Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (12): 2079-2091.doi: 10.3864/j.issn.0578-1752.2019.12.006

• PLANT PROTECTION • Previous Articles     Next Articles

Molecular Regulation of Trichoderma harzianum ACCC32527 Response to NaCl Based on Transcriptome and Metabolome Analysis

XIANG Jie,CHEN JingShi,XIA XinXin,LIU Kuai,LI ShiGui,GU JinGang()   

  1. Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2019-01-21 Accepted:2019-03-18 Online:2019-06-16 Published:2019-06-22
  • Contact: JinGang GU E-mail:gujingang@caas.cn

Abstract:

【Objective】The objective of this study is to mine the key functional differentially expressed genes (DEGs) and secondary metabolites by analyzing the data of Trichoderma harzianum ACCC32527 differential transcriptomes and metabolomes under NaCl stress.【Method】The transcriptomes and metabolomes of ACCC32527 with the treatment of 0 (T1), 0.4 (T2), 0.6 (T3) mol?L -1 NaCl were performed by RNA-seq and GC-TOF-MS, respectively, and the annotation, screening and classification of DEGs (|log2fold change|>1 & FDR<0.01) and secondary metabolites (P-value≤0.05 & VIP>1) were completed by related softwares and databases (GO, COG and KEGG pathway). Finally, RT-qPCR was conducted to validate RNA-seq data.【Result】In this study, after NaCl stress treatments, the growth of ACCC32527 was inhibited and the reproductive rate was significantly decreased, 637 and 1 570 DEGs were screened from the T1 vs T2 and T1 vs T3 comparison groups, respectively. Trend analysis result showed that 1 921 DEGs were assigned to 16 significant expression patterns, including 9 up-regulated trends (950 genes), 3 down-regulated trends (662 genes) and 4 irregular trends (309 genes). GO enrichment analysis result showed that each tread was shared by catalytic activity, binding, organelle, cell membrane part, cell membrane, cell part, cell, single-organism process and metabolic process, and accounted for 61%-94%. Among them, the classification with great difference in gene proportion before and after treatment was catalytic activity. The enrichment analysis of KEGG metabolic pathway displayed that the classification and numbers of pathways treated with different NaCl concentrations were significantly different, there were 225 and 535 DEGs enriched in 20 KEGG pathways, respectively, including metabolic pathways, biosynthesis of antibiotics, biosynthesis of secondary metabolites and so on. Among them, 12 and 18 related genes of ribosome biosynthesis pathway were suppressed under T2 and T3 treatments, respectively. A total of 73 genes were screened from the DEGs including ROS scavenging, ion transport and cell wall structure, and most of them were up-regulated. In addition, intracellular small molecule metabolites showed significant change in response to NaCl stress, and there were 30 metabolites with increased accumulation, including amino acids and their derivatives, sugars and their derivatives and alcohols, while 53 metabolites were reduced including fatty acids and organic acids. Among them, glycerol, a known important osmoregulation substance of fungi, was increased under T3 treatment, which may be involved in the process of cell osmotic adjustment. RT-qPCR verified the expression changes of 7 DEGs, which were consistent with the RNA-seq analysis, indicating the reliability of transcriptome sequencing results.【Conclusion】Under NaCl stress, a large number of genes and secondary metabolites of T. harzianum ACCC32527 were changed, which were related to NaCl stress regulation. These processes act together to reduce the toxic effect to the cells, and the results can provide important information for the study of salt-tolerant mechanism of Trichoderma spp..

Key words: NaCl, Trichoderma harzianum, transcriptome, metabolome, salt-tolerant mechanism

Table 1

Gene selection and primer design for RT-qPCR"

基因ID Gene ID 引物序列Primer sequence (5′→3′)
c55075.graph_c0 F-5′ ATTCCCGTCTTAGGGTTCG 3′; R-5′ TGTTGGCTGCTACGCTTT 3′
c56173.graph_c0 F-5′ CCAGCCTTCCTTCTCCTC 3′; R-5′ ATGGTGCCACAGTCTATTCC 3′
c44870.graph_c0 F-5′ TGCTGAAGCGTGAGGTTG 3′; R-5′ AAGCCCGAGTCTTGTTGC 3′
c57043.graph_c0 F-5′ ATTGGCAGGTAGAGTCGT 3′; R-5′ TCATTGATAAACTGGTCCTT 3′
c60715.graph_c3 F-5′ GCGGGAAATCTGCCTTAG 3′; R-5′ GCTGGGTGACGCATAGCT 3′
c60689.graph_c1 F-5′ TACGACCAAACGAGTGCG 3′; R-5' GGCGTCAAGCAGGTGTCT 3′
c55738.graph_c0 F-5′ CTGCCGATTGTTCCGTAT 3′; R-5' GCTTATTAGCCAAGTTGTTTCT 3′
UCE F-5′ GTGGCGGCAGCACTTGTTAT 3′; R-5'ATGACGAACGAAAAGCACCG 3′

Fig. 2

Go classification of DEGs"

Fig. 3

Enriched KEGG terms of DEGs"

Fig. 4

Speculated mechanism of T. harzianum ACCC32527 resistance to NaCl"

Fig. 5

PLS-DA score map of samples"

Table 2

The differential metabolites of T. harzianum ACCC32527"

Category 种类 分析物 Analyte 保留时间RT (min) log2 FC P-value VIP Regulated
氨基酸及其衍生物Amino acids and their derivatives 天冬氨酸Aspartic acid 13.568 0.6834 0.0247 1.3218 Up
谷氨酸Glutamic acid 14.744 1.2283 0.0017 1.5026 Up
谷氨酸盐Glutamine 16.503 3.2743 0.0443 1.4131 Up
异亮氨酸Isoleucine 10.588 1.1547 0.0232 1.3751 Up
蛋氨酸Methionine 13.578 0.9800 0.0227 1.3712 Up
N-甲酰-L-蛋氨酸N-formyl-L-methionine 15.729 -0.4150 0.0463 1.3166 Down
羟脯胺酸Oxoproline 13.649 0.6648 0.0402 1.3251 Up
鸟氨酸Ornithine 16.915 1.2580 0.0489 1.3506 Up
酪氨酸Tyrosine 18.255 1.3905 0.0027 1.4861 Up
苯基丙氨酸Phenylalanine 14.860 0.8506 0.0268 1.3273 Up
L-组氨酸甜菜碱N(alpha), N(alpha)-dimethyl-L-histidine 17.136 1.2927 0.0064 1.4160 Up
糖类及其衍生物
Sugars and their derivatives
赤藓糖Erythrose 12.687 -0.6572 0.0008 1.5139 Down
塔格糖Tagatose 17.197 1.1699 0.0181 1.4103 Up
6-脱氧-D-葡萄糖6-deoxy-D-glucose 16.175 2.1378 0.0091 1.4189 Up
葡萄糖-1-磷酸Glucose-1-phosphate 16.379 0.9139 0.0438 1.2903 Up
葡萄糖-6-磷酸Glucose-6-phosphate 21.850 -1.6865 0.0154 1.4795 Down
脂肪酸
Fatty acid
豆蔻酸Myristic acid 17.327 2.6436 0.0109 1.5117 Up
花生四烯酸Arachidonic acid 22.200 -1.9118 0.0413 1.3907 Down
有机酸
Organic acid
柠檬酸Citric acid 9.8766 -0.7485 0.0009 1.5087 Down
马来酸Maleic acid 10.698 -0.4605 0.0464 1.2939 Down
3-羟丁酸3-hydroxybutyric acid 8.7102 -1.5905 0.0214 1.4670 Down
3-羟基-3-甲基戊二酸3-hydroxy-3-methylglutaric acid 14.526 -1.2892 0.0037 1.5065 Down
3-邻羟基苯乙酸3-hydroxyphenylacetic acid 14.727 -1.1634 0.0010 1.5084 Down
β-甘露糖基甘油酸β-mannosylglycerate 20.685 2.0396 0.0442 1.3879 Up
莽草酸Shikimic acid 16.753 1.9183 0.0215 1.4382 Up
醇类
Alcohol
丙三醇Glycerol 10.320 0.5890 0.0249 1.3618 Up
丁三醇2-deoxyerythritol 10.509 -0.5241 0.0464 1.2975 Down
核酸及其衍生物Nucleic acids and their derivatives 2-脱氧尿苷2-deoxyuridine 10.419 -0.8792 0.0008 1.5304 Down
尿嘧啶Uracil 11.224 1.9685 0.0212 1.4209 Up
胞苷-1-磷酸Cytidine-monophosphate 18.965 -0.6101 0.0481 1.2821 Down
其他
Others
2-羟基莠去津Atrazine-2-hydroxy 17.975 2.6033 0.0285 1.3645 Up
N-环已基甲酰胺N-cyclohexylformamide 10.544 -0.4960 0.0233 1.4012 Down
21-羟基孕烯醇酮21-hydroxypregnenolone 27.105 -1.8590 0.0395 1.3045 Down
1,2,4-苯三酚1,2,4-benzenetriol 14.634 -1.0837 0.0006 1.5169 Down

Fig. 6

Enriched column map of KEGGThe red numbers represent the cumulative up-regulated metabolites, and the black numbers represent the cumulative down-regulated metabolites"

Fig. 7

Quantitative real-time PCR validation of relative expression levels of DEGs"

[1] SHE D L, GAO X M, WANG P, XU W T, LIU Y Y, LIU Y . Comparison of soil hydraulic properties with different levels of soil salinity and sodicity. Arabian Journal of Geosciences, 2015,8(8):5351-5360.
doi: 10.1007/s12517-014-1514-8
[2] ASLAM R, BOSTAN N, NABGHA A, MARIA M, SAFDAR W . A critical review on halophytes: Salt tolerant plants. Journal of Medicinal Plants Research, 2011,5(33):7108-7118.
[3] UPADHYAY S K, SINGH D P . Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biology, 2015,17(1):288-293.
doi: 10.1111/plb.12173
[4] PATEL R R, PATEL D D, THAKOR P, PATEL B, THAKKAR V R . Alleviation of salt stress in germination of Vigna radiata L. by two halotolerant Bacilli sp. isolated from saline habitats of Gujarat. Plant Growth Regulation, 2015,76(1):51-60.
[5] KHOMARI S, GOLSHAN-DOUST S, SEYED-SHARIFI R, DAVARI M . Improvement of soybean seedling growth under salinity stress by biopriming of high-vigour seeds with salt-tolerant isolate of Trichoderma harzianum. New Zealand Journal of Crop and Horticultural Science, 2018,46(2):117-132.
[6] SCHUSTER A, SCHMOLL M . Biology and biotechnology of Trichoderma. Applied Microbiology and Biotechnology, 2010,87(3):787-799.
[7] RAWAT L, SINGH Y, SHUKLA N, KUMAR J . Salinity tolerant Trichoderma harzianum reinforces NaCl tolerance and reduces population dynamics of Fusarium oxysporum f. sp. ciceri in chickpea (Cicer arietinum L.) under salt stress conditions.Archives of Phytopathology and Plant Protection, 2013,46(12):1442-1467.
[8] HASHEM A , ABD-ALLAH E F, ALQARAWI A A, AL HUQAIL A A, EGAMBERDIEVA D. Alleviation of abiotic salt stress in Ochradenus baccatus( Del.) by Trichoderma hamatum, 2014,9(1):857-868.
[9] 邓勋, 宋小双, 尹大川, 宋瑞清 . 盐胁迫对2株深色有隔内生真菌(DSE)生长及营养代谢的影响. 中南林业科技大学学报, 2015,35(5):1-8.
DENG X, SONG X S, YIN D C, SONG R Q . Effects of salt stress on growth and nutritional metabolism of two dark septate endophyte (DSE). Journal of Central South University of Forestry & Technology, 2015,35(5):1-8. (in Chinese)
[10] SAMAPUNDO S, AMPOFO-ASIAMA J, ANTHIERENS T, XHAFERI R, VAN BREE I, SZCZEPANIAK S, GOEMAERE O, STEEN L, DHOOGE M, PAELINCK H, DEWETTINCK K, DEVLIEGHERE F . Influence of NaCl reduction and replacement on the growth of Lactobacillus sakei in broth, cooked ham and white sauce. International Journal of Food Microbiology, 2010,143(1/2):9-16.
[11] ZEHRA A, DUBEY M K, MEENA M, UPADHYAY R S . Effect of different environmental conditions on growth and sporulation of some Trichoderma species. Journal of Environmental Biology, 2017,38:197-203.
[12] RUPPEL S, FRANKEN P, WITZEL K . Properties of the halophyte microbiome and their implications for plant salt tolerance. Functional Plant Biology, 2013,40(8/9):940-951.
doi: 10.1071/FP12355
[13] DURAN R, CARY J W, CALVO A M . Role of the osmotic stress regulatory pathway in morphogenesis and secondary metabolism in filamentous fungi. Toxins, 2010,2(4):367-381.
doi: 10.3390/toxins2040367
[14] DELGADO-JARANA J, SOUSA S, GONZALEZ F, REY M, LIOBELL A . ThHog1 controls the hyperosmotic stress response in Trichoderma harzianum. Microbiology, 2006,152(6):1687-1700.
[15] YANG L, YANG Q, SUN K, TIAN Y, LI H . Agrobacterium tumefaciens-mediated transformation of SOD gene to Trichoderma harzianum. World Journal of Microbiology and Biotechnology, 2010,26(2):353-358.
[16] GAO J X, WANG Q Q, SUN J N, HE A, CHEN J . Biological role of the superoxide dismutase TaSOD on vegetative growth, stress response, and antagonism in Trichoderma asperellum. Australasian Plant Pathology, 2018,47(6):623-627.
[17] 崔西苓, 李世贵, 杨佳, 樊祥臣, 顾金刚 . 耐盐碱抗烟草黑胫病木霉菌株的筛选与鉴定. 中国农业科技导报, 2014,16(3):81-89.
CUI X L, LI S G, YANG J, FAN X C, GU J G . Screening and identification of saline-alkali tolerant and tobacco black shank resistant Trichoderma. Journal of Agricultural Science and Technology, 2014,16(3):81-89. (in Chinese)
[18] 杨俊慧, 郑岚, 马耀宏, 张利群, 杨艳 . 马铃薯中还原糖不同测定方法的比较. 食品研究与开发, 2011,32(6):104-108.
YANG J H, ZHENG L, MA Y H, ZHANG L Q, YANG Y . Comparison of different determination of reducing sugar in potato. Food Research and Development, 2011,32(6):104-108. (in Chinese)
[19] 王丽荣, 蒋细良 , ESTIFANOS T, 丁洁, 马景, 陈孝利, 李昕玥, 李梅. 铜胁迫下的哈茨木霉Th-33转录组分析. 中国生物防治学报, 2017,33(1):103-113.
WANG L R, JIANG X L, ESTIFANOS T, DING J, MA J, CHEN X L, LI X Y, LI M . Transcriptome analysis of Trichoderma harzianum Th-33 under copper stress. Chinese Journal of Biological Control, 2017,33(1):103-113. (in Chinese)
[20] WU Q, NI M, WANG G S, LIU Q Q, YU M X, TANG J . Omics for understanding the tolerant mechanism of Trichoderma asperellum TJ01 to organophosphorus pesticide dichlorvos. BMC Genomics, 2018,19:596.
[21] CHOUDHURY F K, RIVERO R M, BLUMWALD E, MITTLER R . Reactive oxygen species, abiotic stress and stress combination. The Plant Journal, 2017,90(5):856-867.
doi: 10.1111/tpj.2017.90.issue-5
[22] WILLI J, KUPFER P, EVEQUOZ D, FERNANDEZ G, KATZ A, LEUMANN C, POLACEK N . Oxidative stress damages rRNA inside the ribosome and differentially affects the catalytic center. Nucleic Acids Research, 2018,46(4):1945-1957.
doi: 10.1093/nar/gkx1308
[23] LI J, GIESY J P, YU L, LI G Y, LIU C S . Effects of tris (1,3-dichloro -2-propyl) phosphate (TDCPP) in Tetrahymena thermophila: targeting the ribosome. Scientific Reports, 2015,5:10562.
[24] HASE Y, TARUSAWA T, MUTO A, HIMENO H . Impairment of ribosome maturation or function confers salt resistance on Escherichia coli cells. PLoS ONE, 2013,8(5):e65747.
[25] 周志刚, 包虹, 欧阳珑玲 . 缺刻缘绿藻溶血磷脂酰乙醇胺酰基转移酶(LPEAT)的基因克隆与特征分析. 中国水产科学, 2018,25(2):251-262.
ZHOU Z G, BAO H, OUYANG L L . Cloning and characterization of a gene encoding lysophosphatidylethanolamine acyltransferase (LPEAT) in the green microalga Myrmecia incise Reisigl. Journal of Fishery Sciences of China, 2018,25(2):251-262. (in Chinese)
[26] BERRY S, ESPER B, KARANDASHOVA I, TEUBER M, ELANSKASA I, ROGNER M, HAGEMANN M . Potassium uptake in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 mainly depends on a Ktr-like system encoded by slr1509 (ntpJ). FEBS Letters, 2003,548(1/3):53-58.
[27] TEJERA N A, CAMPOS R, SANJUAN J, LIUCH C . Nitrogenase and antioxidant enzyme activities in Phaseolus vulgaris nodules formed by Rhizobium tropici isogenic strains with varying tolerance to salt stress. Journal of Plant Physiology, 2004,161(3):329-338.
[28] MEENA M, PRASAD V, ZEHRA A, GUPTA V K, UPADHYAY R S . Mannitol metabolism during pathogenic fungal-host interactions under stressed conditions. Frontiers in Microbiology, 2015,6:1019.
[29] LATGE J P . The cell wall: a carbohydrate armour for the fungal cell. Molecular Microbiology, 2007,66(2):279-290.
doi: 10.1111/mmi.2007.66.issue-2
[30] KRALJ KUNCIC M, KOGEJ T, DROBNE D, GUNDE-CIMERMAN N . Morphological response of the halophilic fungal genus Wallemia to high salinity. Applied and Environmental Microbiology, 2010,76(1):329-337.
[31] GRUBER S, SEIDL-SEIBOTH V . Self versus non-self: fungal cell wall degradation in Trichoderma. Microbiology, 2012,158(1):26-34.
[32] HUANG Y, MIJITI G, WANG Z Y, YU W J, FAN H J, ZHANG R S, LIU Z H . Functional analysis of the class II hydrophobin gene HFB2-6 from the biocontrol agent Trichoderma asperellum ACCC30536. Microbiological Research, 2015,171:8-20.
[33] NOMURA T, TANI S, YAMAMOTO M, NAKAGAWA T, TOYODA S, FUJISAWA E, YASUI A, KONISHI Y . Cytotoxicity and colloidal behavior of polystyrene latex nanoparticles toward filamentous fungi in isotonic solutions. Chemosphere, 2016,149:84-90.
doi: 10.1016/j.chemosphere.2016.01.091
[34] 席晓敏, 张和平 . 微生物代谢组学研究及应用进展. 食品科学, 2016,37(11):283-289.
doi: 10.7506/spkx1002-6630-201611049
XI X M, ZHANG H P . Progress in microbial metabolomics and its application. Food Science, 2016,37(11):283-289. (in Chinese)
doi: 10.7506/spkx1002-6630-201611049
[35] RASHID N, KANAI T, ATOMI H, IMANAKA T . Among multiple phosphomannomutase gene orthologues, only one gene encodes a protein with phosphoglucomutase and phosphomannomutase activities in Thermococcus kodakaraensis. Journal of Bacteriology, 2004,186(18):6070-6076.
[36] ROMANO A H . Facilitated diffusion of 6-deoxy-D-glucose in bakers’ yeast: evidence against phosphorylation-associated transport of glucose. Journal of Bacteriology, 1982,152(3):1295-1297.
[1] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[2] YOU JiaLing,LI YouMei,SUN MengHao,XIE ZhaoSen. Analysis Reveals the Differential Expression of Genes Related to Starch Accumulation in Chloroplast of Leaf with Different Ages in Pinot Noir Grape [J]. Scientia Agricultura Sinica, 2022, 55(21): 4265-4278.
[3] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[4] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[5] GUO YongChun, WANG PengJie, JIN Shan, HOU Binghao, WANG ShuYan, ZHAO Feng, YE NaiXing. Identification of Co-Expression Gene Related to Tea Plant Response to Glyphosate Based on WGCNA [J]. Scientia Agricultura Sinica, 2022, 55(1): 152-166.
[6] HuaZhi CHEN,YuanChan FAN,HaiBin JIANG,Jie WANG,XiaoXue FAN,ZhiWei ZHU,Qi LONG,ZongBing CAI,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Improvement of Nosema ceranae Genome Annotation Based on Nanopore Full-Length Transcriptome Data [J]. Scientia Agricultura Sinica, 2021, 54(6): 1288-1300.
[7] ZHANG GuiYun,ZHU JingWen,SUN MingFa,YAN GuoHong,LIU Kai,WAN BaiJie,DAI JinYing,ZHU GuoYong. Analysis of Differential Metabolites in Grains of Rice Cultivar Changbai 10 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(4): 675-683.
[8] DU Yu,ZHU ZhiWei,WANG Jie,WANG XiuNa,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,CHEN HuaZhi,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Construction and Annotation of Ascosphaera apis Full-Length Transcriptome Utilizing Nanopore Third-Generation Long-Read Sequencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(4): 864-876.
[9] ZHAO WeiSong,GUO QingGang,DONG LiHong,WANG PeiPei,SU ZhenHe,ZHANG XiaoYun,LU XiuYun,LI SheZeng,MA Ping. Transcriptome and Proteome Analysis of Bacillus subtilis NCD-2 Response to L-proline from Cotton Root Exudates [J]. Scientia Agricultura Sinica, 2021, 54(21): 4585-4600.
[10] LIU Lian,TANG ZhiPeng,LI FeiFei,XIONG Jiang,LÜ BiWen,MA XiaoChuan,TANG ChaoLan,LI ZeHang,ZHOU Tie,SHENG Ling,LU XiaoPeng. Fruit Quality in Storage, Storability and Peel Transcriptome Analysis of Rong’an Kumquat, Huapi Kumquat and Cuimi Kumquat [J]. Scientia Agricultura Sinica, 2021, 54(20): 4421-4433.
[11] YUAN PingLi,HE Nan,ZHAO ShengJie,LU XuQiang,ZHU HongJu,DIAO WeiNan,GONG ChengSheng,MUHAMMAD Jawad Umer,LIU WenGe. Metabolomics Comparative Study on Fruits of Edible Seed Watermelon, Egusi and Common Watermelon [J]. Scientia Agricultura Sinica, 2021, 54(19): 4179-4195.
[12] LIN Bing,CHEN YiQuan,ZHONG HuaiQin,YE XiuXian,FAN RongHui. Analysis of Key Genes About Flower Color Variation in Iris hollandica [J]. Scientia Agricultura Sinica, 2021, 54(12): 2644-2652.
[13] QIN QiuHong,HE XuJiang,JIANG WuJun,WANG ZiLong,ZENG ZhiJiang. The Capping Pheromone Contents and Putative Biosynthetic Pathways in Larvae of Honeybees Apis cernana [J]. Scientia Agricultura Sinica, 2021, 54(11): 2464-2475.
[14] LONG Qin,DU MeiXia,LONG JunHong,HE YongRui,ZOU XiuPing,CHEN ShanChun. Effect of Transcription Factor CsWRKY61 on Citrus Bacterial Canker Resistance [J]. Scientia Agricultura Sinica, 2020, 53(8): 1556-1571.
[15] CaiLing TENG,Xi ZHONG,HaoDi WU,Yan HU,ChangYong ZHOU,XueFeng WANG. Biologic and Transcriptomic Analysis of Citrus hystrix Responses to ‘Candidatus Liberibacter asiaticus’ at Different Infection Stages [J]. Scientia Agricultura Sinica, 2020, 53(7): 1368-1380.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!