Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (24): 4437-4452.doi: 10.3864/j.issn.0578-1752.2019.24.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Analysis of Panicle Related Traits in Wheat with Major Gene Plus Polygenes Mixed Model

SongFeng XIE1,2,WanQuan JI1(),ChangYou WANG1,WeiGuo HU3,Jun LI4,YaoYuan ZHANG1,XiaoXi SHI1,JunJie ZHANG1,Hong ZHANG1,ChunHuan CHEN1   

  1. 1 College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology in Arid Areas/Yangling Sub-centre, National Wheat Improvement Centre, Yangling 712100, Shaanxi
    2 Key Laboratory of Se-enriched Food Development, Ankang R&D Center for Se-enriched Prducts, Ankang 725000, Shaanxi
    3 Wheat Research Centre, Henan Academy of Agricultural Sciences, Zhengzhou 450002
    4 Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066
  • Received:2019-06-19 Accepted:2019-08-06 Online:2019-12-16 Published:2020-01-15
  • Contact: WanQuan JI E-mail:jiwanquan2003@126.com

Abstract:

【Objective】 Panicle traits are important yield traits of wheat, occupying an important position and role in wheat yield composition. Carrying out genetic research on wheat panicle traits and analyzing its genetic mechanism provide theoretical and practical guidance for formulating high-yield breeding strategies and improving breeding efficiency. 【Method】 Based on the length of the main stem, the number of spikelets, the number of grains per spike, and the number of spikelets, the main gene + polygene mixed genetic model of quantitative traits was used to obtain the parental product 34 and the male parent under different ecological conditions. BARRAN and its derived F7:8, F8:9 generation recombinant inbred line population (RIL) were used for genetic model analysis and genetic parameter estimation of panicle traits to determine the number of genes controlling various traits, and to estimate genetic effect values and heritability. 【Result】The best genetic model for panicle length and spikelet number were B-2-1 (PG-AI), which was consistent with two pairs of linked major genes + additive-epistasis polygene genetic model. The polygenic heritability of spike length was 90.64%, the polygenic heritability of spikelet number was 89.52%, the average of environmental variation of spike length accounted for 9.39% in phenotypic variation, and the average of environmental variation of spikelet number accounted for 10.50% in phenotypic variation; Major gene heritability was 69.39%, Polygenes heritability rate was 29.94%, and the average environmental variation accounted for 2.18% in phenotypic variation. Additive effect value of the first pair of main genes controlling the number of spikes and the additive effect value of the third pair of major genes are equal, and the same was 4.56, which has a positive effect. The additive effect value of the second pair of major genes was the same as the additive effect of the first pair of major genes × the second pair of major genes × the third pair of major genes, both of which were -1.44, and are negative effects. The additive and additive × additive epistasis interaction values were equal to the additive and the second pair of major gene additions × the third pair of major gene additive epistatic interactions, both of which were -6.02. Additive and the first pair of major gene additive × the third pair of main gene additive epistatic interaction effect value is 0.18, the multi-gene additive effect value is 0.15, showing a lower positive genetic effect; H-1(4MG-AI) was best-fitting genetic model for the spikelet number traits, which showed that their inheritance was controlled by incorporating four major genes additive-epistasis genetic model. The heritability of the main gene was 81.50%. The additive effect values of the main genes in the first to fourth pairs were 0.22, 0.18, -0.20, and 0.24, respectively, the additive and epistatic interactions of the first pair of major genes × the first pair of major genes were -0.170, the additive effect value of the additive and the first pair of major genes × the third pair of major genes was 0.240. the additive effect value of the additive and the first pair of major genes × the fourth pair of major genes was -0.200, additive and the second pair of major genes × the third pair of major genes × additive effect value and additive and the second pair of major gene additive × fourth pair of major gene additive epistatic interaction value absolute value, the effect in contrast, the former value was 0.030, and the latter value was -0.030. The additive effect value of the additive and the third pair of major genes × the fourth pair of major genes was 0.060. 【Conclusion】The panicle traits of wheat are mainly polygenic genetic effects, which are in line with quantitative genetic characteristics and are susceptible to environmental influences. The number of spikelet grains has the genetic characteristics of the main gene. The main gene has high heritability and is affected by the environment. The number of spikelets can be used as a direct indicator to effectively improve the early selection of panicle traits, achieving single plant directional selection and improving breeding efficiency.

Key words: wheat, panicle traits, major gene + polygene, genetic effect

Table 1

Description analysis of panicle traits of the RILs and its parents best linear unbiased prediction (BLUP) among different populations"

环境Environment 性状
Trait
亲本Parent 重组自交系群体 RIL
品冬34
Pin-
Dong34
Warran 最小值
Minimum
最大值
Maximum
平均数
Average
标准差
SD
变异系数
Coefficient of variation/CV (%)
遗传力 Heritability 偏度系数
Skewness
峰度系数
Kurtosis
2016SY 穗长
SL
(cm)
9.00 5.00 4.00 14.00 8.44 1.92 0.23 0.92 0.08 -0.53
2017SY 9.00 5.25 4.00 26.20 8.45 1.92 0.23 0.91 1.58** 14.10**
2017HY 9.78 6.13 4.88 14.90 9.43 1.80 0.19 0.90 0.02 -0.45
2017SG 10.67 5.17 3.77 14.17 9.00 2.48 0.27 0.97 -0.16 -0.98
平均
Average
9.61 5.39 4.16 17.32 8.83 2.03 0.23 0.92 0.38** 3.03**
2016SY 小穗数SME 19.00 14.00 11.00 27.00 18.39 2.34 0.13 0.88 0.27** 0.58**
2017SY 19.00 15.75 12.60 22.33 17.19 1.59 0.09 0.34 0.21* 0.14*
2017HY 17.25 15.00 9.25 39.50 17.48 2.37 0.14 0.62 1.66** 5.36**
2017SG 21.00 21.00 13.33 59.00 20.58 3.11 0.15 0.95 1.77** 3.71**
平均值
Average
19.06 16.44 11.55 36.96 18.41 2.35 0.13 0.70 0.98** 2.45**
2016SY 单穗
粒数
GME
50.00 39.00 27.00 104.00 56.32 10.92 0.19 0.92 0.92** 2.31**
2017SY 44.25 39.25 26.00 69.60 43.01 5.86 0.14 0.40 0.48** 1.05**
2017HY 33.75 35.75 15.25 55.50 37.11 5.35 0.14 0.80 0.15* 0.68**
2017SG 48.33 52.00 8.33 94.00 45.14 12.70 0.28 0.92 -0.35 0.36**
平均
Average
44.08 41.50 19.15 80.78 45.39 8.71 0.19 0.76 0.30** 1.10**
2016SY 小穗
粒数
GSE
2.63 2.79 2.00 9.00 3.07 0.44 0.14 0.85 5.67** 12.24**
2017SY 2.32 2.53 1.73 8.78 2.62 0.77 0.29 0.81 5.72** 17.04**
2017HY 1.95 2.38 1.62 31.25 2.21 1.35 0.61 0.90 2.03** 5.58**
2017SG 2.30 2.48 0.20 3.71 2.15 0.62 0.29 0.97 -0.92 0.95**
平均
Average
2.30 2.54 1.39 13.18 2.51 0.80 0.32 0.88 3.13** 8.95**

Fig. 1

Frequent (column), mixed (solid line, theoretical) and component (dotted line) distributions for wheat panicle-related traits in RILs SL: Spike length; SME: Spikelets of main ear; GME: Grains of main ear; GSE: Grains of small ear"

Table 2

Akaike information criterion(AIC) and Maximum likelihood values (MLV) of thirty-eight genetic models for panicle traits in joint segregation analysis on the F8, F9 population between Pindong34 and Barran"

环境Environment a模型代码Model Code b模型含义Implication of model AIC值AIC value 极大似然函数值log_Max_likelihood_value
穗长
SL(cm)
小穗数
SME
单穗粒数GME 小穗粒数GSE 穗长
SL(cm)
小穗数
SME
单穗粒数GME 小穗粒数GSE
2016SY B-1-9 2MG-IE 2008.766 2202.984 3630.920 568.647 -1001.383 -1098.492 -1812.460 -281.323
2017SY 2042.412 1871.954 3892.716 836.451 -1018.206 -932.977 -1943.358 -415.226
2017HY 2005.506 2264.683 3068.409 -151.936 -999.753 -1129.341 -1531.204 78.968
2017SG 2280.090 2518.826 3905.365 831.225 -1137.045 -1256.413 -1949.683 -412.612
平均值Average 2084.194 2214.612 3624.353 521.097 -1039.097 -1104.306 -1809.176 -257.548
2016SY B-2-1 PG-AI 1991.08 2184.541 3649.384 554.133 -990.540 -1087.271 -1819.692 -272.066
2017SY 2016.217 1855.786 3899.482 920.279 -1003.108 -922.893 -1944.741 -455.140
2017HY 1965.160 2256.652 3074.416 -88.404 -977.58 -1123.326 -1532.208 49.202
2017SG 2260.751 2507.815 3890.493 905.074 -1125.375 -1248.908 -1940.246 -447.537
平均值Average 2058.302 2201.199 3628.444 572.771 -1024.151 -1095.599 -1809.222 -281.385
2016SY E-2-5 MX2-ER-A 1993.659 2204.400 3631.760 557.823 -990.83 -1096.200 -1809.880 -272.911
2017SY 2037.382 1872.533 3888.241 841.737 -1012.691 -930.267 -1938.120 -414.868
2017HY 1975.250 2264.573 3074.295 -155.919 -981.625 -1126.287 -1531.147 83.960
2017SG 2179.590 2509.166 3879.773 825.033 -1083.795 -1248.583 -1933.887 -406.517
平均值Average 2046.470 2212.668 3618.517 517.168 -1017.235 -1100.334 -1803.259 -252.584
2016SY E-2-6 MX2-AE-A 1984.375 2205.064 3681.667 558.402 -986.188 -1096.532 -1834.834 -273.201
2017SY 2035.499 1870.327 3888.148 924.373 -1011.749 -929.163 -1938.074 -456.187
2017HY 1964.365 2264.534 3076.497 -156.411 -976.183 -1126.267 -1532.248 84.206
2017SG 2190.648 2510.324 3892.530 907.513 -1089.324 -1249.162 -1940.265 -447.756
平均值Average 2043.722 2212.562 3634.711 558.469 -1015.861 -1100.281 -1811.355 -273.235
2016SY E-2-7 MX2-CE-A 2008.310 2206.715 3681.548 558.968 -999.155 -1098.357 -1835.774 -274.484
2017SY 2038.900 1871.419 3886.283 925.424 -1014.450 -930.710 -1938.141 -457.712
2017HY 1992.014 2265.186 3074.897 -157.747 -991.007 -1127.593 -1532.449 83.874
2017SG 2212.174 2508.126 3891.372 908.553 -1101.087 -1249.063 -1940.686 -449.276
平均值Average 2062.850 2212.862 3633.525 558.799 -1026.425 -1101.431 -1811.763 -274.400
2016SY F-1 3MG-AI 1985.792 2203.003 3578.592 500.386 -983.896 -1092.501 -1780.296 -241.193
2017SY 2050.987 1865.838 3896.524 837.993 -1016.493 -923.919 -1939.262 -409.997
2017HY 1967.168 2268.794 3076.632 -170.353 -974.584 -1125.397 -1529.316 94.177
2017SG 2164.521 2523.808 3889.178 812.895 -1073.26 -1252.904 -1935.589 -397.447
平均值Average 2042.117 2215.361 3610.232 495.230 -1012.058 -1098.68 -1796.116 -238.615
2016SY F-2 3MG-A 2061.739 2303.912 3654.398 428.251 -1025.870 -1146.956 -1822.199 -209.126
2017SY 2115.129 1856.02 3931.771 838.167 -1052.565 -923.01 -1960.885 -414.084
2017HY 2116.900 2370.007 3175.847 -166.145 -1053.45 -1180.003 -1582.924 88.073
2017SG 2263.549 2451.369 3917.213 822.204 -1126.775 -1220.685 -1953.606 -406.102
平均值Average 2139.329 2245.327 3669.807 480.619 -1064.665 -1117.663 -1829.904 -235.310
2016SY G-1 MX3-AI-A 1985.729 2203.538 3562.874 487.927 -981.865 -1090.769 -1770.437 -232.963
2017SY 2034.889 1869.268 3892.910 841.503 -1006.444 -923.634 -1935.455 -409.751
2017HY 1963.325 2267.739 3081.815 -178.949 -970.663 -1122.870 -1529.907 100.474
2017SG 2172.129 2518.193 3883.909 826.033 -1075.064 -1248.096 -1930.954 -402.017
平均值Average 2039.018 2214.685 3605.377 494.128 -1008.509 -1096.342 -1791.688 -236.064
2016SY H-1 4MG-AI 1804.726 2198.415 3572.438 572.548 -891.363 -1088.207 -1775.219 -275.274
2017SY 2048.989 1873.771 3893.070 822.622 -1013.495 -925.885 -1935.535 -400.311
2017HY 1960.836 2268.425 3079.402 -244.665 -969.418 -1123.212 -1528.701 133.332
2017SG 2164.815 2518.811 3885.512 805.103 -1071.407 -1248.406 -1931.756 -391.552
平均值Average 1994.842 2214.856 3607.606 488.902 -986.421 -1096.428 -1792.803 -233.451

Table 3

Tests of eleven panicle traits for goodness-of-fit in some models"

性状
Traits
环境
Environment
模型代码
Modelcode
模型含义
Implication of model
世代
Generation
统计量Statistic
U12 U22 U32 nW2 Dn
穗长
SL(cm)
2017SY B-2-1 PG-AI P1 0.5511(0.4579) 0.3309(0.5651) 0.3297(0.5659) 0.5036(0.0397) 0.4948(0.0088)
P2 0.0268(0.8701) 0.0993(0.7527) 0.3929(0.5308) 0.151(0.3881) 0.4143(0.3929)
RIL 0.0577(0.8102) 0.3641(0.5463) 2.1999(0.1380) 0.0854(0.6733) 0.0354(0.5748)
小穗数
SME
2016SY B-2-1 PG-AI P1 0(0.9998) 0(0.9968) 0.0003(0.9865) 0.0541(0.8519) 0.25(0.9062)
P2 0(1) 0.0245(0.8756) 0.392(0.5312) 0.0385(0.9405) 0.24(0.9810)
RIL 0.1318(0.7166) 0.2995(0.5842) 0.6132(0.4336) 1.8464(2.98E-05) 0.154(2.51E-10)
穗粒数
GME
2016SY G-1 MX3-AI-A P1 0.4341(0.5100) 0.3268(0.5676) 0.0704(0.7908) 0.0678(0.771) 0.3233(0.8155)
P2 0.4341(0.5100) 0.3268(0.5676) 0.0704(0.7908) 0.0678(0.771) 0.3233(0.8155)
RIL 0.0455(0.8311) 0.0049(0.9440) 1.2258(0.2682) 1.428(2.52E-04) 0.1279(3.00E-07)
小穗粒数
GSE
2017SY H-1 4MG-AI P1 0.1133(0.7364) 0.5279(0.4675) 2.5687(0.1090) 0.1469(0.4011) 0.3086(0.2420)
P2 0.0564(0.8122) 0.0075(0.9312) 1.6016(0.2057) 0.0937(0.6285) 0.3291(0.7942)
RIL 0.0036(0.9519) 0.0086(0.9261) 0.0188(0.8908) 0.0394(0.9364) 0.0315(0.7159)
2017HY H-1 4MG-AI P1 1.9215(0.1657) 0.1336(0.7148) 15.2622(9.36E-05) 0.5132(0.0375) 0.457(0.0199)
P2 0.0427(0.8363) 0.0469(0.8286) 2.7766(0.0957) 0.1411(0.4202) 0.2822(0.4653)
RIL 0.0016(0.9677) 0.2173(0.6411) 4.0874(0.0432) 0.1458(0.4046) 0.0501(0.1760)
2017SG H-1 4MG-AI P1 0.2727(0.6015) 0.1454(0.7029) 0.247(0.6192) 0.1503(0.3902) 0.2221(0.4761)
P2 0.0023(0.9615) 0.0588(0.8083) 1.3396(0.2471) 0.0813(0.6955) 0.346(0.7437)
RIL 0(0.9954) 0.0001(0.9917) 0.0004(0.9844) 0.0344(0.9596) 0.0275(0.8516)

Table 4

The estimates of genetic parameters of eleven yield-related traits of population from Pindong34 × Barran populations"

性状Traits 穗长SL(cm) 小穗数SME 穗粒数GME 小穗粒数GSE

环境Environment 2017SY 2016SY 2016SY 2017SY 2017HY 2017SG
模型含义Implication of model PG-AI PG-AI MX3-AI-A 4MG-AI 4MG-AI 4MG-AI
一阶参数估计值1st order parameter Estimate (%) m(m1) 8.70 17.00 56.22 2.16 2.19 2.18
m2 5.25 13.00
m3 8.45 18.40
d(da) 4.56 0.22 -0.12 -0.33
db -1.64 0.18 -0.12 0.16
dc 4.56 -0.20 -0.07 0.06
dd 0.24 -0.09 0.24
iab (i*) -6.02 -0.17 0.08 0.01
iac 0.18 0.24 0.06 0.11
iad -0.20 0.08 0.19
ibc -6.02 0.03 0.06 -0.09
ibd -0.03 0.08 -0.03
icd 0.06 0.03 -0.17
iabc -1.64
[d] 0.15
二阶参数估计值2nd order parameter Estimate (%) σ2e 0.35 0.57 0.80 0.07 0.01 0.06
σ2p 3.70 5.46 36.44 0.07 0.01 0.06
σ2mg 82.59 0.31 0.04 0.33
h2mg (%) 69.39 81.50 71.36 85.49
σ2pg 3.36 4.90 35.64
h2pg(%) 90.64 89.52 29.94
[1] HAWKESFORD M J, ARAUS J L, PARK R, CALDERINI D, MIRALLES D, SHEN T, ZHANG J, PARRY M A J . Prospects of doubling global wheat yields. Food and Energy Security, 2013,2(1):34-48.
[2] KU M S, AGARIE S. NOMURA M, FUKAYAMA H, TSUCHIDA H, ONO K, HIROSE S, TOKI S, MIYAL M, MATSUOKA M . High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nature Biotechnology, 1999,17(1):76-80.
[3] FICHER R A, RESS D, SARRE K D, LU Z M, CONDON A G, LARQUE S A . Wheat yield associated with high stomatal conductance and photosynthetic rete and cooler canopies. Crop Science, 1998,278(6):1467-1475.
[4] KUMAR S . Quantitative genetics, molecular markers, and plant improvement. Scholarly Journal of Agricultural Science, 2014,4(10):502-511.
[5] BECHE E, BENIN G, SILVA C L, MUNARO L B, MARCHESE J A . Genetic gain in yield and changes associated with physiological traits in Brazilian wheat during the 20th century. European Journal of Agronomy, 2014,61:49-59.
[6] 盖钧镒, 章元明, 王建康 . 植物数量性状遗传体系. 北京: 科学出版社, 2003: 96-102.
GAI J Y, ZHANG Y M, WANG J K. Genetic System of Quantitative Traits in Plants. Beijing: Science Press, 2003: 96-102. (in Chinese)
[7] 盖钧镒, 章元明, 王建康 . QTL混合遗传模型扩展至2对主基因+多基因时的多世代联合分析. 作物学报, 2000,26(4):385-391.
GAI J Y, ZHANG Y M, WANG J K . A joint analysis of multiple generations for QTL models extended to mixed two major genes plus polygene. Acta Agronomica Sinica, 2000,26(4):385-391. (in Chinese)
[8] WANG J K, PODLICH D W, COOPER M, DELACY I H . Power of the joint segregation analysis method for testing mixed major-gene and polygene inheritance models of quantitative traits. Theoretical and Applied Genetics, 2001,103:804-816.
[9] WANG J K, GAI J Y . Mixed inheritance model for resistance to agromyzid beanfly ( Melanagromyza sojae Zehntner) in soybean. Euphytica, 2001,122(1):9-18.
[10] GAI J Y . Segregation analysis on genetic system of quantitative traits in plants. Frontiers of Biology, 2006,1(1):85-92.
[11] 黄冰艳, 张新友, 苗利娟, 刘华, 秦利, 徐静, 张忠信, 汤丰收, 董文召, 韩锁义, 刘志勇 . 花生油酸和亚油酸含量的遗传模式分析. 中国农业科学, 2012,45(4):617-624.
HUANG B Y, ZHANG X Y, MIAO L J, LIU H, QIN L, XU J, ZHANG Z X, TANG F S, DONG W Z, HAN S Y, LIU Z Y . Inheritance analysis of oleic acid and linoleic acid content of Arachis hypogaea L. Scientia Agricultura Sinica, 2012,45(4):617-624. (in Chinese)
[12] LI H, RIBAUT J M . Inclusive composite interval mapping(ICIM) for digenic epistasis of quantitative traits in biparental populations. Theoretical and Applied Genetics, 2008,116:243-260.
[13] 汪文祥, 胡琼, 梅德圣, 李云昌, 周日金, 王会成, 洪涛, 付丽, 刘佳 . 甘蓝型油菜分枝角度主基因+多基因混合遗传模型及遗传效应. 作物学报, 2016,42(8):1103-1111.
WANG W X, HU Q, MEI D S, LI Y C, ZHOU R J, WANG H C, HONG T, FU L, LIU J . Genetic effects of branch angle using mixture model of major gene plus polygene in Brassica napus L. Acta Agronomica Sinica, 2016,42(8):1103-1111. (in Chinese)
[14] YE Y J, WU J Y, FENG L, JU Y Q, CAI M, CHENG T R, PAN H T, ZHANG Q X . Heritability and gene effects for plant architecture traits of crape myrtle using major gene plus polygene inheritance analysis. Scientia Horticulturae, 2017,225:335-342.
[15] 曹齐卫, 张允楠, 王永强, 杨桂兰, 孙小镭, 李利斌 . 黄瓜节间长的主基因+多基因混合遗传模型分析. 农业生物技术学报, 2018,26(2):205-212.
CAO Q W, ZHANG Y N, WANG Y Q, YANG G L, SUN X L, LI L B . Genetic analysis of internode length using mixed major- gene plus polygene inheritance model inCucumis sativus. Journal of Agricultural Biotechnology, 2018,26(2):205-212. (in Chinese)
[16] QI Z Y, LI J X, RAZA M A, ZOU X X, CAO L W, RAO L L, CHEN L P . Inheritance of fruit cracking resistance of melon (Cucumis melo L.) fitting E-0 genetic model using major gene plus polygene inheritance analysis. Scientia Horticulturae, 2015,189:168-174.
[17] 赵倩茹, 钟兴华, 张飞, 房伟民, 陈发棣, 滕年军 . 切花小菊绿心性状杂种优势与混合遗传分析. 中国农业科学, 2018,51(5):964-976.
ZHAO Q R, ZHONG X H, ZHANG F, FANG W M, CHEN F D, TENG N J . Heterosis and mixed genetic analysis of green-center trait of spray cut chrysanthemum. Scientia Agricultura Sinica, 2018,51(5):964-976. (in Chinese)
[18] KHAN M I, KHATTAK G S S, KHAN A J, KHAN A J, SUBHAN F, MOHAMMAD T, ALI A . Genetic control of flag leaf area in wheat (Triticum aestivum) crosses. African Journal of Agricultural Research, 2012,7(27):3978-3990.
[19] CAO X W, CUI H M, LI J, XIONG A S, HOU X L, LI Y . Heritability and gene effects for tiller number and leaf number in non-heading Chinese cabbage using joint segregation analysis. Scientia Horticulturae, 2016,203:199-206.
[20] 李树华, 张文杰, 白海波, 吕学莲, 董建力, 惠建, 魏亦勤, 康学兵 . 春小麦穗部性状的主基因+多基因遗传分析. 中国农学通报, 2017,33(6):20-26.
LI S H, ZHANG W J, BAI H B, LÜ X L, DONG J L, HUI J, WEI Y Q, KANG X B . Genetic analysis of major gene plus polygene of spike traits of spring wheat. Chinese Agricultural Science Bulletin. 2017,33(6):20-26. (in Chinese)
[21] 毕晓静, 史秀秀, 马守才, 韩芳, 亓佳佳, 李清峰, 王志军, 张改生, 牛娜 . 小麦农艺性状的主基因+多基因遗传分析. 麦类作物学报, 2013,33(4):630-634.
BI X J, SHI X X, MA S C, HAN F, QI J J, LI Q F, WANG Z J, ZHANG G S, NIU N . Genetic analysis of agronomic traits related to yield based on majou gene plus polygene model in wheat. Journal of Triticeae Crops, 2013,33(4):630-634. (in Chinese)
[22] 李法计, 常鑫, 王宇娟, 宋全昊, 田芳慧, 孙道杰 . 小麦重组自交系群体9个重要农艺性状的遗传分析. 麦类作物学报, 2013,33(1):23-28.
LI F J, CHANG X, WANG Y J, SONG Q H, TIAN F H, SUN D J . Genetics analysis of nine important agronomic traits in wheat population of recombinant inbred lines. Journal of Triticeae Crops, 2013,33(1):23-28. (in Chinese)
[23] 朱欣果, 万洪深, 李俊, 郑建敏, 唐宗祥, 杨武云 . 人工合成小麦育种优势的主基因+多基因混合遗传分析. 南京农业大学学报, 2018,41(4):625-632.
ZHU X G, WAN H S, LI J, ZHENG J M, TANG Z X, YANG W Y . Mixed major-genes plus polygenes inheritance analysis for breeding superiority in synthetic hexaploid wheat. Journal of Nanjing Agricultural University, 2018,41(4):625-632. (in Chinese)
[24] 魏艳丽, 王彬龙, 李瑞国, 蒋会利, 张安静 . 大穗小麦穗部性状的遗传分析. 麦类作物报, 2015,35(10):1366-1371.
WEI Y L, WANG B L, LI R G, JIANG H L, ZHANG A J . Genetic analysis on spike characteristics of wheat variety with large spike. Journal of Triticeae Crops, 2015,35(10):1366-1371. (in Chinese)
[25] 李立会, 李秀全 . 小麦种质资源描述规程和数据标准. 北京:中国农业出版社, 2006.
LI L H, LI X Q. Descriptors and Date Standard for Wheat. Beijing:China Agriculture Press, 2006. (in Chinese)
[26] CHOO T M, REINBERGS E . Estimation of the number of genes in doubled haploid populations of barley(Hordeum vulgare). Canadian Journal of Genetics and Cytology, 1982,24(3):337-341.
[27] 章元明, 盖钧镒, 王永军 . 利用P1、P2和DH或RIL群体联合分离分析的拓展. 遗传, 2001,23(5):467-470.
ZHANG Y M, GAI J Y, WANG Y J . An expansion of joint segregation analysis of quantitative trait for using P1, P2 and DH or RIL populations. Hereditas, 2001,23(5):467-470. (in Chinese)
[28] 曹锡文, 刘兵, 章元明 . 植物数量性状分离分析windows软件包SEA的研制. 南京农业大学学报, 2013,36:1-6.
CAO X W, LIU B, ZHANG Y M . SEA: A software package of segregation analysis of quantitative traits in plants. Journal of Nanjing Agricultural University, 2013,36:1-6. (in Chinese)
[29] ZHANG Y M, GAI J Y, YANG Y H . The EIM algorithm in the joint segregation analysis of quantitative traits. Genetics Research, 2003,81:157-163.
[30] AKAIKE H. On entropy maximization principle. Application of Statistics. The Netherlands: Amsterdam Press, 1977: 27-41.
[31] CAI C C, TU J X, FU T D . The genetic basis of flowering time and photoperiod sensitivity in rapeseed (Brassica napus L.). Russian Journal of Genetics, 2008,44:326-333.
[32] GAMBLE E E . Gene effects in corn (Zea may L.): I. Separation and relative importance of gene effects for yield. Plant Science, 1962,42:339-348.
[33] 李英双, 胡丹, 聂蛟, 黄科慧, 张玉珂, 张园莉, 佘恒志, 方小梅, 阮仁武, 易泽林 . 甜荞株高和茎粗的遗传分析. 作物学报, 2018,44(8):1185-1195.
LI Y S, HU D, NIE J, HUANG K H, ZHANG Y K, ZHANG Y L, SHE H Z, FANG X M, RUAN R W, YI Z L . Genetic analysis of plant height and stem diameter in common buckwheat. Acta Agnomica Sinica, 2018,44(8):1185-1195. (in Chinese)
[34] 郝贤伟, 徐秀红, 许家来, 崔胜利, 王传义, 张兴伟, 任夏, 朱佩, 张忠锋 . 烤烟耐烤性的遗传效应. 中国农业科学, 2012,45(23):4939-4946.
HAO X W, XU X H, XU J L, CUI S L, WANG C Y, ZHANG X W, REN X, ZHU P, ZHANG Z F . Genetic effects of holding curing potential in flue-cured tobacco. Scientia Agricultura Sinica, 2012,45(23):4939-4946. (in Chinese)
[35] 张保雷, 张卫东, 高庆荣, 王茂婷, 李楠楠, 张艳玉, 王慧娜, 高建华, 赵兰飞, 茹振刚 . 温光敏雄性不育小麦BNS育性的遗传效应分析. 中国农业科学, 2013,46(8):1533-1542.
ZHANG B L, ZHANG W D, GAO Q R, WANG M T, LI N N, ZHANG Y Y, WANG H N, GAO J H, ZHAO L F, RU Z G . Genetic analysis on male sterility of thermo-photo-sensitive male sterile line BNS in wheat. Scientia Agricultura Sinica, 2013,46(8):1533-1542. (in Chinese)
[36] 王金社, 李海旺, 赵团结, 盖钧镒 . 重组自交家系群体4对主基因加多基因混合遗传模型分离分析方法的建立. 作物学报, 2010,36(2):191-201.
WANG J S, LI H W, ZHAO T J, GAI J Y . Establishment of segregation analysis of mixed inheritance model with four major genes plus polygenes in recombinant inbred lines population. Acta Agronomica Sinica, 2010,36(2):191-201. (in Chinese)
[37] 张晓芬, 陈晓慧, 陈斌, 韩华丽, 耿三省 . 农业生物技术学报, 2013,21(4):407-412.
ZHANG X F, CHEN X H, CHEN B, HAN H L, GENG S S . Genetic analysis of trichome density on the main stem and leaves in a recombinant inbred lines population derived from wild pepper (Capsicum annuum L.). Journal of Agricultural Biotechnology, 2013,21(4):407-412. (in Chinese)
[38] 吴浪, 刘婧仪, 梁燕 . 番茄绿果与红果颜色性状遗传的研究. 园艺学报, 2016,43(4):674-682.
WU L, LIU J Y, LIANG Y . Inheritance on fruit color character between green and red of Tomato. Acta Horticulturae Sinica, 2016,43(4):674-682. (in Chinese)
[39] 彭辉, 陈发棣, 房伟民, 蒋甲福, 陈素梅, 管志勇, 廖园 . 切花小菊分枝性状杂种优势表现与遗传分析, 园艺学报, 2013,40(7):1327-1336.
PENG H, CHEN F D, FANG W M, JIANG J F, CHEN S M, GUAN Z Y, LIAO Y . Heterosis and mixed genetic analysis of branch traits of cut chrysanthemum. Acta Horticulturae Sinica, 2013,40(7):1327-1336. (in Chinese)
[40] 江建华, 洪德林, 郭媛, 张启武 . 粳稻穗角与谷粒性状的相关性及谷粒性状遗传分析. 植物学报, 2009,44(2):167-177.
JIANG J H, HONG D L, GUO Y, ZHANG Q W . Correlation between panicle angle and grain traits, and genetic analysis of grain traits in Japonica rice (Oryza sativa). Chinese Bulletin of Botany, 2009,44(2):167-177. (in Chinese)
[41] 江建华, 张启武, 洪德林 . 粳稻穗部性状遗传分析. 植物学报, 2010,45(2):182-188.
JIANG J H, ZHANG Q W, HONG D L . Genetic analysis of panicle traits in Oryza sativa ssp. japonica. Chinese Bulletin of Botany, 2010,45(2):182-188. (in Chinese)
[42] 匡勇, 罗丽华, 周倩倩, 何云礼, 范西林, 肖颖慧 . 水稻籼粳交重组自交系群体穗部性状的相关和遗传分析. 华北农学报, 2011,26(3):72-78.
KUANG Y, LUO L H, ZHOU Q Q, HE Y L, FAN X L, XIAO Y H . Genetic and correlation analysis of the panicle traits of Recombinant Inbred Lines derived from an Indica/Japonica rice cross. Acta Agriculturae Boreali-Sinica, 2011,26(3):72-78. (in Chinese)
[43] 郑建敏, 蒲宗君, 李式昭, 李俊杨 . 人工合成小麦CI-LD抗穗发芽遗传特性分析. 麦类作物学报, 2015,35(4):464-470.
ZHENG J M, PU Z J, LI S Z, LI J Y . Genetic analysis of pre-harvest sprouting resistance in synthetic wheat CI-LD. Journal of Triticeae Crops, 2015,35(4):464-470. (in Chinese)
[44] 杨兴圣, 梁子英, 李华, 沈玮囡, 李美霞, 奚亚军, 王竹林, 刘曙东 . 普通小麦籽粒性状的主基因+多基因遗传模型分析. 麦类作物学报, 2013,33(6):1119-1127.
YANG X S, LIANG Z Y, LI H, SHEN W N, LI M X, XI Y J, WANG Z L, LIU S D . Analysis on genetic model of grain characteristics in common wheat by mixed inheritance model of major genes plus polygenes. Journal of Triticeae Crops, 2013,33(6):1119-1127. (in Chinese)
[45] 张安静, 张俊祖, 刘凤琴, 罗洪溪, 王彬龙, 赵会利 . 应用极大似然法分析小麦穗长的遗传. 中国农学通报, 2006,9:182-185.
ZHANG A J, ZHANG J Z, LIU F Q, LUO H X, WANG B L, ZHAO H L . The genetics law on the main stem ear length of long spike wheat lines using maximum likelihood methods. Chinese Agricultural Science Bulletin, 2006,22(9):182-185. (in Chinese)
[46] 程洁, 周荣全, 吴玉川, 宋新颖, 林琪, 穆平 . 不同水分条件下小麦穗部性状的遗传分析. 华北农学报, 2015,30(增刊):146-151.
CHENG J, ZHOU R Q, WU Y C, SONG X Y, LIN Q, MU P . Genetic analysis of spike traits in wheat cultivated in contrasted water conditions in wheat. Acta Agriculturae Boreali-Sinica, 2015,30(Suppl.):146-151. (in Chinese)
[47] CUI F, LI J, DING A . Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theoretical and Applied Genetics, 2011,122(8):1517-1536.
[48] CUI F, DING A M, LI J . QTL detection of seven spike related traits and their genetic correlations in wheat using two related RIL populations, Euphytica, 2012,186(1):177-192.
[49] 任哓波, 兰秀锦, 汪加丽 . 人工合成小麦穗部特异性状的遗传分析. 四川农业大学学报, 2006,24(4):375-380.
REN X B, LAN X J, WANG J L . Genetic analysis on special character in spike of synthetic hexaploid wheat. Journal of Sichuan Agricultural University, 2006,24(4):375-380. (in Chinese)
[50] 王新宁, 杜旭烨, 李斌, 王振林, 贺明荣, 李安飞, 贾继增, 孔令让 . 察雅折达29×偃展 1号重组自交系群体主要农艺性状遗传分析. 山东农业科学, 2010,7:17-19.
WANG X N, DU X Y, LI B, WANG Z L, HE M R, LI A F, JIA J Z, KONG L R . Genetic analysis of main agronomic traits in recombinant inbred lines of chayazheda 29×Yanzhan. Shandong Agricultural Sciences, 2010,7:17-19. (in Chinese)
[51] 林志强, 郑燕, 蔡英杰, 黄姗, 李志勇, 沈伟伟, 郑秀娟, 梁康迳 . 水稻长穗大粒 RIL 群体产量、穗部和谷粒性状的遗传分析. 福建农林大学学报(自然科学版), 2011,40(5):449-454.
LIN Z Q, ZHENG Y, CAI Y J, HUANG S, LI Z R, SHEN W W, ZHENG X J, LIANG K J . Genetic analysis on yield,panicle and grain traits in rice RIL population of long panicle and big grain. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2011,40(5):449-454. (in Chinese)
[52] 向道权, 黄烈健, 曹永国, 戴景瑞 . 玉米产量性状主基因-多基因遗传效应的初步研究. 华北农学报, 2001,16(3):1-5.
XIANG D Q, HUANG L J, CAO Y G, DAI J R . A preliminary study on genetic effect of maize yield component traits based on major gene and polygene mixed inheritance. Acta Agriculturae Boreali-Sinica, 2001,16(3):1-5. (in Chinese)
[53] 王健胜, 王辉, 刘伟华, 武军, 李立会 . 小麦-冰草多粒新种质及其多粒性遗传分析. 中国农业科学, 2009,42(6):1889-1895.
WANG J S, WANG H, LIU W H, WU J, LI L H . The large kernel number in the novel wheat-agropyron germplasm 3228 and its inheritance analysis. Scientia Agricultura Sinica, 2009,42(6):1889-1895. (in Chinese)
[54] 闫林 . 大穗小麦西农9814主要性状遗传分析及性状改良研究[D]. 杨凌: 西北农林科技大学, 2009.
YAN L . Genetic analysis of main traits and research on traits improvement for big ears wheat Xinong 9814 [D]. Yangling: Northwest A &F University, 2009. (in Chinese)
[55] 卢翔, 张锦鹏, 王化俊, 杨欣明, 李秀全, 李立会 . 小麦-冰草衍生后代3558-2穗部相关性状的遗传分析和QTL定位. 植物遗传资源学报, 2011,12(1):86-91.
LU X, ZHANG J P, WANG H J, YANG X M, LI X Q, LI L H . Genetic analysis and QTL mapping of wheat spike traits in a derivative line 3558-2 from wheat agropyron cristatum Offspring. Journal of Plant Genetic Resources, 2011,12(1):86-91. (in Chinese)
[56] 杜希朋, 闫媛媛, 刘伟华, 高爱农, 张锦鹏, 李秀全, 杨欣明, 车永和, 郭小敏 . 蚂蚱麦×碧玉麦杂交F2代部分农艺性状的遗传分析. 麦类作物学报, 2011,31(4):624-629.
DU X P, YAN Y Y, LIU W H, GAO A N, ZHANG J P, LI X Q, YANG X M, CHE Y H, GUO X M . Genetic analysis on several important agronomic traits in F2 generation of mazhamai ×quality. Journal of Triticeae Crops, 2011,31(4):624-629. (in Chinese)
[57] 房敬业, 孙东发 . 多小穗小麦51885的多小穗性遗传及与剑叶关系的初步研究. 华中农业大学学报, 2004,34:61-67.
FANG J Y, SUN D F . Inheritance of supernumerary spikelets and its relations with flag leaf characters of supernumerary spikelets line 51885 in wheat. Journal of Huazhong Agricultural University, 2004,34:61-67. (in Chinese)
[58] 范平, 詹克慧, 孙建英, 王淑凤, 赵国山 . 小麦主要性状的遗传模型分析. 河南农业大学学报, 1999,33(3):231-234.
FAN P, ZHAN K H, SUN J Y, WANG S F, ZHAO G S . Analysis on the genetic models for main characters in wheat. Acta Agriculturae Universitatis Henanensis, 1999,33(3):231-234. (in Chinese)
[59] 许为刚, 胡琳, 吴兆苏, 盖钧镒 . 关中小麦品种产量与产量结构遗产改良的研究. 作物学报, 2000,26(3):352-358.
XU W G, HU L, WU Z S, GAI J Y . Studies on genetic improvement of yield and yield components of wheat cultivars in Mid-Shaanxi area. Acta Agronomica Sinica, 2000,26(3):352-358. (in Chinese)
[60] HOLLAND J B . Genetic architecture of complex traits in plants. Current Opinion in Plant Biology, 2007,10:156-161.
[61] XU H, ZHU J . Statistical approaches in QTL mapping and molecular breeding for complex traits. Chinese Science Bulletin, 2012,57:2637-2644.
[62] 王春娥, 盖钧镒, 傅三雄, 喻德跃, 陈受宜 . 大豆豆腐和豆乳得率的遗传分析与 QTL 定位. 中国农业科学, 2008,41:1274-1282.
WANG C E, GAI J Y, FU S X, YU D Y, CHEN S Y . Inheritance and QTL mapping of tofu and soymilk output in soybean. Scientia Agricultura Sinica, 2008,41:1274-1282. (in Chinese)
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[5] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[6] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[9] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[10] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[11] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[12] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[13] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[14] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[15] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!