛋白的研究[D]. 天津: 天津医科大学, 2016.
XIAO M M. Identification of mitochondria interacting protein of C1QBP[D]. Tianjin: Tianjin Medical University, 2016.
[36] 生利霞, 冯立国, 束怀瑞. 低氧胁迫下钙对樱桃砧木根系抗氧化系统及线粒体功能的影响. 中国农业科学, 2008,41(11):3913-3919.
SHENG L X, FENG L G, SHU H R. Effect of calcium on the functions of antioxidant systems and mitochondria in cherry rootstock roots under hypoxia stress. Scientia Agricultura Sinica, 2008,41(11):3913-3919. (in Chinese)
[37] 冯京海, 张敏红, 郑姗姗, 谢鹏, 李军乔. 高温及氧化应激对体外培养肉鸡骨骼肌线粒体功能的影响. 中国农业科学, 2008,41(10):3264-3269.
FENG J H, ZHANG M H, ZHENG S S, XIE P, LI J Q. Effect of high temperature and oxidative stress on mitochondrial function of incubated broiler muscle. Scientia Agricultura Sinica, 2008,41(10):3264-3269. (in Chinese)
[38] NEUBURGER M, JOURNET E P, BLIGNY R, CARDE Z P, DOUCE R. Purification of plant mitochondria by isopycnic centrifugation in density gradients of percoll. Archives of Biochemistry and Biophysics, 1982,217(1):312-323.
pmid: 6289753
[39] WIECKOWSKI M R, GIORGI C, LEBIEDZINSKA M, DUSZYNSKI J, PINTON P. Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. Nature Protocol, 2009,4(11):1582-1590.
[40] DOUCE R, CHRISTENSEN E L, BONNER W D. Preparation of intaintact plant mitochondria. Biochimica et Biophysica Acta (BBA)- Bioenergetics, 1972,275(2):148-160.
[41] ZIVANOVIC R, BUESCHER R, KIM S K. Mushroom texture, cell wall composition, color, and ultrastructure as affected by pH and temperature. Journal of Food Science, 2003,68(5):1860-1865.
doi: 10.1111/jfds.2003.68.issue-5
[42] MICHALENKO G O, HOHL H R, RAST D. Chemistry and architecture of the mycelial wall of Agaricus bisporus. Journal of General Microbiology, 1976,92:251-262.
doi: 10.1099/00221287-92-2-251
[43] ANGELI P J, EYME J. 3-Ultrastructural changes during development of Agaricus bisporus, and Agaricus sylvicola. Biology and Cultivation of Edible Mushrooms, 1978: 53-81.
[44] ZHANG H, DU Y G, YU X J, MITSUTOMI M, AIBA S. Preparation of chitooligosaccharides from chitosan by a complex enzyme. Carbohydrate Research, 1999,320(3/4):257-260.
doi: 10.1016/S0008-6215(99)00154-8
[45] CHU W J, GAO H Y, CHEN H J, FANG X J, ZHENG Y H. Effects of cuticular wax on the postharvest quality of blueberry fruit. Food chemistry, 2018,239:68-74.
doi: 10.1016/j.foodchem.2017.06.024 pmid: 28873622
[46] YANG F M, LI H M, LI F, XIN Z H, ZHAO L Y, ZHENG Y H, HU Q H. Effect of nano‐packing on preservation quality of fresh strawberry (Fragaria ananassa Duch. cv Fengxiang) during storage at 4℃. Journal of Food Science, 2010,75(3):C236-C240.
doi: 10.1111/j.1750-3841.2010.01520.x pmid: 20492272
[47] 刘音宏. 添加纳米粒子保鲜膜的制备及其对金针菇的保鲜作用[D]. 南京: 南京农业大学, 2013.
LIU Y H. Preparation of nano preservation film and its preservation research on golden needle mushrooms[D]. Nanjing: Nanjing Agricultural University, 2013. (in Chinese)
[48] TURNER E M, WRIGHT M, WARD T, OSBORNE D J, SELF R. Production of ethylene and other volatiles and changes in cellulase and laccase activities during the life cycle of the cultivated mushroom,Agaricus bisporus. Journal of General Microbiology, 1975,91(1):167.
pmid: 811760
[49] JIANG Y M, JIANG Y L, QU H X, DUAN X W, LUO Y B, JIANG W B. Energy aspects in ripening and senescence of harvested horticultural crops. Stewart Postharvest Review, 2007,2:1-5.
[50] 李保良, 赵晓山, 罗仁, 孙晓敏, 李俊, 陈晶. 亚健康疲劳状态时血清对骨骼肌细胞线粒体膜细胞色素c氧化酶活性和线粒体能量负荷的影响. 中国组织工程研究与临床康复, 2008,12(37):7258-7262.
LI B L, ZHAO X S, LUO R, SUN X M, LI J, CHEN J. Influence of sub-health fatigue serum on the activity of cytochrome C oxidase and energy charge of mitochondrial membrane of human skeletal muscle cells. China Tissue Engineering Research and Clinical Rehabilitation, 2008,12(37):7258-7262. (in Chinese)
[51] LI P Y, YIN F, SONG L J, ZHENG X L. Alleviation of chilling injury in tomato fruit by exogenous application of oxalic acid. Food Chemistry, 2016,202:125-132.
doi: 10.1016/j.foodchem.2016.01.142 pmid: 26920276
[52] 许晓风, 李爽, 李昊淼. K562细胞对树突状细胞线粒体功能和能量代谢状态的影响. 第三军医大学学报, 2015,37(18):1854-1858.
XU X F, LI S, LI H M. K562 cells impair mitochondrial function and energy metabolism of dendritic cells in Transwell coculture system. Journal of the Third Military Medical University, 2015,37(18):1854-1858. (in Chinese)
[53] 张晓玉. 贮藏温度对秀珍菇采后生理、呈味物质及能量代谢的影响[D]. 沈阳: 沈阳农业大学, 2017.
ZHANG X Y. Effects of different temperature storage on physiology, taste component and energy metabolism of Pleurotus geesteranus [D]. Shenyang: Shenyang Agricultural University, 2017. (in Chinese)
[54] WANG H, QIAN Z J, MA S M, ZHOU Y C, PATRICK J W, DUAN X W, JIANG Y M, QU H X. Energy status of ripening and postharvest senescent fruit of litchi (Litchi chinensis Sonn.). BMC Plant Biology, 2013,13(1):55.
doi: 10.1186/1471-2229-13-55
[55] JIN P, ZHU H, WANG J, CHEN J J, WANG X L, ZHENG Y H. Effect of methyl jasmonate on energy metabolism in peach fruit during chilling stress. Journal of the Science of Food and Agriculture, 2013,93(8):1827-1832.
doi: 10.1002/jsfa.5973 pmid: 23208649
[56] 马伟科, 张宏艳. 线粒体细胞色素C与细胞凋亡. 实用医学杂志, 2007,23(23):3786-3788.
MA W K, ZHANG H Y. Mitochondria cytochrome C and cell apoptosis. Journal of Practical Medicine, 2007,23(23):3786-3788. (in Chinese)
[1] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[2] PENG Xue,GAO YueXia,ZHANG LinXuan,GAO ZhiQiang,REN YaMei. Effects of High-Energy Electron Beam Irradiation on Potato Storage Quality and Bud Eye Cell Ultrastructure [J]. Scientia Agricultura Sinica, 2022, 55(7): 1423-1432.
[3] DONG FuCheng,MA ShuLi,SHI JuanJuan,ZHANG JunMei,CUI Yan,REN YouShe,ZHANG ChunXiang. Expression and Localization of LCN5 in Ram Reproductive Organs and Spermatozoa [J]. Scientia Agricultura Sinica, 2022, 55(7): 1445-1457.
[4] XIANG MiaoLian, WU Fan, LI ShuCheng, WANG YinBao, XIAO LiuHua, PENG WenWen, CHEN JinYin, CHEN Ming. Effects of Melatonin Treatment on Resistance to Black Spot and Postharvest Storage Quality of Pear Fruit [J]. Scientia Agricultura Sinica, 2022, 55(4): 785-795.
[5] HUANG XunHe,WENG ZhuoXian,LI WeiNa,WANG Qing,HE DanLin,LUO Wei,ZHANG XiQuan,DU BingWang. Genetic Diversity of Indigenous Yellow-Feathered Chickens in Southern China Inferred from Mitochondrial DNA D-Loop Region [J]. Scientia Agricultura Sinica, 2022, 55(22): 4526-4538.
[6] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[7] ZOU YunQian,LIN ZiZhen,XU RangWei,CHENG YunJiang. Development and Evaluation of a Coating Substitute for Individual Polyethylene Film Packaging of Citrus Fruit [J]. Scientia Agricultura Sinica, 2022, 55(12): 2398-2412.
[8] HU FeiFei,QIAN ShuYi,HUANG Feng,JIANG Wei,QIANG Yu,JIANG Feng,HU HaiMei,LI Xia,ZHANG ChunHui. Effect of Low Voltage Electrostatic Field-Assisted Short-Term Frozen Storage on Quality of Pork [J]. Scientia Agricultura Sinica, 2021, 54(9): 1993-2005.
[9] HAN ZhanYu,WU ChunYan,XU YanQiu,HUANG FuDeng,XIONG YiQin,GUAN XianYue,ZHOU LuJian,PAN Gang,CHENG FangMin. Effects of High-Temperature at Filling Stage on Grain Storage Protein Accumulation and Its Biosynthesis Metabolism for Rice Plants Under Different Nitrogen Application Levels [J]. Scientia Agricultura Sinica, 2021, 54(7): 1439-1454.
[10] XiaoFeng LU,GuoDong DU,Jing SHAO,JingRu ZHANG,HaiLong SUN. Physiological Response of Mitochondrial Function of Strawberry Roots to Exogenous Phenolic Acid [J]. Scientia Agricultura Sinica, 2021, 54(5): 1029-1042.
[11] ZHENG FengJun, WANG Xue, LI ShengPing, LIU XiaoTong, LIU ZhiPing, LU JinJing, WU XuePing, XI JiLong, ZHANG JianCheng, LI YongShan. Synergistic Effects of Soil Moisture, Aggregate Stability and Organic Carbon Distribution on Wheat Yield Under No-Tillage Practice [J]. Scientia Agricultura Sinica, 2021, 54(3): 596-607.
[12] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[13] LIU Lian,TANG ZhiPeng,LI FeiFei,XIONG Jiang,LÜ BiWen,MA XiaoChuan,TANG ChaoLan,LI ZeHang,ZHOU Tie,SHENG Ling,LU XiaoPeng. Fruit Quality in Storage, Storability and Peel Transcriptome Analysis of Rong’an Kumquat, Huapi Kumquat and Cuimi Kumquat [J]. Scientia Agricultura Sinica, 2021, 54(20): 4421-4433.
[14] ZHAO FuMei,WANG Shuang,TIAN YuTing,QIAO Qi,WANG YongJiang,ZHANG DeSheng,ZHANG ZhenChen. An Investigation into Key Factors Influencing the Occurrence of Virus Disease in Sweet Potato [J]. Scientia Agricultura Sinica, 2021, 54(15): 3232-3240.
[15] HUANG Feng,WEI QiChao,LI Xia,LIU ChunMei,ZHANG ChunHui. Research Progress on Mechanisms of Apoptosis to Postmortem Tenderization in Muscle [J]. Scientia Agricultura Sinica, 2021, 54(10): 2192-2202.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!