Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (15): 2646-2663.doi: 10.3864/j.issn.0578-1752.2019.15.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Wheat Seeding Rate with Nitrogen Fertilizer Application Reduction on Soil Microbial Biomass Carbon, Nitrogen and Enzyme Activities in Fluvo-Aquic Soil in Huang-Huai Plain

SHI Ke,DONG ShiGang,SHEN FengMin,LONG Qian,JIANG GuiYing(),LIU Fang,LIU ShiLiang()   

  1. College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002
  • Received:2019-01-29 Accepted:2019-04-11 Online:2019-08-01 Published:2019-08-06
  • Contact: GuiYing JIANG,ShiLiang LIU E-mail:jgy9090@126.com;shlliu70@163.com

Abstract:

【Objective】 The effects of wheat sowing rate and nitrogen fertilizer interaction on soil microbial biomass carbon/ nitrogen (SMBC/N) and enzyme activities in the Huang-Huai Plain of China was studied, aimed to select the optimum management in this area. 【Method】 Field experiment was conducted, and four treatments were set as: (1) conventional seeding + conventional nitrogen fertilizer (CK); (2) 30% additional seeding + conventional nitrogen application (T1); (3) 30% additional seeding + 20% nitrogen reduction (T2); (4) conventional seeding + 20% nitrogen reduction (T3). The soil organic carbon (SOC), total nitrogen (TN), soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), and soil enzyme activities were measured and analyzed in different soil depths during the three crop seasons in 2016-2018. 【Result】 Generally, all the indexes decreased with soil depth. The SMBC was significantly higher under conventional nitrogen (N) treatments (i.e. CK and T1) than that under nitrogen reduction treatments (i.e. T2 and T3) in 0-20 cm in wheat and maize season 2017 and 0-30 cm in wheat season 2018, and the highest one was 170.89 mg?kg -1. The dynamics of SMBN was similar as SMBC, which was significantly higher under conventional N treatments than that under N reduction treatments during the all the crop seasons, and with the highest value as 57.24 mg?kg -1 under CK treatment. The differences of SOC content among treatments were focused on 0-20 cm during the first and second seasons, and 10-30 cm during the third season. Therein, the SOC content under N reduction treatments was significantly higher than that under conventional N treatments, with the highest one as 12.85 g?kg -1 under T3. The TN content under all the treatments was no different in wheat season 2017, which was significantly higher under CK treatment than that under the others in 0-20 cm in maize season 2017 and wheat season 2018. The C/N was no obviously trend in wheat season 2017, while it was significantly higher under N reduction treatments in 0-20 cm during maize season 2017 and wheat season 2018. The SMBC/SOC under all treatments ranged from 0.5% to 2.5%. And it was higher under conventional N treatments than that under N reduction treatments, except which in 10-20 cm during wheat season 2017. The SMBN/TN under all treatments ranged from 2% to 6%. The SMBC/SMBN under all treatments was below 5:1. The SMBN/TN was higher under conventional N treatments than that under N reduction treatments, except which in 10-20 cm during wheat season 2017 and 0-30 cm during wheat season 2018. The SMBC/SMBN under T1 treatment was higher in 2017 wheat season. The urease activity under sowing rate increase treatment (i.e. T1 and T2) was higher in wheat season 2018. The invertase activity in 10-30 cm during maize season 2017 and neutral phosphatase activity in 0-30 cm during wheat season under N reduction treatments was higher than that under conventional treatments. The wheat yield and the aboveground N accumulation was higher under N reduction treatments in wheat season 2018, with the highest value as 6 822.27 kg?hm -2and 322.30 kg?hm -2, respectively, under T3 treatment.【Conclusion】 Generally, in the Huang-Huai Plain, under the nitrogen reduction, the soil microbial biomass and TN content were decreased, while the soil enzyme activities and aboveground N accumulation was increased. Meanwhile, the wheat yield was increased or maintained. Therein, the treatment with conventional seeding + 20% nitrogen reduction was suggested as the optimum practice in this study.

Key words: wheat, sowing rate, nitrogen reduction, soil microbial biomass, soil enzyme, Huang-Huai Plain

Table 1

Wheat seeding and fertilization rate under each treatment (kg?hm-2)"

处理
Treatment
小麦播量
Wheat seeding rate
施肥量 Fertilization rate
N P2O5 K2O
CK 232.5 150+69 120 120
T1 302.25 150+69 120 120
T2 232.5 120+55.2 120 120
T3 302.25 120+55.2 120 120

Fig. 1

Soil microbial biomass carbon under different treatments in different soil layers and different crop seasons Different small letters showed significant differences among treatments (P≤0.05). The same as below"

Fig. 2

Soil microbial biomass nitrogen under different treatments in different soil layers and different crop seasons"

Fig. 3

Soil organic carbon content under different treatments in different soil layers and different crop seasons"

Fig. 4

Soil total nitrogen content under different treatments in different soil layers and different crop seasons"

Fig. 5

Soil organic carbon / total nitrogen under different treatments in different soil layers and different crop seasons"

Fig. 6

Soil microbial quotient under different treatments in different soil layers and different crop seasons"

Fig. 7

Soil microbial biomass nitrogen/total nitrogen under different treatments in different soil layers and different crop seasons"

Fig. 8

Soil microbial biomass carbon/soil microbial biomass nitrogen under different treatments in different soil layers and different crop seasons"

Fig. 9

Soil urease activity under different treatments in different soil layers and different crop seasons"

Fig. 10

Soil invertase activity under different treatments in different soil layers and different crop seasons"

Fig. 11

Soil neutral phosphatase activity under different treatments in different soil layers and different crop seasons"

Table 2

The correlation of each index under different treatments in different crop seasons"

时期
Period
指标
Index
有机碳
Organic carbon
全氮
Total nitrogen
SMBC SMBN 脲酶
Urease
蔗糖酶
Invertase
中性磷酸酶
Neutral phosphatase
2017年小麦季
Wheat season 2017
有机碳 Organic carbon 1
土壤全氮 Total nitrogen 0.909** 1
SMBC 0.702** 0.797** 1
SMBN 0.653** 0.774** 0.807** 1
脲酶 Urease 0.790** 0.714** 0.615** 0.446** 1
蔗糖酶 Invertase 0.889** 0.874** 0.682** 0.637** 0.800** 1
中性磷酸酶 Neutral phosphatase 0.595** 0.430** 0.057 -0.139 0.605** 0.550** 1
2017年玉米季
Maize season 2017
有机碳 0rganic carbon 1
土壤全氮 Total nitrogen 0.727** 1
SMBC 0.472** 0.852** 1
SMBN 0.443** 0.813** 0.890** 1
脲酶 Urease 0.805** 0.708** 0.475** 0.432** 1
蔗糖酶 Invertase 0.857** 0.769** 0.605** 0.518** 0.797** 1
中性磷酸酶 Neutral phosphatase 0.738** 0.757** 0.532** 0.444** 0.779** 0.755** 1
2018年小麦季
Wheat season 2018
有机碳 Organic carbon 1
土壤全氮 Total nitrogen 0.785** 1
SMBC 0.767** 0.903** 1
SMBN 0.683** 0.849** 0.919** 1
脲酶 Urease 0.658** 0.616** 0.598** 0.500** 1
蔗糖酶 Invertase 0.807** 0.899** 0.817** 0.779** 0.691** 1
中性磷酸酶 Neutral phosphatase 0.861** 0.750** 0.677** 0.645** 0.507** 0.795** 1

Fig. 12

The crop yield under different treatments in different crop seasons"

Fig. 13

The above-ground nitrogen accumulation under different treatments in different crop seasons"

[1] 薛亮, 马忠明, 杜少平, 冯守疆, 冉生斌 . 氮素用量对膜下滴灌甜瓜产量以及氮素平衡、硝态氮累积的影响. 中国农业科学, 2019,52(4):690-700.
XUE L, MA Z Y, DU S P, FENG S J, RAN S B . Effects of application of nitrogen on melon yield, nitrogen balance and soil nitrogen accumulation under plastic mulching with drip irrigation. Scientia Agricultura Sinica, 2019, 52(4):690-700. (in Chinese)
[2] 李青军, 张炎, 胡伟, 孟凤轩, 冯广平, 胡国智, 刘新兰 . 氮素运筹对玉米干物质积累、氮素吸收分配及产量的影响. 植物营养与肥料学报, 2011,17(3):755-760.
doi: 10.11674/zwyf.2011.0284
LI Q J, ZHANG Y, HU W, MENG F X, FENG G P, HU G Z, LIU X L . Effects of nitrogen management on maize dry matter accumulation, nitrogen up take and distribution and maize yield. Plant Nutrition and Fertilizer Science, 2011,17(3):755-760. (in Chinese)
doi: 10.11674/zwyf.2011.0284
[3] SUN Z, CHEN Q, HAN X, BOL R., QU B, MENG F . Allocation of photosynthesized carbon in an intensively farmed winter wheat-soil system as revealed by 14CO2 pulse labelling . Scientific Reports, 2018,8(1):3160-3170.
[4] 张英鹏, 李洪杰, 刘兆辉, 孙明, 孙翠平, 井永苹, 罗加法, 李彦 . 农田减氮调控施肥对华北潮土区小麦-玉米轮作体系氮素损失的影响.应用生态学报 .
ZHANG Y P, LI H J, LIU Z H, SUN M, SUN C P, JING Y P, LUO J F, LI Y . Effect of reducing N and regulated fertilization on N loss of wheat-maize rotation system of farmland in chao soil region of north China plain. Chinese Journal of Applied Ecology. . (in Chinese)
[5] 张赵星, 刘芳亮, 张保军, 张正茂, 李娜, 吕冰 . 肥密互作对旱地冬小麦品种普冰151旗叶光合特性、产量及品质的影响. 麦类作物学报, 2016,36(8):1069-1075.
ZHANG Z X, LIU F L, ZHANG B J, ZHANG Z M, LI N, LV B . Interactive effects of fertilizer and planting density on photosynthesis characteristics of flag leaf, yield and quality of Pubing 151. Journal of Triticeae Crops, 2016,36(8):1069-1075. (in Chinese)
[6] 曹慧, 杨浩, 孙波, 赵其国 . 不同种植时间菜园土壤微生物生物量和酶活性变化特征. 土壤, 2002(4):197-200.
CAO H, YANG H, SUN B, ZHAO Q G . Changes of microbial biomass and enzyme activity in vegetable garden soil at different planting time. Soils, 2002(4):197-200. (in Chinese)
[7] 王树起, 韩晓增, 乔云发, 王守宇, 李晓慧 . 不同土地利用和施肥方式对土壤酶活性及相关肥力因子的影响. 植物营养与肥料学报, 2009,15(6):1311-1316.
doi: 10.11674/zwyf.2009.0610
WANG S Q, HAN X Z, QIAO Y F, WANG S Y, LI X H . Effects of land uses and fertilization systems on soil enzyme activities and nutrients. Plant Nutrition and Fertilizer Science, 2009,15(6):1311-1316. (in Chinese)
doi: 10.11674/zwyf.2009.0610
[8] 周江明, 赵琳, 董越勇, 徐进, 边武英, 毛杨仓, 章秀福 . 氮肥和栽植密度对水稻产量及氮肥利用率的影响. 植物营养与肥料学报, 2010,16(2):274-281.
doi: 10.11674/zwyf.2010.0203
ZHOU J M, ZHAO L, DONG Y Y, XU J, BIAN W Y, MAO Y C, ZHANG X F . Nitrogen and transplanting density interactions on the rice yield and N use rate. Plant Nutrition and Fertilizer Science, 2010,16(2):274-281. (in Chinese)
doi: 10.11674/zwyf.2010.0203
[9] 杨馨逸, 刘小虎, 韩晓日, 段鹏鹏, 朱玉翠, 齐文 . 不同品种小麦下土壤微生物量和可溶性有机物对不同施氮量的响应. 中国农业科学, 2016,49(7):1315-1324.
YANG X Y, LIU X H, HAN X R, DUAN P P, ZHU Y C, QI W . Responses of soil microbial biomass and soluble organic matter to different application rates of N: a comparison between Liaochun 10 and Liaochun 18. Scientia Agricultura Sinica, 2016,49(7):1315-1324. (in Chinese)
[10] 肖小平, 李超, 唐海明, 汤文光, 程凯凯, 郭立君, 汪柯, 潘孝晨 . 秸秆还田下减氮增密对双季稻田土壤氮素库容及氮素利用率的影响. 中国生态农业学报. .
XIAO X P, LI C, TANG H M, TANG W G, CHENG K K, GUO L J, WANG K, PAN X C . Soil nitrogen storage capacity and nitrogen recovery efficiency of double paddy fields under nitrogen-reduction and density-increase measures. Chinese Journal of Eco-Agriculture. . (in Chinese)
[11] 侯贤清, 李荣, 吴鹏年, 李培富, 王西娜 . 秸秆还田配施氮肥对土壤碳氮含量与玉米生长的影响. 农业机械学报, 2018,49(9):238-246.
HOU X Q, LI R, WU P N, LI P F, WANG X N . Effects of straw returning with nitrogen application on soil carbon, nitrogen content and maize growth. Transactions of the Chinese Society for Agricultural Machinery, 2018,49(9):238-246. (in Chinese)
[12] LI X G, JIA B, LV J T, MA Q J, KUZYAKOW Y, LI F M . Nitrogen fertilization decreases the decomposition of soil organic matter and plant residues in planted soils. Soil Biology & Biochemistry, 2017 112:47-55.
[13] ZANG H D, WANG J Y, KUZYAKOV Y . N fertilization decreases soil organic matter decomposition in the rhizosphere. Applied Soil Ecology, 2016,108:47-53.
[14] LI L Y, XIA Z B, YE R Z, DOANE TA, HORWATH W R . Soil microbial biomass size and soil carbon influence the priming effect from carbon inputs depending on nitrogen availability. Soil Biology and Biochemistry, 2018,119:41-49.
[15] 赵俊晔, 于振文, 李延奇, 王雪 . 施氮量对土壤无机氮分布和微生物量氮含量及小麦产量的影响. 植物营养与肥料学报, 2006,12(4):466-472.
doi: 10.11674/zwyf.2006.0402
ZHAO J Y, YU C W, LI Y Q, WANG X . Effects of nitrogen application rate on soil inorganic nitrogen distribution, microbial biomass nitrogen content and yield of wheat. Plant Nutrition and Fertilizer Science, 2006,12(4):466-472. (in Chinese)
doi: 10.11674/zwyf.2006.0402
[16] 段文学, 于振文, 张永丽, 王东, 石玉 . 施氮量对旱地小麦氮素吸收转运和土壤硝态氮含量的影响. 中国农业科学, 2012,45(15):3040-3048.
doi: 10.3864/j.issn.0578-1752.2012.15.004
DUAN W X, YU Z W, ZHANG Y L, WANG D, SHI Y . Effects of nitrogen fertilizer application rate on nitrogen absorption, translocation and nitrate nitrogen content in soil of dryland wheat. Scientia Agricultura Sinica, 2012,45(15):3040-3048. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.15.004
[17] 郭天财, 宋晓, 马冬云, 王永华, 谢迎新, 岳艳军, 查菲娜 . 施氮量对冬小麦根际土壤酶活性的影响. 应用生态学报, 2008,19(1):110-114.
GUO T C, SONG X, MA D Y, WANG Y H, XIE Y X, YUE Y J, CHA F N . Effects of nitrogen application rate on soil enzyme activities in wheat rhizosphere. Chinese Journal of Applied Ecology, 2008,19(1):110-114. (in Chinese)
[18] 马冬云, 郭天财, 查菲娜, 岳艳军, 宋晓 . 不同种植密度对小麦根际土壤微生物数量及土壤酶活性的影响. 华北农学报, 2008(3):154-157.
MA D Y, GUO T C, CHA F N, YUE Y J, SONG X . Effects of planting densities on microorganism population and soil enzyme activity in the rhizosphere of wheat. Acta Agriculturae Boreali-Sinica, 2008(3):154-157. (in Chinese)
[19] 夏雪, 谷洁, 高华, 秦清军, 刘磊, 解媛媛 . 不同配肥方案对土酶活性和小麦产量的影响. 植物营养与肥料学报, 2011,17(2):472-476.
doi: 10.11674/zwyf.2011.0127
XIA X, GU J, GAO H, QIN Q J, LIU L, XIE Y Y . Effects of different fertilization proportions on soil enzyme activities and wheat yield in cumulic cinnamon soil. Plant Nutrition and Fertilizer Science, 2011,17(2):472-476. (in Chinese)
doi: 10.11674/zwyf.2011.0127
[20] 吕盛, 王子芳, 高明, 黄容, 田冬 . 秸秆不同还田方式对紫色土微生物量碳、氮、磷及可溶性有机质的影响. 水土保持学报, 2017,31(5):266-272.
LV S, WANG Z F, GAO M, HUANG R, TIAN D . Effects of different straw returning methods on soil microbial biomass carbon, nitrogen, phosphorus and soluble organic matter in purple soil. Journal of Soil and Water Conservation, 2017,31(5):266-272. (in Chinese)
[21] 关松荫 . 土壤酶及其研究法. 北京: 农业出版社, 1986.
GUAN S Y. Soil Enzymes and Their Research Methods. Beijing: Agricultural Press, 1986. (in Chinese)
[22] 鲁艳红, 聂军, 廖育林, 周兴, 王宇, 汤文光 . 氮素抑制剂对双季稻产量、氮素利用效率及土壤氮平衡的影响. 植物营养与肥料学报, 2018,24(1):95-104.
LU Y H, NIE J, LIAO Y L, ZHOU X, WANG Y, TANG W G . Effects of urease and nitrification inhibitor on yield, nitrogen efficiency and soil nitrogen balance under double-rice cropping system. Journal of Plant Nutrition and Fertilizer, 2018,24(1):95-104. (in Chinese)
[23] 李娟, 赵秉强, 李秀英, Hwat Bing So . 长期有机无机肥料配施对土壤微生物学特性及土壤肥力的影响. 中国农业科学, 2008,41(1):144-152.
LI J, ZHAO B Q, LI X Y, HWAT BING SO . Effects of long-term combined application of organic and mineral fertilizers on soil microbiological properties and soil fertility. Scientia Agricultura Sinica, 2008,41(1):144-152. (in Chinese)
[24] 倪进治, 徐建民, 谢正苗 . 土壤生物活性有机碳库及其表征指标的研究. 植物营养与肥料学报, 2001,7(1):56-63.
doi: 10.11674/zwyf.2001.0109
NI J Z, XU J M, XIE Z M . The size and characterization of biologically active organic carbon pool in soils. Journal of Plant Nutrition and Fertilizers, 2001,7(1):56-63. (in Chinese)
doi: 10.11674/zwyf.2001.0109
[25] 任天志, GREGO S . 持续农业中的土壤生物指标研究. 中国农业科学, 2000,33(1):68-75.
REN T Z, GREGO S . Soil bioindicators in sustainable agriculture. Scientia Agricultura Sinica, 2000,33(1):68-75. (in Chinese)
[26] 王光华, 金剑, 韩晓增, 刘居东, 刘晓冰 . 不同土地管理方式对黑土土壤微生物量碳和酶活性的影响. 应用生态学报, 2007,18(6):1275-1280.
WANG G H, JIN J, HAN X Z, LIU J D, LIU X B . Effects of different land management practices on black soil microbial biomass C and enzyme activities. Chinese Journal of Applied Ecology, 2007,18(6):1275-1280. (in Chinese)
[27] 单鸿宾, 梁智, 王纯利, 朱新萍, 王丽, 贾宏涛 . 连作及灌溉方式对棉田土壤微生物生物量碳氮的影响. 干旱地区农业研究, 2010,28(4):202-205.
SHAN H B, LIANG Z, WANG C L, ZHU X P, WANG L, JIA H T . Effect of continuous cropping and irrigation way on soil microbial biomass carbon and nitrogen. Agricultural Research in the Arid Areas, 2010,28(4):202-205. (in Chinese)
[28] 张明, 白震, 张威, 丁雪丽, 宋斗妍, 朱俊丰, 朱平 . 长期施肥农田黑土微生物量碳、氮季节性变化. 生态环境, 2007,16(5):1498-1503.
ZHANG M, BAI Z, ZHANG W, DING X L, SONG D Y, ZHU J F, ZHU P . Seasonal variation of microbial biomass carbon and nitrogen in black soil of long-term fertilization farmland. Ecology and Environment, 2007,16(5):1498-1503. (in Chinese)
[29] 梁燕菲, 张潇潇, 李伏生 . “薄浅湿晒”灌溉稻田土壤微生物量碳、氮和酶活性研究. 植物营养与肥料学报, 2013,19(6):1403-1410.
doi: 10.11674/zwyf.2013.0614
LIANG Y F, ZHANG X X, LI F S . Soil microbial biomass carbon and nitrogen and enzyme activities in paddy soil under “thin-shallow- wet-dry” irrigation method. Journal of Plant Nutrition and Fertilizer, 2013,19(6):1403-1410. (in Chinese)
doi: 10.11674/zwyf.2013.0614
[30] 庞欣, 张福锁, 王敬国 . 不同供氮水平对根际微生物量氮及微生物活度的影响. 植物营养与肥料学报, 2000,6(4):476-480.
doi: 10.11674/zwyf.2000.0418
PANG X, ZHANG F S, WANG J G . Effect of different nitrogen levels on SMB-N and microbial activity. Journal of Plant Nutrition and Fertilizer, 2000,6(4):476-480. (in Chinese)
doi: 10.11674/zwyf.2000.0418
[31] WANG C, LIU D W, BAI E . Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biology and Biochemistry, 2018,120:126-133.
[32] LI L J, XIA Z B, YE R Z, DOANE T A, WILLIAM R, HORWATH W R . Soil microbial biomass size and soil carbon influence the priming effect from carbon inputs depending on nitrogen availability. Soil Biology and Biochemistry, 2018,119:41-49
[33] 符鲜, 杨树青, 刘德平, 刘月 . 施氮水平对河套灌区套作小麦-玉米土壤微生物量碳、氮的影响研究. 生态环境学报, 2018,27(9):1652-1657.
FU X, YANG S Q, LIU D P, LIU Y . Effects of nitrogen application on soil microbial biomass carbon and nitrogen of intercropping wheat-corn in Hetao irrigation area. Ecology and Environmental Sciences, 2018,27(9):1652-1657. (in Chinese)
[34] 门倩, 海江波, 岳忠娜, 薛少平, 王庆 . 化肥减量对玉米田土壤酶活性及微生物量的影响. 西北农林科技大学学报(自然科学版), 2012,40(6):133-140.
MEN Q, HAI J B, YUE Z N, XUE S P, WANG Q . Effects on maize field soil enzyme activities and microbial biomass of chemical fertilizer reduction. Journal of Northwest A&F University (Natural Science Edition), 2012,40(6):133-140. (in Chinese)
[35] 王志明, 朱培立, 黄东迈 . 14C、 15N双标记秸秆对土壤微生物量碳、氮动态变化的影响 . 江苏农业学报, 1999,15(3):173-176.
WANG Z M, ZHU P L, HUANG D M . Influence of 14C- and 15N-labelled straw application on dynamics of soil microbial biomass C and N . Jiangsu Journal of Agricultural Sciences, 1999,15(3):173-176. (in Chinese)
[36] 闫德智, 王德建, 张刚, 查书平 . 15N标记秸秆在太湖地区水稻土上的氮素矿化特征研究 . 土壤学报, 2012,49(1):77-85.
YAN D Z, WANG D J, ZHANG G, ZHA S P . Nitrogen mineralization of applied 15N labeled straw in soils in the Taihu lake region . Acta Pedologica Sinica, 2012,49(1):77-85. (in Chinese)
[37] 骆坤, 胡荣桂, 张文菊, 周宝库, 徐明岗, 张敬业, 夏平平 . 黑土有机碳、氮及其活性对长期施肥的响应. 环境科学, 2013,34(2):676-684.
GUO K, HU R G, ZHANG W J, ZHOU B K, XU M G, ZHANG J Y, XIAP P . Response of black soil organic carbon, nitrogen and its availability to long-term fertilization. Environmental Science, 2013,34(2):676-684. (in Chinese)
[38] 李文西, 鲁剑巍, 鲁见明, 李小坤 . 苏丹草-黑麦草轮作制中施氮量对饲草产量与土壤氮碳积累的影响. 草业学报, 2011,20(1):55-61.
doi: 10.11686/cyxb20110108
LI W X, LU J W, LU J M, LLI X K . Effect of N application on yield of forage grass and the accumulation of N and C under a sudangrass/ ryegrass rotation. Acta Prataculturae Sinica, 2011,20(1):55-61. (in Chinese)
doi: 10.11686/cyxb20110108
[39] ZANG H D, WANG J Y, KUZYAKOV Y . N fertilization decreases soil organic matter decomposition in the rhizosphere. Applied Soil Ecology, 2016,108:47-53.
[40] KAY B D, DEXTER A R, RASIAHA V, GRANTC C D . Weather, cropping practices and sampling depth effects on tensile strength and aggregate stability. Soil and Tillage Research, 1994,32(2/3):135-148.
[41] 俞华林, 张恩和, 王琦, 刘青林, 刘朝巍, 王田涛, 尹辉 . 灌溉和施氮对免耕留茬春小麦农田土壤有机碳、全氮和籽粒产量的影响. 草业学报, 2013,22(3):227-233.
doi: 10.11686/cyxb20130330
YU H L, ZHANG E H, WANG Q, LIU Q L, LIU C W, WAN T T, YIN H . Effects of irrigation and N supply levels on soil organic carbon, total nitrogen and grain yield of spring wheat on no-tillage farmland with standing stubble. Acta Prataculturae Sinica, 2013,22(3):227-233. (in Chinese)
doi: 10.11686/cyxb20130330
[42] 陈思怿, 李升峰, 朱继业 . 种植密度对小麦根际土壤特性及籽粒产量的影响. 江苏农业科学, 2016,44(4):132-137.
CHEN S Z, LI S F, ZHU J Y . Effects of planting density on rhizosphere soil characteristics and grain yield of wheat. Jiangsu Agricultural Sciences, 2016,44(4):132-137. (in Chinese)
[43] 古巧珍, 杨学云, 孙本华, 马路军, 同延安, 赵秉强, 张夫道 . 长期定位施肥对土娄土耕层土壤养分和土地生产力的影响. 西北农业学报, 2004,13(3):121-125.
GU Q Z, YANG X Y, SUN B H, MA L J, TONG Y A, ZHAO B Q, ZHANG F D . Effects of long-term fertilization on soil nutrition and land productivity in topsoil of loess soil. Acta Agriculturae Boreali-occidentalis Sinica, 2004,13(3):121-125. (in Chinese)
[44] 丁民伟, 崔彦宏, 刘梦星, 崔国美, 杨利 . 氮肥用量与施用时期及分配比例对夏玉米干物质积累的影响. 河北农业大学学报, 2007,30(6):1-4.
DING M W, CUI Y H, LIU M X, CUI G M, YANG L . Effect of N application rate, time and ratio on dry matter accumulation of summer maize (Zea mays L). Journal of Agricultural University of Hebei, 2007,30(6):1-4. (in Chinese)
[45] 张娟, 武同华, 代兴龙, 王西芝, 李洪梅, 蒋明洋, 贺明荣 . 种植密度和施氮水平对小麦吸收利用土壤氮素的影响. 应用生态学报, 2015,26(6):1727-1734.
ZHANG J, WU T H, DAI X L, WANG X Z, LI H M, JIANG M Y, HE M R . Effects of plant density and nitrogen level on nitrogen uptake and utilization of winter wheat. Chinese Journal of Applied Ecology, 2015, 26(6):1727-1734. (in Chinese)
[46] 张彦东, 孙志虎, 沈有信 . 施肥对金沙江干热河谷退化草地土壤微生物的影响. 水土保持学报, 2005,19(2):88-91.
ZHANG Y D, SUN Z H, SHEN Y X . Effect of fertilization on soil microorganism of deteriorated grassland in dry-hot valley region of Jinsha river. Journal of Soil and Water Conservation, 2005,19(2):88-91. (in Chinese)
[47] 宋朝玉, 宫明波, 高倩, 王圣健, 朱丕生, 高峻岭 . 长期玉米秸秆还田模式下氮肥用量对玉米生长发育及土壤养分的影响. 山东农业科学, 2017,49(10):55-59.
SONG C Y, GONG M B, GAO Q, WANG S J, ZHU P S, GAO J L . Effects of nitrogen application rate on maize growth and soil nutrients under mode of long-term maize straw returning. Shandong Agricultural Sciences, 2017,49(10):55-59. (in Chinese)
[48] FRIEDEL J K, GABEL D, STAHR K . Nitrogen pools and turnover in arable soils under different durations of organic farming: II: Source and -sink function of the soil microbial biomass or competition with growing plants?. Journal of Plant Nutrient and Soil Sciences, 2001,164:421-429.
[49] 丁雪丽, 何红波, 白震, 解宏图, 李晓波, 郑立臣, 张明, 张旭东 . 作物残体去向与利用及对土壤氮素转化的影响. 土壤通报, 2008(6):1454-1461.
DING X L, HE H B, BAI Z, XIE H T, LI X B, ZHENG L C, ZHANG M, ZHANG X D . Fate and utilization of crop residues and their effect on soil nitrogen turnover. Chinese Journal of Soil Science, 2008(6):1454-1461. (in Chinese)
[50] ARDUINI I, MASONI A, ERCOLI L, MARIOTTI M . Grain yield, and dry matter and nitrogen accumulation and remobilization in durum wheat as affected by variety and seeding rate. European Journal of Agronomy, 2006,25(4):309-318. (in Chinese)
[51] 石祖梁, 李丹丹, 荆奇, 姜东, 曹卫星, 戴廷波, 李建辉, 李向楠, 陈琳, 杜红, 赫英俊 . 氮肥运筹对稻茬冬小麦土壤无机氮时空分布及氮肥利用的影响. 生态学报, 2010,30(09):2434-2442.
SHI Z L, LI D D, JING Q, JIANG D, CAO W X, DAI T B, LI J H, LI X N, CHEN L, DU H, HE Y J . Effects of nitrogen fertilization on temporals partial distribution of soil inorganic nitrogen and nitrogen utilization in wheat in rice wheat rotation. Acta Ecologica Sinica, 2010,30(9):2434-2442. (in Chinese)
[52] 张娟, 武同华, 代兴龙, 王西芝, 李洪梅, 蒋明洋, 贺明荣 . 种植密度和施氮水平对小麦吸收利用土壤氮素的影响. 应用生态学报, 2015,26(6):1727-1734.
ZHANG J, WU T H, DAI X L, WANG X Z, LI H M, JIANG M Y, HE M R . Effects of plant density and nitrogen level on nitrogen uptake and utilization of winter wheat. Chinese Journal of Applied Ecology, 2015,26(6):1727-1734. (in Chinese)
[53] 赵海超, 刘景辉, 张星杰 . 春玉米种植密度对土壤有机碳组分的影响. 生态环境学报, 2012,21(6):1051-1056.
ZHAO H C, LIU J H, ZHANG X J . Effect of painting density of spring corn on organic carbon fractions of soil. Ecology and Environmental Sciences, 2012,21(6):1051-1056. (in Chinese)
[54] 李锦, 田霄鸿, 王少霞, 把余玲, 李有兵, 郑险峰 . 秸秆还田条件下减量施氮对作物产量及土壤碳氮含量的影响. 西北农林科技大学学报(自然科学版), 2014,42(1):137-143.
LI J, TIAN X H, WANG S X, BA Y L, LI Y B, ZHENG X F . Effects of nitrogen fertilizer reduction on crop yields, soil nitrate nitrogen and carbon contents with straw returning. Journal of Northwest A&F University (Natural Science Edition), 2014,42(1):137-143. (in Chinese)
[55] 马瑞萍, 戴相林, 刘国一 . 施氮对西藏农田土壤有机碳及酶活性的影响. 中国农学通报, 2018,34(18):126-131.
MA R P, DAI X L, LIU G Y . N application affects soil organic carbon and enzyme activities in Tibet farmland soil. Chinese Agricultural Science Bulletin, 2018,34(18):126-131. (in Chinese)
[56] 孙颖, 赵晓会, 和文祥, 高亚军, 曹卫东 . 绿肥对土壤酶活性的影响. 西北农业学报, 2011,20(3):115-119.
SUN Y, ZHAO X H, HE W X, GAO Y J, CAO W D . Effect of green manure on soil enzyme activity. Acta Agriculturae Boreali-occidentalis Sinica, 2011,20(3):115-119. (in Chinese)
[57] 李花, 葛玮健, 马晓霞, 黎青慧, 任卫东, 杨学云, 张树兰 . 小麦-玉米轮作体系长期施肥对土微生物量碳、氮及酶活性的影响. 植物营养与肥料学报, 2011,17(5):1140-1146.
doi: 10.11674/zwyf.2011.1027
LI H, GE W J, MA X X, LI Q H, REN W D, YANG X Y, ZHANG S L . Changes of soil nitrogen supply in black loessial in Loess Plateau under long-term fertilization. Journal of Plant Nutrition and Fertilizer, 2011,17(5):1140-1146. (in Chinese)
doi: 10.11674/zwyf.2011.1027
[58] 魏猛, 张爱君, 唐忠厚, 李洪民, 史新敏, 陈晓光 . 长期定位施肥对黄潮土土壤酶活性的影响. 西北农业学报, 2012,21(12):163-167.
WEI M, ZHANG A J, TANG Z H, LI H M, SHI X M, CHEN X G . Effects of long-term fertilization on enzyme activities in yellow fluvo-aquic soil. Acta Agriculturae Boreali-occidentalis Sinica, 2012,21(12):163-167. (in Chinese)
[59] 米国全, 袁丽萍, 龚元石, 张福墁, 任华中 . 不同水氮供应对日光温室番茄土壤酶活性及生物环境影响的研究. 农业工程学报, 2005,21(7):124-127.
MI G Q, YUAN L P, GONG Y S, ZHANG F M, REN Z H . Influences of different water and nitrogen supplies on soil biological environment in solar greenhouse. Transactions of the CSAE, 2005,21(7):124-127. (in Chinese)
[60] 陈金, 庞党伟, 韩明明, 尹燕枰, 郑孟静, 骆永丽, 王振林, 李勇 . 耕作模式对土壤生物活性与养分有效性及冬小麦产量的影响. 作物学报, 2017,43(8):1245-1253.
CHEN J, PANG D W, HAN M M, YIN Y P, ZHENG M J, LUO Y L, WANG Z L, LI Y . Effects of tillage patterns on soil biological activity, availability of soil nutrients and grain yield of winter wheat. Acta Agronomica Sinica, 2017,43(8):1245-1253. (in Chinese)
[61] 吴昕怡, 胡晓辉, 屈锋, 李素芝, 许娇娇, 李建明 . 不同氮肥处理对春季大棚番茄产量及肥料利用率的影响. 北方园艺, 2018(17):12-18.
WU X Y, HU X H, QU F, LI S Z, XU J J, LI J M . Effect of different nitrogen fertilizer treatments on yield and fertilizer utilization ratio of tomato.Northern Horticulture, 2018(17):12-18. (in Chinese)
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[5] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[6] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[9] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[10] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[11] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[12] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[13] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[14] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[15] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!