Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (24): 4592-4602.doi: 10.3864/j.issn.0578-1752.2019.24.013

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Fractionation Effect of Stable Isotopic Ratios in Tsamba Processing

JiRong LI,TangWei ZHANG(),DeJi CIREN,XiaoJun YANG,Dun CI()   

  1. Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences/Supervision and Testing Center for Farm Products Quality, Ministry of Agriculture and Rural Affairs, Lhasa 850032
  • Received:2019-06-03 Accepted:2019-08-23 Online:2019-12-16 Published:2020-01-15
  • Contact: TangWei ZHANG,Dun CI E-mail:zhangtangwei04@163.com;13989086593@163.com

Abstract:

【Objective】 Our study mainly analyzed the difference of stable carbon, nitrogen, hydrogen, and oxygen isotopes, and revealed the characteristics and correlations of stable carbon, nitrogen, hydrogen, and oxygen isotopes in raw highland barley material, highland barley stir-frying, and milling tsamba in tsamba processing, which could provide a theoretical and technical basis for geographical origin traceability of highland barley and its products. 【Method】 We collected 11 samples of both stir-frying highland barley and milling tsamba from Xigaze (Tibet) tsamba processing workshop in 2018, and 11 samples of raw highland barley material were collected simultaneously from corresponding sites; 8 samples of both raw highland barley material and stir-frying highland barley were collected by the simulation of tsamba processing in the laboratory. Stable carbon, nitrogen, hydrogen, and oxygen isotopes were measured by element analysis-isotope ratio mass spectrometer (EA-IRMS). The one-way analysis of variance was combined with LSD or Games-Howell multiple comparison analysis to analyze the difference of stable carbon, nitrogen, hydrogen, and oxygen isotopes from perspectives of raw highland barley material, stir-frying highland barley, and tsamba. Stepwise discriminant analysis was employed to distinguish highland barley and its products from Yarlung Tsangpo River and Nianchu River. We used independent - sample T test to discover the difference of stable carbon, nitrogen, hydrogen, and oxygen isotopic between water milling tsamba and electric grinding tsamba. Paired T test was adopted to analyze the difference of stable carbon, nitrogen, hydrogen, and oxygen isotopes in raw highland barley material and stir-frying highland barley samples in the simulation experiment. And Pearson correlation analysis was used to analyze the correlation of stable carbon, nitrogen, hydrogen, and oxygen isotopes in raw highland barley material and stir-frying highland barley. 【Result】 No significant difference was found in stable carbon, nitrogen, hydrogen, and oxygen isotope ratios among raw highland barley material, stir-frying highland barley, and tsamba. The highland barley discrimination rate of stable nitrogen isotope from different watersheds was 72.7%, and the stir-frying highland barley discriminant rate of stable nitrogen and oxygen isotopes from different watersheds was 90.9%, whereas the tsamba discriminant rate was 100%. No significant difference was found in stable carbon, nitrogen, hydrogen, and oxygen isotope ratios between water milling tsamba and electric grinding tsamba. In the simulation experiment, there was no difference in stable carbon, nitrogen, hydrogen, and oxygen isotope ratios between raw highland barley material and stir-frying highland barley, while significant positive correlation was found in stable carbon and nitrogen isotope ratios between raw highland barley materials and stir-frying highland barley (P<0.05). 【Conclusion】 The fractionation effect of the stable carbon, nitrogen, and oxygen isotopes between stir-frying highland barley and tsamba was not significant. The stable isotopes in highland barley and its products were regional. In the tsamba processing, the use of either electric grinding or water milling had no effect on the stable carbon, nitrogen, hydrogen, and oxygen isotope ratios of tsamba. Simulation of tsamba processing experiment results showed that stable carbon and nitrogen isotopes in raw highland barley material could reflect the stable isotopes characteristics of those in tsamba. Therefore, stable isotope technology could be used for realizing the geographical origin traceability of tsamba.

Key words: tsamba, highland barley, stable isotope fingerprint, traceability, fractionation, Tibet

Table 1

Sample point information"

序号
Numerical order
经度
Longitude
纬度
Latitude
地点
Site
流域
Drainage basin
1 89.060232 29.697005 南木林县南木林镇嘎布村
Gabu village, Nanmulin Town, Nanmulin County
雅鲁藏布江段
Yarlung Zangbo River
2 89.110252 29.314648 南木林县艾玛乡
Aima Township, Nanmulin County
雅鲁藏布江段
Yarlung Zangbo River
3 89.050487 29.320852 南木林县边雄乡
Bianxiong Township, Nanmulin County
雅鲁藏布江段
Yarlung Zangbo River
4 88.256157 29.43632 谢通门县
Xietongmen County
雅鲁藏布江段
Yarlung Zangbo River
5 88.001253 29.385052 谢通门县彭措林乡
Pengcuolin Township, Xietongmen County
雅鲁藏布江段
Yarlung Zangbo River
6 88.201643 29.421843 谢通门县通门乡通门村
Tongmen village, Tongmen Township, Xietongmen County
雅鲁藏布江段
Yarlung Zangbo River
7 89.275718 29.356535 桑珠孜区江当乡
Jiangdang Township, Sangzhuzi District
年楚河段
Nianchu River
8 89.26492 29.10688 白朗县
Bailang County
年楚河段
Nianchu River
9 89.397047 29.069477 江孜县热索乡
Gesuo Township, Jiangzi County
年楚河段
Nianchu River
10 89.590002 28.928068 江孜县城电厂旁
Beside power plant in Jiangzi County
年楚河段
Nianchu River
11 89.75347 28.84156 江孜县隆王村
Longwang village, Jiangzi County
年楚河段
Nianchu River

Table 2

Stable carbon, nitrogen, oxygen and hydrogen isotopes in tsamba processing (Mean±SD)"

材料Material 样本量Sample size δ13C (‰) δ15N (‰) δ18O (‰) δD (‰)
青稞Highland barley 11 -24.61 ±0.45a 2.84±1.2a 17.87±3.57a -176.2±15.67a
炒青稞Stir-frying highland barley 11 -24.71±0.41a 2.92±1.88a 16.63±3.39a -181.72±12.15a
糌粑Tsamba 11 -24.63±0.47a 2.99±1.62a 18.48±3.14a -176.52±10.94a

Fig. 1

Stable carbon and nitrogen isotopes in tsamba processing"

Fig. 2

Stable hydrogen and oxygen isotopes in tsamba processing"

Table 3

Stable carbon, nitrogen, oxygen and hydrogen isotopes in tsamba by different methods (Mean±SD)"

加工方式Processing method 样本量Sample size δ13C (‰) δ15N (‰) δ18O (‰) δD (‰)
水磨 Watermill 5 -24.73±0.68a 3.53±1.93a 19.08±3.01a -175.91±9.86a
电磨 Electric grinder 6 -24.55±0.21a 2.54±1.31a 17.98±3.44a -177.03±12.69a

Table 4

Stable carbon, nitrogen, oxygen and hydrogen isotopes in highland barley raw material and stir-frying highland barley of simulation experiment"

材料Material 样本量Sample size δ13C (‰) δ15N (‰) δ18O (‰) δD (‰)
青稞原料Highland barley raw material 8 -25.70±0.07a 5.95±1.04a 17.81±0.89a -174.06±4.81a
炒青稞Stir-frying highland barley 8 -25.71±0.12a 5.64±0.8a 18.15±0.64a -174.4±3.45a

Fig. 3

Stable carbon isotopes in tsamba processing"

Fig. 4

Stable nitrogen isotopes in tsamba processing"

Fig. 5

Stable oxygen isotopes in tsamba processing"

Fig. 6

Stable hydrogen isotopes in tsamba processing"

Fig. 7

Stable nitrogen and oxygen isotopes in highland barley and its products from different river basins"

[1] 马奕颜, 郭波莉, 魏益民, 赵海燕 . 植物源性食品原产地溯源技术研究进展. 食品科学, 2014,35(5):246-250.
MA Y Y, GUO B L, WEI Y M, ZHAO H Y . An overview of analytical approaches for tracing the geographical origins of plant-derived foods. Food Science, 2014,35(5):246-250. (in Chinese)
[2] 何峰, 卫郑霞 . 糌粑中营养成分的测定. 现代食品, 2016(3):106-109.
HE F, WEI Z X . The determination of nutrients in zanba. Modern Food, 2016(3):106-109. (in Chinese)
[3] 彭锡钰, 郭顺堂, 吕莹, 刘静媛 . 分级糌粑粉的理化性质及风味特性研究. 中国粮油学报, 2018,33(8):19-24.
PENG X Y, GUO S T, LÜ Y, LIU J Y . Physicochemical properties and aroma characteristics ofZanba by layered grinding. Journal of the Chinese Cereals and Oils Association, 2018,33(8):19-24. (in Chinese)
[4] 拉宗, 卜晨晨, 周玉青, 付振杰, 王东, 边巴仓决 . 食用糌粑对家兔血糖和胆固醇的影响研究. 西藏大学学报(自然科学版), 2015,30(1):63-68, 98.
LA Z, PU C C, ZHOU Y Q, FU Z J, WANG D, BIAN-BA C J . The impact of Zanba on rabbit blood sugar and cholesterol. Journal of Tibet University (Natural Science Edition), 2015,30(1):63-68, 98. (in Chinese)
[5] 赵雯玮, 刘吉爱, 李姣, 扎西穷达, 央拉, 普巴扎西 . 糌粑及其研究进展. 粮食与饲料工业, 2017(3):29-32, 44.
ZHAO W W, LIU J A, LI J, ZHA-XI Q D, YANG L, PU-BA Z X . Advancement of researches on tsampa. Cereal and Feed Industry, 2017 (3):29-32, 44. (in Chinese)
[6] 次顿, 达瓦, 周秀兰, 白军平, 达珍 .糌粑加工关键点及控制技术研究. 西藏科技, 2010(12):9-10.
CI D, DA W, ZHOU X L, BAI J P, DA Z .Study on key points and control techniques of zanba processing.Tibet Science and Technology, 2010(12):9-10. (in Chinese)
[7] 党君 .西北不同地区不同品种青稞营养成分的分析研究. 黑龙江畜牧兽医, 2017(1):157-159.
DANG J .Analysis and research on the nutritional composition of different kinds of highland barley in different areas in northwest China.Heilongjiang Animal Science and Veterinary Medicine, 2017(1):157-159. (in Chinese)
[8] WADOOD S A, LIU H Y, GUO B L, WEI S, BAO X, WEI Y . Study on the variation of stable isotopic fingerprints of wheat kernel along with milling processing. Food Control, 2018,91:427-433.
[9] SUZUKI Y, EDURA T, KOKUBUN A, ABE H, HAMADA M, KATOU E, NAKAYAMA K . Tracing the geographical origin of wakame Undaria pinnatifida and wakame products by using trace element and stable isotope analysis. Nippon Suisan Gakkaishi, 2018,84(1):94-102.
[10] OPATIC A M, NECEMER M, LOJEN S, MASTEN J, ZLATIC E, SIRCELJ H, STOPAR D, VIDRIH R . Determination of geographical origin of commercial tomato through analysis of stable isotopes, elemental composition and chemical markers. Food Control, 2018,89:133-141.
[11] OPATIC A M, NECEMER M, BUDIC B, LOJEN S . Stable isotope analysis of major bioelements, multi-element profiling, and discriminant analysis for geographical origins of organically grown potato. Journal of Food Composition and Analysis, 2018,71:17-24.
[12] LIU H Y, GUO B L, ZHANG B, ZHANG Y Q, WEI S, LI M, WADOOD S A, WEI Y M . Characterizations of stable carbon and nitrogen isotopic ratios in wheat fractions and their feasibility for geographical traceability: A preliminary study. Journal of Food Composition and Analysis, 2018,69:149-155.
[13] PERINI M, BONTEMPO L, ZILLER L, BARBERO A, CALIGIANI A, CAMIN F . Stable isotope composition of cocoa beans of different geographical origin. Journal of Mass Spectrometry, 2016,51(9):684-689.
[14] 马楠, 鹿保鑫, 刘雪娇, 付磊 . 同位素指纹图谱技术在农产品产地溯源中的应用. 食品研究与开发, 2017,38(12):215-218.
MA N, LU B X, LIU X J, FU L . The usage of isotope fingerprint technology in the origin traceability of agricultural production. Food Research and Develooment, 2017,38(12):215-218. (in Chinese)
[15] 刘雯雯, 陈岩, 杨慧, 耿安静, 王富华 . 稳定同位素及矿物元素分析在谷物产地溯源中应用的研究进展. 食品科学, 2019: 1-13.
LIU W W, CHEN Y, YANG H, GENG A J, WANG F H . The application of stable isotope and mineral element analysis on tracing the geographicalorigin of cereal grains. Food Science, 2019: 1-13. (in Chinese)
[16] 刘宏艳, 郭波莉, 魏帅, 姜涛, 张森燊, 魏益民 . 小麦制粉产品稳定碳、氮同位素组成特征. 中国农业科学, 2017,50(3):556-563.
LIU H Y, GUO B L, WEI S, JIANG T, ZHANG S S, WEI Y M . Characteristics of stable carbon and nitrogen isotopicratios in wheat milling fractions. Scientia Agricultura Sinica, 2017,50(3):556-563. (in Chinese)
[17] CHEN T J, ZHAO Y, ZHANG W X, YANG S M, YE Z H, ZHANG G Y . Variation of the light stable isotopes in the superior and inferior grains of rice (Oryza sativa L.) with different geographical origins. Food Chemistry, 2016,209:95-98.
[18] LIU H Y, WEI Y M, WEI S, JIANG T, ZHANG S S, GUO B L . delta H-2 of wheat and soil water in different growth stages and their application potentialities as fingerprints of geographical origin. Food Chemistry, 2017,226:135-140.
[19] LIU H Y, WEI Y M, LU H, WEI S, JIANG T, ZHANG Y Q, GUO B L . Combination of the Sr-87/Sr-86 ratio and light stable isotopic values (delta C-13, delta N-15 and delta D) for identifying the geographical origin of winter wheat in China. Food Chemistry, 2016,212:367-373.
[20] KORENAGA T . Traceability studies for analyzing the geographical origin of rice by isotope ratio mass spectrometry. Bunseki Kagaku, 2014,63(3):233-244.
[21] 胡桂仙, 邵圣枝, 张永志, 朱加虹, 赵首萍, 袁玉伟 . 杨梅中稳定同位素和多元素特征在其产地溯源中的应用. 核农学报, 2017,31(12):2450-2459.
HU G X, SHAO S Z, ZHANG Y Z, ZHU J H, ZHAO S P, YUAN Y W . Characterization of stable isotope and multi-elements in myricarubra for its traceability of geographic origin. Journal of Nuclear Agricultural Sciences, 2017,31(12):2450-2459. (in Chinese)
[22] 庞荣丽, 王书言, 王瑞萍, 党琪, 郭琳琳, 谢汉忠, 方金豹 . 同位素技术在水果及制品产地溯源中的应用研究进展. 果树学报, 2018,35(6):747-759.
PANG R L, WANG S Y, WANG R P, DANG Q, GUO L L, XIE H Z, FANG J B . Advancement of applied studies of isotope technique in fruits and productsgeographical origin traceability. Journal of Fruit Science, 2018,35(6):747-759. (in Chinese)
[23] AMENTA M, FABRONI S, COSTA C, RAPISARDA P . Traceability of 'Limone di Siracusa PGI' by a multidisciplinary analytical and chemometric approach. Food Chemistry, 2016,211:734-740.
[24] MIMMO T, CAMIN F, BONTEMPO L, CAPICI C, TAGLIAVINI M, CESCO S, SCAMPICCHIO M . Traceability of different apple varieties by multivariate analysis of isotope ratio mass spectrometry data. Rapid Communications in Mass Spectrometry, 2015,29(21):1984-1990.
[25] 刘志, 张永志, 周铁锋, 邵圣枝, 周莉, 袁玉伟 . 不同烘干方式对茶叶中稳定同位素特征及其产地溯源的影响. 核农学报, 2018,32(7):1408-1416.
LIU Z, ZHANG Y Z, ZHOU T F, SHAO S Z, ZHOU L, YUAN Y W . Effects of different drying techniques on stable isotopiccharacteristics and traceability oftea. Journal of Nuclear Agricultural Sciences, 2018,32(7):1408-1416. (in Chinese)
[26] 王洁, 石元值, 张群峰, 倪康, 伊晓云, 马立锋, 阮建云 . 基于稳定同位素比率差异的西湖龙井茶产地溯源分析. 同位素, 2016,29(3):129-139.
WANG J, SHI Y Z, ZHANG Q F, NI K, YI X Y, MA L F, RUAN J Y . Geographical tracing of thewest lake longjing tea based on the stable isotope ratios. Journal of Isotopes, 2016,29(3):129-139. (in Chinese)
[27] PENG C Y, ZHANG Y L, SONG W, LV Y N, XU Q, ZHENG P, ZHANG Z Z, WAN X C, HOU R Y, CAI H M . Using stable isotope signatures to delineate the geographic point-of-origin of Keemun black tea. Journal of the Science of Food and Agriculture, 2019,99(5):2596-2601.
[28] SANTATO A, BERTOLDI D, PERINI M, CAMIN F, LARCHER R . Using elemental profiles and stable isotopes to trace the origin of green coffee beans on the global market. Journal of Mass Spectrometry, 2012,47(9):1132-1140.
[29] DE RIJKE E, SCHOORL J C, CERLI C, VONHOF H B VERDEGAAL S J A, VIVO-TRUYOLS G, LOPATKA M, DEKTER R, BAKKER D, SJERPS M J, EBSKAMP M, DE KOSTER C G . The use of delta H-2 and delta O-18 isotopic analyses combined with chemometrics as a traceability tool for the geographical origin of bell peppers. Food Chemistry, 2016,204:122-128.
[30] OPATIC A M, NECEMER M, LOJEN S, VIDRIH R . Stable isotope ratio and elemental composition parameters in combination with discriminant analysis classification model to assign country of origin to commercial vegetables-A preliminary study. Food Control, 2017,80:252-258.
[31] BONTEMPO L, CAMIN F, MANZOCCO L, NICOLINI G, WEHRENS R, ZILLER L, LARCHER R . Traceability along the production chain of Italian tomato products on the basis of stable isotopes and mineral composition. Rapid Communications in Mass Spectrometry, 2011,25(7):899-909.
[32] WADOOD S A, GUO B L, WEI Y M . Geographical traceability of wheat and its products using multielement light stable isotopes coupled with chemometrics. Journal of Mass Spectrometry, 2019,54(2):178-188.
[33] RASHMI D, SHREE P, SINGH D K . Stable isotope ratio analysis in determining the geographical traceability of Indian wheat. Food Control, 2017,79:169-176.
[34] BRESCIA M A, DI MARTINO G, GUILLOU C, RENIERO F, SACCO A, SERRA F . Differentiation of the geographical origin of durum wheat semolina samples on the basis of isotopic composition. Rapid Communications in Mass Spectrometry, 2002,16(24):2286-2290.
[35] LIU Z, ZHANG W X, ZHANG Y Z, CHEN T J, SHAO S Z, ZHOU L, YUAN Y W, XIE T Z, ROGERS K M . Assuring food safety and traceability of polished rice from different production regions in China and Southeast Asia using chemometric models. Food Control, 2019,99:1-10.
[36] 邵圣枝, 陈元林, 张永志, 胡桂仙, 朱加虹, 袁玉伟 . 稻米中同位素与多元素特征及其产地溯源PCA-LDA判别. 核农学报, 2015,29(1):119-127.
SHAO S Z, CHEN Y L, ZHANG Y Z, HU G X, ZHU J H, YUAN Y W . Determination of the geographic origin of rice by PCA-LDA based on the stable isotopes and multi-elements concentrations. Journal of Nuclear Agricultural Sciences, 2015,29(1):119-127. (in Chinese)
[37] FRASER R A, BOGAARD A, CHARLES M, STYRING A K, WALLACE M, JONES G, DITCHFIELD P, HEATON T H E . Assessing natural variation and the effects of charring, burial and pre-treatment on the stable carbon and nitrogen isotope values of archaeobotanical cereals and pulses. Journal of Archaeological Science, 2013,40(12):4754-4766.
[38] 马洁, 周洋, 陈璐瑶, 彭锡钰, 吕莹, 郭顺堂 . 3种青稞糌粑分级粉性质差异及相关性分析. 食品与机械, 2018,34(5):49-53.
MA J, ZHOU Y, CHEN L Y, PENG X Y, LV Y, GUO S T . Differences of the properties in three kinds of Zanba powder by layered grinding and its correlation analysis. Food and Machinery, 2018,34(5):49-53. (in Chinese)
[39] 张英锋 . 美拉德反应早期产物的质谱研究[D]. 秦皇岛: 燕山大学, 2012.
ZHANG Y F . Characterization of maillard reaction products in early stage by using mass spectrometry[D]. Qinhuangdao: Yanshan University, 2012. (in Chinese)
[40] 杨乐, 李继荣, 曹建, 仓决卓玛, 李来兴 . 样品前处理对斑头雁组织稳定同位素碳、氮比值的影响. 核农学报, 2016,30(4):792-796.
YANG L, LI J R, CAO J, CANG-JUE Z M, LI L X . The effect of sample pretreatment on stable carbon and nitrogenisotope ratios of bar-headed goose tissues. Journal of Nuclear Agricultural Sciences, 2016,30(4):792-796. (in Chinese)
[41] 程根伟, 王小丹 . 西藏高原水文特征及其数学模拟. 北京:北京科学出版社, 2016.
CHENG G W, WANG X D. The Hydrological Features and Their Dynamic Simulation in Tibet Plateau. Beijing: Beijing Science Press, 2016. (in Chinese)
[42] 李继荣, 赵健宇, 杨乐, 张唐伟, 仓决卓玛 . 西藏雨季主要水体氢、氧同位素特征. 干旱区研究, 2017,34(2):411-415.
LI J R, ZHAO J Y, YANG L, ZHANG T W, CANG-JUE Z M . Stable hydrogen and oxygen isotopes in waters in Tibet. Arid Zone Research, 2017,34(2):411-415. (in Chinese)
[43] BONTEMPO L, CAMIN F, LARCHER R, NICOLINI G, PERINI M, ROSSMANN A . Coast and year effect on H, O and C stable isotope ratios of Tyrrhenian and Adriatic italian olive oils. Rapid Communications in Mass Spectrometry, 2009,23(7):1043-1048.
[1] GAO XiaoQin,NIE JiYun,CHEN QiuSheng,HAN LingXi,LIU Lu,CHENG Yang,LIU MingYu. Geographical Origin Tracing of Fuji Apple Based on Mineral Element Fingerprinting Technology [J]. Scientia Agricultura Sinica, 2022, 55(21): 4252-4264.
[2] ZHANG ZeMin,LÜ ChangHe. Photo-Temperature Potential Yield of Spring Wheat at Different Accumulated Temperature Ranges and Its Response to Climate Change in Qinghai-Tibet Plateau [J]. Scientia Agricultura Sinica, 2022, 55(11): 2135-2149.
[3] LU Peng,LI WenHai,NIU JinCan,BATBAYAR Javkhlan,ZHANG ShuLan,YANG XueYun. Phosphorus Availability and Transformation of Inorganic Phosphorus Forms Under Different Organic Carbon Levels in a Tier Soil [J]. Scientia Agricultura Sinica, 2022, 55(1): 111-122.
[4] WANG Qian,LI Zheng,ZHAO ShanShan,QIE MengJie,ZHANG JiuKai,WANG MingLin,GUO Jun,ZHAO Yan. Application of Stable Isotope Technology in the Origin Traceability of Sheep [J]. Scientia Agricultura Sinica, 2021, 54(2): 392-399.
[5] WANG YuLin,LEI Lin,XIONG WenWen,YE FaYin,ZHAO GuoHua. Effects of Steaming-Retrogradation Pretreatment on Physicochemical Properties and in Vitro Starch Digestibility of the Roasted Highland Barley Flour [J]. Scientia Agricultura Sinica, 2021, 54(19): 4207-4217.
[6] CHEN LuLu,WANG Hui,WANG JiKun,WANG JiaBo,CHAI ZhiXin,CHEN ZhiHua,ZHONG JinCheng. Comparative Analysis of miRNA Expression Profiles in the Hearts of Tibetan Cattle and Xuanhan Cattle [J]. Scientia Agricultura Sinica, 2020, 53(8): 1677-1687.
[7] KaiYuan GONG,Liang HE,DingRong WU,ChangHe LÜ,Jun LI,WenBin ZHOU,Jun DU,Qiang YU. Spatial-Temporal Variations of Photo-Temperature Potential Productivity and Yield Gap of Highland Barley and Its Response to Climate Change in the Cold Regions of the Tibetan Plateau [J]. Scientia Agricultura Sinica, 2020, 53(4): 720-733.
[8] LI TaoTao,WANG Xia,MA YouJi,YIN DeEn,ZHANG Yong,ZHAO XingXu. Molecular Characterization of Tibetan Sheep BOLL and Its Expression Regulation and Functional Analysis in Testis [J]. Scientia Agricultura Sinica, 2020, 53(20): 4297-4312.
[9] SONG ZiRong,E ShengZhe,YUAN JinHua,JIA WuXia,ZENG XiBai,SU ShiMing,BAI LingYu. Heavy Metal Accumulation in Irrigated Desert Soils and Their Crop Effect After Applying Different Organic Materials [J]. Scientia Agricultura Sinica, 2019, 52(19): 3367-3379.
[10] LI Jian, FENG XianHong, CAI YiLin. Coefficient of Parentage Analysis Among Naked Barley Varieties in Qinghai-Tibet Plateau [J]. Scientia Agricultura Sinica, 2019, 52(16): 2758-2767.
[11] WU ZhenYang, TANG XiaoHui, FU YuHua, WANG Sheng, ZHANG Cheng, LI JingJin, YU Mei, DU XiaoYong. Profiles of miRNAs and Target Gene Analysis with White and Black Skin Tissues of the Tibetan Sheep [J]. Scientia Agricultura Sinica, 2018, 51(2): 351-362.
[12] XU Meng, LI XiaoLiang, CAI XiaoBu, LI XiaoLin, ZHANG XuBo, ZHANG JunLing. Impact of Land Use Type on Soil Organic Carbon Fractionation and Turnover in Southeastern Tibet [J]. Scientia Agricultura Sinica, 2018, 51(19): 3714-3725.
[13] GUO BoLi, WEI YiMin, WEI Shuai, SUN QianQian, ZHANG Lei, SHI ZhenQiang. The Characters and Influence Factors of Stable Isotope Fingerprints in Yak Muscle [J]. Scientia Agricultura Sinica, 2018, 51(12): 2391-2397.
[14] WANG JianLin, ZHONG ZhiMing, FENG XiBo, FU Gang, HOU WeiHai, WANG GaiHua, Da-cizhuoga. Spatial Distribution Regulation of Protein Content of Naked Barley Varieties and Its Relationships with Environmental Factors in Qinghai-Tibet Plateau [J]. Scientia Agricultura Sinica, 2017, 50(6): 969-977.
[15] WANG XiaoLi, GUO Zhen, DUAN JianJun, ZHOU ZhiGang, LIU YanLing, ZHANG YaRong. The Changes of Organic Carbon and Its Fractions in Yellow Paddy Soils Under Long-Term Fertilization [J]. Scientia Agricultura Sinica, 2017, 50(23): 4593-4601.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!