Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (11): 2297-2304.doi: 10.3864/j.issn.0578-1752.2020.11.015

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Using Random Regression Models to Estimate Genetic Parameters on Body Weights in Layers

GUO Jun,QU Liang,DOU TaoCun,WANG XingGuo,SHEN ManMan,HU YuPing,WANG KeHua()   

  1. Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, Jiangsu
  • Received:2019-05-19 Accepted:2019-10-28 Online:2020-06-01 Published:2020-06-09
  • Contact: KeHua WANG E-mail:sqbreeding@126.com

Abstract:

【Objective】 This study was to assess the effect of the orders of Legendre polynominals on the size of the maximum likelihood and the error, to optimize the random regression model, to evaluate the genetic potential and selection knot of layer resource population and to provide parameters for optimal layer breeding scheme for resource population. 【Method】The data set consisted of 26 532 items collected from the layer resource population, which set up by White Leghorn reciprocal crossing with the blue eggshell chickens. The pedigree consisted of 5 871 individuals, including 4 147 chickens with 5 records, 802 chickens with 4 records and 128 chickens without records. The standard of data cleaning included: i. removing outlier; ii. eliminating repeated individuals; iii. getting rid of unknown sexed individuals; iv. individuals with less than 4 records were also excluded. After data cleaning procedures, 25 483 records on body weight could be used in the next step, 2 223 of which collected from blue shelled chickens, 696 of which collected from White Leghorn, 6 002 of which collected from F1 generation and 16 562 of which collected from F2 generation. The influence of the nongenetic factors on body weights was analyzed by GLM in SPSS. The fixed effects of animal model included batch and sex factors. Using the random regression model, variance components, genetic parameters and eigenvectors were obtained. The model included general fixed effect and fixed regression, random regression. In this study, batch-sex was the fixed effects, and a fixed regression was fitted for week age body weight effects; the direct additive genetic, permanent environment were the random effects. Comparing with AIC and BIC values, the best model should embed 2nd Legendre polynomials into fixed effects, 5th Legendre polynomials into additive genetic effects and permanent environmental effects. Heterogeneous residual variance was grouped into 5 levels. Each observation was set an initial estimate. The residual variance between the neighboring observations was treated as a linear regression. 【Result】 For the body weights on resource population, heritability was ranged from 0.46 to 0.63, repeatability varied from 0.88 to 0.92, the genetic correlation was ranged from 0.32 to 0.99, and permanent environmental correlation was varied from 0.34 to 0.99. The genetic correlations among the weeks reduced with the intervals increased, high correlations occurred between the neighboring weeks. The genetic variance, permanent environmental variance and residual variance increased with ages. The first three eigenvalues of additive genetic effects was 1 976.91, 161.95, and 42.22, respectively, and these eigenvalues could explain 99% of total variations. 【Conclusion】The genetic parameters on the early body weights in laying chickens were estimated with a random regression model. The individual growth curve could be altered by selection on the coefficients associated with the second eigenfunction. The right time seemed to select on 3 to 6 week. Estimates of heritability in the resource population were larger than the results in the literatures.

Key words: body weight, random regression model, heritability, eigenvalue, layer

Table 1

Statistics on body weights in the resource population"

世代
Generation
1周龄体重
1st-week BW
3周龄体重
3rd-week BW
5周龄体重
5th-week BW
7周龄体重
7th-week BW
9周龄体重
9th-week BW
绿壳蛋鸡公鸡Blue shelled cocks 48.53b±5.24 107.40b±14.51 167.13b±27.25 301.11b±47.41 469.60b,c±68.73
绿壳蛋鸡母鸡Blue shelled hens 46.29 a±5.14 97.05a±12.56 147.23a±24.11 260.84a±37.50 396.74a±52.44
白莱航鸡公鸡White leghorn cocks 69.54f±6.80 162.88g±14.94 268.08f±28.13 473.17f±38.15 634.12g±67.65
白莱航鸡母鸡White leghorn hens 66.02e±6.75 145.29e±13.31 236.76d±23.36 397.29e±36.25 539.40e±55.33
F1代公鸡Cocks in F1 generation 47.05a±7.74 141.15d±20.34 273.07f±31.35 382.72e±48.58 569.77f±67.75
F1代母鸡Hens in F1 generation 45.64a±7.35 130.03c±19.90 241.94d±29.27 331.45c±39.61 478.98c±58.73
F2代公鸡Cocks in F2 generation 62.91d±5.82 152.26f±19.45 252.52e±34.15 393.87e±56.56 522.68d±71.82
F2代母鸡Hens in F2 generation 60.61c±5.33 139.27d±15.96 225.19c±28.33 353.03d±47.51 458.44b±56.63

Table 2

Comparison of models on body weight in laying chickens"

加性遗传效应阶数
Orders of additive genetic effects
永久环境效应阶数
Orders of PE effects
参数个数
The number of parameters
最大对数似然值
Maximum lgL
AIC BIC
2 2 11 -84372 168766 168855
2 3 14 -83807 167642 167755
2 4 18 -83776 167589 167734
2 5 23 -83734 167514 167514
2 6 29 -83734 167526 167760
3 3 17 -83627 167288 167426
3 4 21 -83599 167240 167410
3 5 26 -83553 167157 167367
3 6 32 -83553 167169 167428
4 4 25 -83515 167081 167283
4 5 30 -83419 166899 167142
4 6 36 -83419 166911 167202
5 5 35 -83052 166173 166456
5 6 41 -83052 166185 166517
6 6 47 -83052 166197 166577

Table 3

Variance component and genetic parameters on body weight in resource population"

周龄
Weeks
加性遗传方差
Additive variance
永久环境方差
Permanent environmental variance
残差
Residual
表型方差
Phenotypic variance
遗传力
Heritability
永久环境方差占比
$\sigma _{pe}^{2}/\sigma _{p}^{2}$
重复力
Repeatability
1 18.91±1.44 14.76±0.85 3.99 37.67±1.01 0.50±0.03 0.39±0.03 0.891
2 158.36±13.51 70.01±8.23 22.85 251.21±9.07 0.63±0.04 0.28±0.04 0.91
3 214.60±14.83 153.93±8.80 41.70 410.23±10.50 0.52±0.03 0.38±0.02 0.90
4 538.68±32.11 349.48± 18.39 87.74 975.89±24.30 0.55±0.02 0.36±0.02 0.91
5 925.68±55.51 528.66± 30.59 133.77 1588.11±40.61 0.58±0.02 0.33±0.02 0.92
6 1275.48±86.87 694.50± 47.56 264.02 2233.99±57.81 0.57±0.03 0.31±0.03 0.88
7 1882.89±152.26 1100.43± 85.98 394.26 3377.59±95.76 0.56±0.03 0.33±0.03 0.88
8 2471.92±216.91 1798.51±126.09 498.20 4768.62±135.92 0.52±0.03 0.38±0.03 0.90
9 2797.48±238.06 2731.94±147.03 602.13 6131.55±159.58 0.46±0.03 0.45±0.03 0.90

Table 4

Estimated values of genetic (below the diagonal) and permanent environmental correlations (above the diagonal) on body weight"

周龄
Weeks
周龄 Weeks
1 2 3 4 5 6 7 8 9
1 0.59±0.05 0.65±0.03 0.59±0.03 0.54±0.03 0.48±0.05 0.38±0.05 0.34±0.05 0.42±0.04
2 0.68±0.02 0.76±0.03 0.49±0.05 0.43±0.05 0.48±0.06 0.52±0.06 0.54±0.05 0.50±0.05
3 0.86±0.01 0.71±0.02 0.93±0.01 0.87±0.01 0.77±0.02 0.62±0.03 0.57±0.03 0.71±0.02
4 0.71±0.02 0.32±0.03 0.90±0.01 0.97±0.00 0.85±0.01 0.64±0.03 0.57±0.03 0.76±0.02
5 0.68±0.02 0.33±0.03 0.89±0.01 0.99±0.00 0.94±0.01 0.77±0.02 0.71±0.02 0.86±0.01
6 0.70±0.02 0.54±0.03 0.91±0.01 0.91±0.01 0.95±0.00 0.94±0.01 0.90±0.01 0.98±0.00
7 0.67±0.02 0.72±0.02 0.86±0.01 0.74±0.01 0.80±0.01 0.95±0.00 0.99±0.00 0.97±0.00
8 0.66±0.02 0.73±0.02 0.82±0.01 0.67±0.02 0.73±0.01 0.90±0.01 0.99±0.00 0.96±0.00
9 0.67±0.02 0.40±0.04 0.78±0.02 0.82±0.01 0.86±0.01 0.89±0.01 0.85±0.01 0.87±0.01

Fig. 1

Three largest eigenvalues of the eigenfunctions on body weight"

[1] GOODMAN B, GODFREY G F . Heritability of body weight in the domestic fowl. Poultry Science, 1956,35(1):50-53.
doi: 10.3382/ps.0350050
[2] ANDERSON K, HAVENSTEIN G, JENKINS P, OSBORNE J . Changes in commercial laying stock performance, 1958-2011: Thirty-seven flocks of the North Carolina random sample and subsequent layer performance and management tests. World's Poultry Science Journal, 2013,69(3):489-514.
doi: 10.1017/S0043933913000536
[3] 杨运清, 李仁杰, 李淑玲 . 动态性状遗传参数的估计方法. 畜牧兽医学报, 1996(5):412-416.
YANG Y Q, LI R J, LI S L . An estimation method for genetic parameters of dynamic traits. Acta Veterinaria et Zootechnica Sinica, 1996(5):412-416.(in Chinese)
[4] JAFFRÉZIC F, PLETCHER S D . Statistical models for estimating the genetic basis of repeated measures and other function-valued traits. Genetics, 2000,156(2):913-922.
[5] BEGLI H E, TORSHIZI R V, MASOUDI A A, EHSANI A, JENSEN J . Longitudinal analysis of body weight, feed intake and residual feed intake in F-2 chickens. Livestock Science, 2016,184:28-34.
[6] MEBRATIE W, SHIRALI M, MADSEN P, SAPP R L, HAWKEN R, JENSEN J . The effect of selection and sex on genetic parameters of body weight at different ages in a commercial broiler chicken population. Livestock Science, 2017, 204:78-87.
[7] ROVADOSCKI G A, PETRINI J, RAMIREZ-DIAZ J, PERTILE S F N, PERTILLE F, SALVIAN M, IUNG L H S, RODRIGUEZ M A P, ZAMPAR A, GAYA L G, CARVALHO R S B, COELHO A A D, SAVINO V J M, COUTINHO L L, MOURAO G B . Genetic parameters for growth characteristics of free-range chickens under univariate random regression models. Poultry Science, 2016,95(9):1989-1998.
[8] RAFAT S A, NAMAVAR P, SHODJA D J, JANMOHAMMADI H, KHOSROSHAHI H Z, DAVID I . Estimates of the genetic parameters of turkey body weight using random regression analysis. Animal, 2011,5(11):1699-1704.
doi: 10.1017/S1751731111000929
[9] MOTA L F M, MARTINS P, LITTIERE T O, ABREU L R A, SILVA M A, BONAFE C M . Genetic evaluation and selection response for growth in meat-type quail through random regression models using B-spline functions and Legendre polynomials. Animal, 2018,12(4):667-674.
[10] KARAMI K, ZEREHDARAN S, TAHMOORESPUR M, BARZANOONI B, LOTFI E . Genetic evaluation of weekly body weight in Japanese quail using random regression models. British Poultry Science, 2017,58(1):13-18.
[11] BARBIERI A, ONO R K, CURSINO L L, FARAH M M, PIRES M P, BERTIPAGLIA T S, PIRES A V, CAVANI L, CARRENO L O D, FONSECA R . Genetic parameters for body weight in meat quail. Poultry Science, 2015,94(2):169-171.
[12] SILVA L P, RIBEIRO J C, CRISPIM A C, SILVA F G, BONAFE C M, SILVA F F, TORRES R A . Genetic parameters of body weight and egg traits in meat-type quail. Livestock Science, 2013,153(1-3):27-32.
doi: 10.1016/j.livsci.2013.01.014
[13] 郭军, 王克华, 曲亮, 沈曼曼, 马猛, 窦套存, 胡玉萍 . 应用随机回归模型分析蛋鸡蛋黄质量遗传参数. 南京农业大学学报, 2016,39(1):145-149.
GUO J, WANG K H, QU L, SHEN M M, MA M, DOU T C, HU Y P . Genetic parameters for yolk weight in resource population with random regression model. Journal of Nanjing Agricultural University, 2016,39(1):145-149. (in Chinese)
[14] MEYER K . WOMBAT—A tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML). Journal of Zhejiang University Science B, 2007,8(11):815-821.
doi: 10.1631/jzus.2007.B0815
[15] KIRKPATRICK M, LOFSVOLD D, BULMER M . Analysis of the inheritance, selection and evolution of growth trajectories. Genetics, 1990,124(4):979-993.
[16] BOLIGON A A, MERCADANTE M E Z, FORNI S, LÔBO R B, ALBUQUERQUE L G, . Covariance functions for body weight from birth to maturity in Nellore cows. Journal of Animal Science, 2010,88(3):849-859.
doi: 10.2527/jas.2008-1511
[17] SCHAEFFER L . Application of random regression models in animal breeding. Livestock Production Science, 2004, 86(1/3):35-45.
[18] AKBAS Y, TAKMA C, YAYLAK E . Genetic parameters for quail body weights using a random regression model. South African Journal of Animal Science, 2004,34(2):104-109.
[19] ABEGAZ S, VAN WYK J B, OLIVIER J J, . Estimates of (co) variance function for growth to yearling in Horro sheep of Ethiopia using random regression model. Archives Animal Breeding, 2010,53(6):689-700.
doi: 10.5194/aab-53-689-2010
[20] ARANGO J, CUNDIFF L, VAN VLECK L D . Covariance functions and random regression models for cow weight in beef cattle. Journal of Animal Science, 2004,82(1):54-67.
doi: 10.2527/2004.82154x
[21] MEYER K, KIRKPATRICK M . Restricted maximum likelihood estimation of genetic principal components and smoothed covariance matrices. Genetics Selection Evolution, 2005,37(1):1.
doi: 10.1186/1297-9686-37-1-1
[22] GUO J, MA M, QU L, SHEN M M, DOU T C, WANG K H . Estimation of genetic parameters related to eggshell strength using random regression models. British Poultry Science, 2015,56(6):645-650.
doi: 10.1080/00071668.2015.1113503
[23] POOL M, MEUWISSEN T . Reduction of the number of parameters needed for a polynomial random regression test day model. Livestock Production Science, 2000,64(2/3):133-145.
doi: 10.1016/S0301-6226(99)00166-9
[24] BROTHERSTONE S, WHITE I, MEYER K . Genetic modelling of daily milk yield using orthogonal polynomials and parametric curves. 2000,70(3):407-415.
[25] LEGARRA A, MISZTAL I, BERTRAND J . Constructing covariance functions for random regression models for growth in Gelbvieh beef cattle. Journal of Aanimal Science, 2004,82(6):1564-1571.
[26] DRUYAN S, SHLOSBERG A, CAHANER A . Evaluation of growth rate, body weight, heart rate, and blood parameters as potential indicators for selection against susceptibility to the ascites syndrome in young broilers. Poultry Science, 2007,86(4):621-629.
doi: 10.1093/ps/86.4.621
[27] MOGHADAM H K, MCMILLAN I, CHAMBERS J R, JULIAN R J, TRANCHANT C C . Heritability of sudden death syndrome and its associated correlations to ascites and body weight in broilers. British Poultry Science, 2005,46(1):54-57.
[28] GAYA L G, FERRAZ J B S, REZENDE F M, MOURÃO G B, MATTOS E C, ELER J P, MICHELAN FILHO T, . Heritability and genetic correlation estimates for performance and carcass and body composition traits in a male broiler line. Poultry Science, 2006,85(5):837-843.
[29] 窦套存, 王克华, 曲亮, 沈曼曼, 胡玉萍, 郭军 . 如皋黄鸡42日龄体重母体遗传效应评估. 山西农业大学学报(自然科学版), 2014,34(6):511-517.
DOU T C, WANG K H, QU L, SHEN M M, HU Y P, GUO J . Maternal genetic effects of body weight in Rugao Yellow Chicken. Journal of Shanxi Agricultural University(Nature Science Edition), 2014,34(6):511-517. (in Chinese)
[1] DONG MingMing,ZHAO FanFan,GE JianJun,ZHAO JunLiang,WANG Dan,XU Lei,ZHANG MengHua,ZHONG LiWei,HUANG XiXia,WANG YaChun. Heritability Estimation and Correlation Analysis of Longevity and Milk Yield of Holstein Cattle in Xinjiang Region [J]. Scientia Agricultura Sinica, 2022, 55(21): 4294-4303.
[2] GUO Jun,WANG KeHua,HAN Wei,DOU TaoCun,WANG XingGuo,HU YuPing,MA Meng,QU Liang. Analysis of Indirect Genetic Effects on Body Weight of 42 Day-Old Rugao Yellow Chickens [J]. Scientia Agricultura Sinica, 2022, 55(19): 3854-3861.
[3] HOU HuiZhi,ZHANG XuCheng,YIN JiaDe,FANG YanJie,WANG HongLi,YU XianFeng,MA YiFan,ZHANG GuoPing,LEI KangNing. Effects of Deep and Layered Application of Reduced Chemical Nitrogen Fertilizer on Water, Nutrient Utilization and Yield of Spring Wheat in Rain-Fed Arid Area [J]. Scientia Agricultura Sinica, 2022, 55(17): 3289-3302.
[4] SONG Ge,SHI DongMei,JIANG GuangYi,JIANG Na,YE Qing,ZHANG JianLe. Effects of Different Fertilization Methods on Restoration of Eroded and Degraded Cultivated-Layer in Slope Farmland [J]. Scientia Agricultura Sinica, 2021, 54(8): 1702-1714.
[5] LI MinXue,LI JianNan,ZHOU Hong,XIAO Ning,LIN HuiXing,MA Zhe,FAN HongJie. Establishment and Preliminary Application of Lawsonia intracellularis IPMA Antigen Detection Method Based on SodC Monoclonal Antibody [J]. Scientia Agricultura Sinica, 2021, 54(20): 4478-4486.
[6] WANG GuoLi,CHANG FangDi,ZHANG HongYuan,LU Chuang,SONG JiaShen,WANG Jing,PANG HuanCheng,LI YuYi. Effects of Straw Interlayer with Different Thickness on Saline-Alkali Soil Temperature, Water Content, and Sunflower Yield in Hetao Irrigation Area [J]. Scientia Agricultura Sinica, 2021, 54(19): 4155-4168.
[7] Na JIANG,DongMei SHI,GuangYi JIANG,Ge SONG,ChengJing SI,Qing YE. Effects of Soil Erosion on Physical and Mechanical Properties of Cultivated Layer of Purple Soil Slope Farmland [J]. Scientia Agricultura Sinica, 2020, 53(9): 1845-1859.
[8] Ge SONG,DongMei SHI,XiaoYing ZENG,GuangYi JIANG,Na JIANG,Qing YE. Quality Barrier Characteristics of Cultivated Layer for Sloping Farmland in Purple Hilly Region [J]. Scientia Agricultura Sinica, 2020, 53(7): 1397-1410.
[9] LIU YouChun,LIU WeiSheng,WANG XingDong,YANG YanMin,WEI Xin,SUN Bin,ZHANG Duo,YANG YuChun,LIU Cheng,LI TianZhong. Screening and Inheritance of Fruit Storage-Related Traits Based on Reciprocal Cross of Southern×Northern High Bush Blueberry (Vaccinium Linn) [J]. Scientia Agricultura Sinica, 2020, 53(19): 4045-4056.
[10] DANG LiPing,ZHOU WenXin,LIU RuiFang,BAI Yun,WANG ZhePeng. Estimation of Genetic Parameters of Body Weight and Egg Number Traits of Lueyang Black-Boned Chicken [J]. Scientia Agricultura Sinica, 2020, 53(17): 3620-3628.
[11] YAN HengHui,WEN Ying,WANG Dong. Effects of Basal Fertilization in Strips at Different Soil Depths on Flag Leaf Senescence and Photosynthetic Characteristics, Grain Yield and Fertilizer Use Efficiency of Winter Wheat [J]. Scientia Agricultura Sinica, 2019, 52(5): 813-821.
[12] ZHAO Yong,ZHAO PeiFang,HU Xin,ZHAO Jun,ZAN FengGang,YAO Li,ZHAO LiPing,YANG Kun,QIN Wei,XIA HongMing,LIU JiaYong. Evaluation of 317 Sugarcane Germplasm Based on Agronomic Traits Rating Data [J]. Scientia Agricultura Sinica, 2019, 52(4): 602-615.
[13] LOU YiBao,SHI DongMei,JIN HuiFang,JIANG GuangYi,DUAN Teng,JIANG Na. Coupling Degree Diagnosis on Suitability Evaluation of Cultivated-Layer Quality for Slope Farmland in Purple Hilly Region of South-Western China [J]. Scientia Agricultura Sinica, 2019, 52(4): 661-675.
[14] SUN ShiJun,ZHU ZhenChuang,CHEN ZhiJun,YANG Dan,ZHANG XuDong. Effects of Different Colored Plastic Film Mulching and Planting Density on Soil Temperature, Evapotranspiration and Yield of Spring Maize [J]. Scientia Agricultura Sinica, 2019, 52(19): 3323-3336.
[15] DU Bin, HU XiaoTao, WANG WenE, MA LiHua, ZHOU ShiWei. Stem Flow Influencing Factors Sensitivity Analysis and Stem Flow Model Applicability in Filling Stage of Alternate Furrow Irrigated Maize [J]. Scientia Agricultura Sinica, 2018, 51(2): 233-245.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!