Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (12): 2114-2127.doi: 10.3864/j.issn.0578-1752.2019.12.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Optimal Protected Area Selection: Based on Multiple Attribute Decision Making Method and Ecosystem Service Research ——Illustrated by Guanzhong-Tianshui Economic Region Section of the Weihe River Basin

ZHANG YuMeng1,LI Jing1(),ZENG Li1,YANG XiaoNan2,LIU JingYa3,ZHOU ZiXiang4   

  1. 1 School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119
    2 Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi
    3 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101
    4 College of Geomatics, Xi’an University of Science and Technology, Xi'an 710054
  • Received:2018-12-10 Accepted:2019-04-15 Online:2019-06-16 Published:2019-06-22
  • Contact: Jing LI E-mail:lijing@snnu.edu.cn

Abstract:

【Objective】 In present study, based on the calculation of biodiversity, carbon sequestration, water production and cultural ecosystem services, multi-attribute decision-making method is applied to select the optimal protected area of the study area. The work can provides a theoretical basis for the maintenance of ecological balance and ecological construction in the study area. 【Method】Our research is illustrated by the Guanzhong-Tianshui Economic Zone (Guantian Section) of Weihe River Basin, biodiversity and carbon sequestration services are calculated by InVEST model, SWAT model is used to measure water yield services and divide sub-basins, cultural services are quantified by SoLVES model. On this basis, 11 scenarios are established by using OWA (Ordered Weighted Averaged) multi-attribute decision making method, and the priority protected areas are screened out. 【Result】 (1) The distribution of water yield in the study area was uneven on the sub-basin scale. On the whole, the water yield in the eastern region is the highest, and that in the central region is smaller than that in the western region, and the average value is about 95 mm. The range of carbon sequestration on the sub-basin scale is between 5.041 t·hm -2 and 10.284 t·hm -2. Sub-basins with higher carbon sequestration per unit area are mostly located in Qinling area, and the sub-basins located in Guanzhong Plain are urban agglomeration area, and the regional carbon sequestration with dense construction land is very limited. Biodiversity is mainly measured by habitat quality index, the range of habitat quality in the study area is between 0.222 and 0.921. The vegetation cover is insufficient in Guanzhong Plain area, frequent human activities and urban development lead to dense distribution of threat factors. Therefore, the habitat quality is relatively low with 0.22 in Guanzhong Plain area. The region of Qinling Mountains, with high vegetation cover, is far from the habitat threat factor, its ecological suitability is relatively high and the biodiversity is maintained well. The total index of cultural value in the study area is between 1.298 and 5.667. The aesthetic and spiritual values are concentrated in forest parks and Qinling Mountains, while urban areas are rich in historical heritage and entertainment facilities , as a consequence, the urban area has the highest value of cultural services. (2) By setting up different risk values and weights to calculate OWA operator, 11 risk scenarios are obtained and their protection efficiency are calculated. Finally, risk scenario 6 is selected as the optimal protected area with highest trade-off value, its protection efficiency is about 1.499. The range of risk scenario 6 is mainly located in the southern Qinling area and the junction part of Tianshui City and Baoji City. 【Conclusion】this study analyzes and evaluates ecosystem services in the study area by combining natural and human factors. The OWA operator is used to balance the trade-offs between different ecosystem services and to select the optimal protected areas, which provides a reference for improving ecosystem services in the study area.

Key words: ecosystem services, optimal protected area, Ordered Weighted Averaged (OWA)

Fig. 1

Basic information map of study area"

Fig. 2

Maxent maximum entropy model analyze process flow"

Fig. 3

The spatial distribution of water yield, carbon sequestration, biodiversity and culture, 2015"

Fig. 4

The calibration and validation period of runoff"

Table 1

The risk and tradeoff under different scenarios"

情景Scenario 风险Risk 权衡Tradeoff w1 w2 w3 w4
1 0 0 0 0 0 1
2 0.1 0.37 0.011 0.043 0.182 0.764
3 0.2 0.57 0.045 0.106 0.252 0.596
4 0.3 0.71 0.098 0.165 0.276 0.461
5 0.4 0.86 0.167 0.213 0.272 0.347
6 0.5 1 0.25 0.25 0.25 0.25
7 0.6 0.86 0.347 0.272 0.213 0.167
8 0.7 0.71 0.461 0.276 0.165 0.098
9 0.8 0.57 0.596 0.252 0.106 0.045
10 0.9 0.37 0.764 0.182 0.043 0.011
11 1 0 1 0 0 0

Fig. 5

The relationship between tradeoff and risk"

Fig. 6

The priority area under different scenarios"

Table 2

Protection efficiency of different scenarios"

情景
Scenario
保护区域服务值
Ecosystem services value of protected area
保护效率
Protection efficiency
1 5.502 1.078
2 5.922 1.160
3 6.702 1.313
4 7.275 1.425
5 7.302 1.430
6 7.655 1.499
7 7.543 1.477
8 7.593 1.487
9 7.605 1.489
10 7.415 1.452
11 6.601 1.293

Table 3

The area (km2) of land use type under different scenarios"

情景
Scenario
耕地
Cultivated land
林地
Forest land
草地
Grass land
水体
Waters
城镇
Urban areas
未分类用地
Unclassified land
1 435.699 1976.327 3262.307 4.6035 12.0798 0.765
2 538.2909 4654.398 5696.013 6.4224 15.4278 1.7802
3 453.429 6150.767 3262.725 5.2173 13.1652 1.3986
4 323.1801 7385.671 1909.08 4.5594 9.9621 1.2528
5 1019.526 8192.438 1407.231 17.1477 15.7068 1.2717
6 561.1482 8070.34 668.6595 17.7876 11.16 1.1817
7 972.1476 8354.525 438.0714 29.2968 177.8202 1.2015
8 963.1584 8390.232 288.1458 34.443 177.5358 1.1646
9 889.7238 8446.486 295.6806 40.023 176.9463 1.1727
10 1247.008 8663.555 428.1444 65.7837 260.6175 1.9638
11 3579.965 9382.71 1822.757 215.7966 529.6032 47.9349
[1] HOLDREN J P, EHRLICH P R . Human population and the global environment. American Scientist, 1974,62(3):282.
[2] LIU J G, CALMON M, CLEWELL A, LIU J G, DENJEAN B, ENGEL V L, ARONSON J . South-south cooperation for large‐scale ecological restoration. Restoration Ecology, 2017,25(1):6.
[3] FISHER B, TURNER R K, MORLING P . Defining and classifying ecosystem services for decision making. Ecological Economics, 2009,68(3):643-653.
doi: 10.1016/j.ecolecon.2008.09.014
[4] SILVA L V D, EVERARD M, SHORE R G . Ecosystem services assessment at Steart Peninsula, Somerset, UK. Ecosystem Services, 2014,10:19-34.
doi: 10.1016/j.ecoser.2014.07.008
[5] BOUMANS R, COSTANZA R, FARLEY J, WILSON M A, PORTELA R, ROTMANS J, VILLA F, GRASSO M . Modeling the dynamics of the integrated earth system and the value of global ecosystem services using the GUMBO model. Ecological Economics, 2002,41(3):529-560.
doi: 10.1016/S0921-8009(02)00098-8
[6] THOMAS C D, ANDERSON B J, MOILANEN A, EIGENBROD F, HEINEMEYER A, QUAIFE T, ROY D B, GILLINGS S, ARMSWORTH P R, GASTON K J . Reconciling biodiversity and carbon conservation. Ecology Letters, 2013,16(s1):39-47.
[7] RODRÍGUEZ N, ARMENTERAS D, RETANA J . National ecosystems services priorities for planning carbon and water resource management in Colombia. Land Use Policy, 2015,42(42):609-618.
doi: 10.1016/j.landusepol.2014.09.013
[8] 李晶, 李红艳, 张良 . 关中-天水经济区生态系统服务权衡与协同关系. 生态学报, 2016,36(10):1-10.
doi: 10.5846/stxb201408261688
LI J, LI H Y, ZHANG L . Ecosystem service trade-offs and in the Guanzhong-Tianshui economic of China. Acta Ecological Sinica, 2016,36(10):1-10. (in Chinese)
doi: 10.5846/stxb201408261688
[9] 吴健生, 曹祺文, 石淑芹, 黄秀兰, 卢志强 . 基于土地利用变化的京津冀生境质量时空演变. 应用生态学报, 2015,26(11):3457-3466.
WU J S, CAO Q W, SHI S Q, HUANG X L, LU Z Q . Spatio-temporal variability of habitat quality in Beijing-Tianjin-Hebei Area based on land use change. Chinese Journal of Applied Ecology, 2015,26(11):3457-3466. (in Chinese)
[10] BENSON C S, DARIUS J S, JESSICA M C . An application of Social Values for Ecosystem Services (SolVES) to three national forests in Colorado and Wyoming. Ecological Indicators, 2014,36(37):68-79.
doi: 10.1016/j.ecolind.2013.07.008
[11] NAHUELHUAL L, CARMONA A, LATERRA P, BARRENA J, AGUAYO M . A mapping approach to assess intangible cultural ecosystem services: The case of agriculture heritage in Southern Chile. Ecological Indicators, 2014,40(5):90-101.
doi: 10.1016/j.ecolind.2014.01.005
[12] DAW T, BROWN K, ROSENDO S , POMEROY, R. Applying the ecosystem services concept to poverty alleviation: the need to disaggregate human well-being. Environmental Conservation, 2011,38(4):370-379.
doi: 10.1017/S0376892911000506
[13] CHAN K M A, GUERRY A D, BALVANERA P, KLAIN S, SATTERFIELD T, BASURTO X, BOSTROM A, CHUENPAGDEE R, GOULD R, HAPERN B S . LEVINE J, NORTON B, RUCKELSHAUS M, RUSSELL R, TAM J, WOODSIDE U. Where are cultural and social in ecosystem services? A framework for constructive engagement. Bioscience, 2012,62(8):744-756.
doi: 10.1525/bio.2012.62.8.7
[14] PLEASANT M M, GRAY S A, LEPCZYK C, FERNANDES A, HUNTER N, FORD D . Managing cultural ecosystem services. Ecosystem Services, 2014,8:141-147.
doi: 10.1016/j.ecoser.2014.03.006
[15] ARBAULT D ,RIVIÈRE M, RUGANI B, BENETTO E, TIRUTA-BARNA L. Integrated earth system dynamic modeling for life cycle impact assessment of ecosystem services. Science of the Total Environment, 2014,472:262-272.
doi: 10.1016/j.scitotenv.2013.10.099
[16] MALCZEWSKI J . Ordered weighted averaging with fuzzy quantifiers: GIS-based multicriteria evaluation for land-use suitability analysis. International Journal of Applied Earth Observations & Geoinformation, 2006,8(4):270-277.
[17] ZHANG L W, FU B J, LÜ Y H, ZENG Y . Balancing multiple ecosystem services in conservation priority setting. Landscape Ecology, 2015,30(3):535-546.
doi: 10.1007/s10980-014-0106-z
[18] 曾莉, 李晶, 李婷, 杨晓楠, 王彦泽 . 基于贝叶斯网络的水源涵养服务空间格局优化. 地理学报 , 2018,73(9):1809-1822.
ZENG L, LI J, LI T, YANG X N, WANG Y Z . A Bayesian belief network approach for mapping water conservation ecosystem service optimization region. Acta Geographica Sinica, 2018,73(9):1809-1822. (in Chinese)
[19] 吴瑞, 刘桂环, 文一惠 . 基于InVEST模型的官厅水库流域产水和水质净化服务时空变化. 环境科学研究, 2017,30(3):406-414.
WU R, LIU G H, WEN Y H . Spatial temporal variations of water yield and water quality purification service functions in Guanting Reservoir Basin based on InVEST model. Research of Environmental Sciences, 2017,30(3):406-414. (in Chinese)
[20] 陈登帅, 李晶, 杨晓楠, 刘岩 . 渭河流域生态系统服务权衡优化研究. 生态学报, 2018,38(9):3260-3271.
CHEN D S, LI J, YANG X N, LIU Y . Trade-offs and optimization among ecosystem services in the Weihe River basin. Acta Ecologica Sinica, 2018,38(9):3260-3271. (in Chinese)
[21] 金琳, 李玉娥, 高清竹, 刘运通, 万运帆, 秦晓波, 石锋 . 中国农田管理土壤碳汇估算. 中国农业科学, 2008,41(3):734-743.
JIN L, LI Y E, GAO Q Z, LIU Y T, WAN Y F, QIN X B, SHI F . Estimate of carbon sequestration under cropland management in China. Scientia Agricultura Sinica, 2008,41(3):734-743. (in Chinese)
[22] 李婷, 李晶, 王彦泽, 曾莉 . 关中-天水经济区生态系统固碳服务空间流动及格局优化. 中国农业科学, 2017,50(20):3953-3969.
LI T, LI J, WANG Y Z, ZENG L . The spatial flow and pattern optimization of carbon sequestration ecosystem service in Guanzhong- Tianshui economical region. Scientia Agricultura Sinica, 2017,50(20):3953-3969. (in Chinese)
[23] 方精云, 郭兆迪, 朴世龙, 陈安平 . 1981-2000 年中国陆地植被碳汇的估算. 中国科学: D辑, 2007,37(6):804-812.
FANG J Y, GUO Z D, PIAO S L, CHEN A P . Estimation on terrestrial vegetation carbon sinks in China from 1981 to 2000. Science in China: Series D, 2007,37(6):804-812. (in Chinese)
[24] 韩晋榕 . 基于InVEST 模型的城市扩张对碳储量的影响分析[D]. 长春: 东北师范大学, 2013.
HAN J R . The impact of urban sprawl on carbon stocks based on the InVEST model[D]. Changchun: Northeast Normal University, 2013. (in Chinese)
[25] 包玉斌, 刘康, 李婷, 胡胜 . 基于InVEST 模型的土地利用变化对生境的影响—以陕西省黄河湿地自然保护区为例. 干旱区研究, 2015,32(3):622-629.
BAO Y B, LIU K, LI T, HU S . Effects of land use change on habitat based on InVEST model: Taking yellow river wetland nature reserve in Shaanxi province as an example. Arid Zone Research, 2015,32(3):622-629. (in Chinese)
[26] Toth F L . Ecosystems and Human Well-being: A Framework for Assessment. Physics Teacher, 2003,34(9):534-534.
[27] CHAN K M A, SATTERFIELD T, GOLDSTEIN J . Rethinking ecosystem services to better address and navigate cultural values. Ecological Economics, 2012,74(1):8-18.
doi: 10.1016/j.ecolecon.2011.11.011
[28] 赵琪琪, 李晶, 刘婧雅, 秦克玉, 田涛 . 基于SolVES 模型的关中-天水经济区生态系统文化服务评估. 生态学报, 2018,38(10):3673-3681.
ZHAO Q Q, LI J, LIU J Y, QIN K Y, TIAN T . Assessment and analysis of social values of cultural ecosystem services based on the SolVES model in the Guanzhong-Tianshui economic region. Acta Ecologica Sinica, 2018,38(10):3673-3681. (in Chinese)
[29] 李双成, 张才玉, 刘金龙, 朱文博, 马程, 王珏 . 生态系统服务权衡与协同研究进展及地理学研究议题. 地理研究, 2013,32(18):1379-1390.
LI S C, ZHANG C Y, LIU J L, ZHU W B, MA C, WANG Y . The tradeoffs and synergies of ecosystem services: Research progress, development trend, and themes of geography. Geographical Research, 2013,32(18):1379-1390. (in Chinese)
[30] 彭建, 胡晓旭, 赵明月, 刘焱序, 田璐 . 生态系统服务权衡研究进展: 从认知到决策. 地理学报, 2017,72(6):960-973.
PENG J, HU X X, ZHAO M Y, LIU Y X, TIAN L . Research progress on ecosystem service trade- offs: From cognition to decision-making. Acta Geographica Sinica, 2017,72(6):960-973. (in Chinese)
[31] 李鹏, 姜鲁光, 封志明, 于秀波 . 生态系统服务竞争与协同研究进展. 生态学报, 2012,32(16):5219-5229.
doi: 10.5846/stxb201109161360
LI P, JIANG L G, FENG Z M, YU X B . Research progress on trade-offs and synergies of ecosystem services: An overview. Acta Ecologica Sinica, 2012,32(16):5219-5229. (in Chinese)
doi: 10.5846/stxb201109161360
[32] LIU P, JIANG S W, ZHAO L J, LI Y X, ZHANG P P, ZHANG L . What are the benefits of strictly protected nature reserves? Rapid assessment of ecosystem service values in Wanglang Nature Reserve, China. Ecosystem Services, 2017,26:70-78.
doi: 10.1016/j.ecoser.2017.05.014
[33] YAGER R R . On ordered weighted averaging aggregation operators in multicriteria decision making. Readings in Fuzzy Sets for Intelligent Systems, 1993,18(1):80-87.
[34] 张镱锂, 胡忠俊, 祁威, 吴雪, 摆万奇, 李兰晖, 丁明军, 刘林山, 王兆锋, 郑度 . 基于NPP 数据和样区对比法的青藏高原自然保护区保护成效分析. 地理学报, 2015,70(7):1027-1040.
ZHANG Y L, HU Z J, QI W, WU X, BAI W Q, LI L H, DING M J, LIU L S, WANG Z F, ZHENG D . Assessment of protection effectiveness of nature reserves on the Tibetan Plateau based on net primary production and the large-sample-comparison method. Acta Geographica Sinica, 2015,70(7):1027-1040. (in Chinese)
[35] 张立伟, 傅伯杰, 吕一河, 董治宝, 李英杰, 曾源, 吴炳方 . 基于综合指标法的中国生态系统服务保护有效性评价研究. 地理学报, 2016,71(5):768-780.
ZHANG L W, FU B J, Lü Y H, DONG Z B, LI Y J, ZENG Y, WU B F . The using of composite indicators to assess the conservational effectiveness of ecosystem services in China. Acta Geographica Sinica, 2016,71(5):768-780. (in Chinese)
[36] 谢高地, 张彩霞, 张昌顺, 肖玉, 鲁春霞 . 中国生态系统服务的价值. 资源科学, 2015,37(9):1740-1746.
XIE G D, ZHANG C X, ZHANG C S, XIAO Y, LU C X . The value of ecosystem services in China. Resources Science, 2015,37(9):1740-1746. (in Chinese)
[1] LI Ting, LI Jing, WANG YanZe, ZENG Li. The Spatial Flow and Pattern Optimization of Carbon Sequestration Ecosystem Service in Guanzhong-Tianshui Economical Region [J]. Scientia Agricultura Sinica, 2017, 50(20): 3953-3969.
[2] PAN Gen-xing, CHENG Kun, LU Hai-fei, LI Lian-qing, LIU Xiao-yu, BIAN Rong-jun, ZHANG Xu-hui, ZHENG Ju-feng, ZHENG Jin-wei. Sustainable Soil Management: An Emerging Soil Science Challenge for Global Development [J]. Scientia Agricultura Sinica, 2015, 48(23): 4607-4620.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!