Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (9): 1624-1634.doi: 10.3864/j.issn.0578-1752.2019.09.013

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

CEBPα and p53 Regulate Kiss1 Gene Expression in Porcine Ovary Granulosa Cells

XIN XiaoPing1,WANG JiaYing1,ZHANG AiLing2,ZHONG YuYi1,HE YingTing1,CHEN ZanMou1,ZHANG Zhe1,ZHANG Hao1,LI JiaQi1,YUAN XiaoLong1()   

  1. 1 Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding/National Engineering Research Center for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642
    2 Development Center of Applied Ecology and Ecological Engineering in Universities/Biology and Food Engineering Institute, Guangdong University of Education, Guangzhou 510310
  • Received:2018-04-18 Accepted:2019-03-18 Online:2019-05-01 Published:2019-05-16
  • Contact: XiaoLong YUAN E-mail:yxl@scau.edu.cn

Abstract:

【Objective】The objectives of this study were to predict the potential transcription factors in the upstream region of Kiss1, and then to verify the regulatory role of these transcription factors on the expression of Kiss1 in the ovarian granulosa cells of pigs. This study could provide the basic data for the molecular mechanism of Kiss1 in granulosa cells of pigs. 【Method】 By using the bioinformatic software, we predicted the potential binding site of transcription factors in the upstream region of Kiss1 in NCBI database. In addition, we reviewed a lot of relevant papers and references, and then CEBPα and p53 were selected as potential binding transcriptional factors in the upstream region of Kiss1 gene. The primers were designed near the potential binding sites in the upstream region of Kiss1 genes, and verified the binding of transcriptional factors CEBPα and p53 to the upstream region of Kiss1 gene by ChIP. According to the mRNA sequences of CEBPα and p53 in NCBI database, Primer Premier 5 software was used to design primers, and CDS regions of CEBPα (containing KpnI and XhoI sites) and p53 (containing KpnI and Hind III sites) were amplified by PCR and identified by sequencing. Then the CDS regions were connected to the eukaryotic expression vector pcDNA3.1, and the constructed plasmids were extracted with endotoxin-freely, named pcDNA3.1-CEBPα and pcDNA3.1-p53. The interfering siRNA fragments of CEBPα and p53 were synthesized through the chemical method. Pig ovaries were collected from the slaughterhouse, and the ovarian granulosa cells were isolated and cultured. The eukaryotic expression vector or siRNA fragment was transfected into ovarian granulosa cells by cationic liposome, and the effects of p53 and CEBPα on the expression of Kiss1 were verified by the real-time fluorescence quantitative PCR and Western Blotting, respectively. 【Result】 The bioinformatic prediction indicated that there were putative binding sites of p53 (tumor protein p53, p53), CEBP (CCAAT/enhancer binding protein, CEBP), Stat4 (signal transducer and activator of transcription 4, Stat4) and other potential of transcription factor binding sites in the upstream (-850 -+221) of Kiss1. And the putative binding site of CEBPα (GenBank Gene ID: 397307, XM_003127015.4) were found in -744—-733 bp region and the putative binding site of p53 (GenBank Gene ID: 397276, NM_213824.3) were found in -533—-523 bp region. The results of ChIP showed that p53 and CEBPα were bounded at -533—-523 and -744—-733 of Kiss1, respectively. After overexpression of p53 or CEBPα, both mRNA and protein expression level of Kiss1 significantly decreased (P<0.05). Furthermore, both mRNA and the expression level of Kiss1 increased significantly (P<0.05) by interfering p53 or CEBPα. 【Conclusion】 In pigs, p53 and CEBPα could bind at the upstream region of Kiss1 to inhibit its expression in ovarian granulosa cells.

Key words: pig, ovarian granulosa cells, Kiss1, CEBPα, p53

Table 1

Primer sequences"

名称 Name 序列 Sequence 片段长度 Size (bp)
CDS-p53 F: GGGGTACCATGGAGGAGTCGCAGTCCGA 1161
R: CCAAGCTTTCAGTCTGAGTCAGGTCCTT
CDS-CEBPα F:GGGGTACCAGACCAAGACTTGCCCTCCAC 1227
R:CCCTCGAGTCTTCGGGTTTTGGTATCCTCA
qRT-Kiss1 F: AGGTACCTGTGGATCCTGTC 192
R: TTCTGCCATTATCCTATGTCTAC
qRT-p53 F: CGATGGCCAGGGATCTCTTC 151
R: TCGGCCAAGTTTAAGAGCGT
qRT-CEBPα F: CTGAGGTCTGCCAGAAGC 150
R: AACAGAAGAAGGAAGGGAGT
qRT-GAPDH F: TCCCGCCAACATCAAAT 163
R: CACGCCCATCACAAACAT
ChIP-kiss1-p53 F:CTCAGAGCCCATGGAGAATAG 135
R:TGCTTGCTCTCATAACCCTTAAC
ChIP-kiss1-CEBPα F:CACTGTGCAAGTGGTCTCGG 131
R:CCCGTTAGAATGTGCCTTCC
ChIP-GAPDH F:GATGTCCTGAGCCCCTACAG 102
R:GGTAGGTGATGGGGACTGAG
p53-siRNA GGAACTTGTTCAAGCAGCT
CEBPα-siRNA TCGACATCAGCGCCTACAT

Fig. 1

Identified the eukaryotic expression vector of p53 and CEBPα A. The enzyme digestion of eukaryotic expression vector pcDNA3.1-p53; B. The enzyme digestion of eukaryotic expression vector digestion pcDNA3.1- CEBPα"

Fig. 2

Bioinformatics prediction for the potential binding site of transcription factors in the upstream region of porcine Kiss1, and ChIP results of transcription factors binding to the upstream region of porcine Kiss1 gene M:DL5 000 DNA marker,from up to bottom:5000, 3000, 2000, 1500, 1000, 750, 500, 250, and 100 bp. IgG: Negative control; Input and H3: Positive control. A: The analysis of the binding sites for the transcription factor of the upstream region of porcine Kiss1 gene. B: The ChIP results for the binding of p53 with the upstream region of porcine Kiss1 gene. C: The ChIP results for the binding of CEBPα with the upstream region of porcine Kiss1 gene"

Fig. 3

The effects of over-expressed p53 on the expression of Kiss1 A: Over-expression of p53 on the mRNA level of p53; B: Over-expression of p53 on the mRNA level of Kiss1; C,D: Over-expression of p53 on the protein level of Kiss1"

Fig. 4

The effects of interfering p53 on the expression of Kiss1 A: siRNAs interference of p53 on the mRNA level of p53; B: siRNAs interference of p53 on the mRNA level of Kiss1; C, D: siRNAs interference of p53 on the protein level of Kiss1"

Fig. 5

The effects of over-expressed CEBPα on the expression of Kiss1 A: Over-expression of CEBPα on the mRNA level of CEBPα; B: Over-expression of CEBPα on the mRNA level of Kiss1; C,D: Over-expression of CEBPα on the protein level of Kiss1"

Fig. 6

The effects of interfering p53 on the expression of Kiss1 A: siRNAs interference of CEBPα on the mRNA level of CEBPα; B: siRNAs interference of CEBPα on the mRNA level of Kiss1; C, D: siRNAs interference of CEBPα on the protein level Kiss1"

[1] OHTAKI T, SHINTANI Y, HONDA S, MATSUMOTO H, HORI A, KANEHASHI K, TERAO Y, KUMANO S, TAKATSU Y . Metastasis suppressor gene Kiss-1 encodes peptide ligand of a G-Protein- Coupled receptor. Nature, 2001,411(6837):613-617.
doi: 10.1038/35079135
[2] LEE J H, MIELE M E, HICKS D J, PHILILIPS K K, TRENT J M, WEISSMAN B E, WELCH D R . Kiss-1, a novel human malignant melanoma metastasis-suppressor gene. Journal of the National Cancer Institute, 1996,88(23):1731-1737.
doi: 10.1093/jnci/88.23.1731
[3] PAPAOICONOMOU E, MSAOUEL P, MAKRI A, DIAMANTI- KANDARAKIS E, KOUTSILIERIS M . The role of kisspeptin/Gpr54 in the reproductive system. In Vivo, 2011,25(3):343-354.
[4] GAYTAN F, GAYTAN M, CASTELLANO J M, ROMERO M, ROA J, APARICIO B, GARRIDO N, SANCHEZ-CRIADO J E, PELLICER A, FRASER H M, TENA-SEMPERE M . Kiss-1 in the mammalian ovary: Distribution of kisspeptin in human and marmoset and alterations in Kiss-1 Mrna levels in a rat model of ovulatory dysfunction. American Journal of Physiology-Endocrinology and Metabolism, 2009,296(3):E520-E531.
doi: 10.1152/ajpendo.90895.2008
[5] KAILUN H, HONGCUI Z, HSUNMING C, YANG Y, JIE Q . Kisspeptin/Kisspeptin receptor system in the ovary. Frontiers in Endocrinology, 2018, doi.org/ 10.3389/fendo.2017.00365.
[6] GAYTAN F, GAYTAN M, CASTELLANO JM, ROMERO M, ROA J, APARICIO B, GARRIDO N, SANCHEZ-CRIADO JE, MILLAR RP, PELLICER A, FRASER HM, TENA-SEMPERE M . Kiss-1 in the mammalian ovary: Distribution of kisspeptin in human and marmoset and alterations in Kiss-1 Mrna levels in a rat model of ovulatory dysfunction. American Journal of Physiology-Endocrinology and Metabolism, 2009,296(3):E520-E531.
doi: 10.1152/ajpendo.90895.2008
[7] 郭美君 . 高泌乳素血症通过Kiss1/Gpr54系统影响小鼠卵泡发育及排卵[D]. 南昌: 南昌大学, 2016.
GUO M J . Hyperprolactinemia affects the follicles development and ovulation by Kiss1/GPR54 system in mice[D]. Nanchang: Nanchang University, 2016. ( in Chinese)
[8] TOMIKAWA J, HOMMA T, TAJIMA S, SHIBATA T, INAMOTO Y, TAKASE K, INOUE N, OHKURA S, UENOYAMA Y, MAEDA K, TSUKAMURA H . Molecular characterization and estrogen regulation of hypothalamic kiss1 gene in the pig. Biology of Reproduction, 2010,82(2):313-319.
doi: 10.1095/biolreprod.109.079863
[9] 臧猛, 晁利刚, 张志强, 台玉磊, 王静, 武宇晓, 杨国宇 . 猪Kiss-1基因克隆、序列分析. 江西农业学报, 2008(11):5-7.
ZANG M, CHAO L G, ZHANG Z Q, TAI Y L, WANG J, WU Y X, YANG G Y . Molecular clone and sequence analysis of porcine kiss1 gene. Acta Agriculturae Jiangxi, 2008(11):5-7.(in Chinese)
[10] NAVARRO V M, CASTELLANO J M, FERNANDEZ- FERNANDEZ R, BARREIRO M L, ROA J, SANCHEZ-CRIADO J E, AGUILA R E, DIEGUEZ C, PINILLA L, TENA-SEMPERE M . Developmental and hormonally regulated messenger ribonucleic acid expression of Kiss-1 and its putative receptor, Gpr54, in rat hypothalamus and potent luteinizing hormone-releasing activity of Kiss-1 peptide. Endocrinology, 2004,145(10):4565-4574.
doi: 10.1210/en.2004-0413
[11] 刘萍, 王海飞, 汪劲能, 陆艳凤, 赵西彪, 丁家桐 . Kiss-1基因在猪初情期下丘脑-垂体-卵巢轴中的定位研究. 安徽农业科学, 2008(15):6324-6327.
LIU P, WANG H F, WANG J N, LU Y F, ZHAO X B, DING J T . Localization and abundance of KISS-1 in the sow hypothalamus- pituitary-ovary axis.Journal of Anhui Agricultural Sciences, 2008(15):6324-6327. (in Chinese)
[12] REYNOLDS R M, LOGIE J J, ROSEWEIR A K, MCKNIGHT A J, MILLAR R P . A role for kisspeptins in pregnancy: Facts and speculations. Reproduction, 2009,138(1):1-7.
doi: 10.1530/REP-09-0026
[13] TOPALOGLU A K, TELLO J A, KOTAN L D, YILMAZ M B, ERDOGAN S, GURBUZ F, TEMIZ F, MILLAR R P, YUKSEL B . Inactivating Kiss1 mutation and hypogonadotropic hypogonadism. The New England Journal of Medicine, 2012,366(7):629-635.
doi: 10.1056/NEJMoa1111184
[14] D'ANGLEMONT D T X, FAGG L A, DIXON J P, DAY K, LEITCH H G, HENDRICK A G, ZAHN D, FRANCESCHINI I, CARATY A, CARLTON M B, APARICIO S A, COLLEDGE W H . Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(25):10714-10719.
doi: 10.1073/pnas.0704114104
[15] YUAN X U, ZHANG A L, XIAO G, ZHANG Z, CHEN Z M, ZHANG H, LI J Q . P53 and Nfkb regulate microrna-34C expression in porcine ovarian granulosa cells. Journal of Integrative Agriculture, 2016,15(8):1816-1824.
doi: 10.1016/S2095-3119(15)61178-9
[16] 辛晓萍, 袁晓龙, 陈炫, 张爱玲, 陈赞谋, 张哲, 张豪, 李加琪 . PI3K信号通路关键基因在猪卵泡发育中的表达规律. 华南农业大学学报, 2018(02):1-6.
XIN X P, YUAN X L, CHEN X, ZHANG A L, CHEN Z M, ZHANG Z, ZHANG H, LI J Q . The expression patterns of key genes of PI3K signaling pathway in the development of the porcine ovary. Journal of South China Agricultral University. 2018(02):1-6.(in Chinese)
[17] BILBAN M, GHAFFARI-TABRIZI N, HINTERMANN E, BAUER S, MOLZER S, ZORATTI C, MALLI R, SHARABI A, HIDEN U, GRAIER W, KNÖFLER M, ANDREAE F, WAGNER O, QUARANTA V, DESOYE G . Kisspeptin-10, a Kiss-1/Metastin-Derived decapeptide, is a physiological invasion inhibitor of primary human trophoblasts. Journal of Cell Science, 2004,117(8):1319-1328.
doi: 10.1242/jcs.00971
[18] 赖丽丹 . 高泌乳素血症通过Kiss1/Gpr54系统对大鼠卵巢黄体细胞内分泌功能的影响及其机制[D] 南昌:南昌大学, 2016.
LAI L D . The effect and mechanism of hyperprolactinemia on endocrine function of rat luteal cells by Kiss1/CPR54 system[D]. Nanchang :Nanchang University, 2016. ( in Chinese)
[19] NAGATA M, TAKENAKA H, SHIBAGAKI R, KISHIMOTO S . Apoptosis and P53 protein expression increase in the process of burn wound healing in Guinea-Pig skin. British Journal of Dermatology, 1999,140(5):829-838.
doi: 10.1046/j.1365-2133.1999.02811.x
[20] ZHANG X, HE Y, LEE K, DUBOIS W, LI Z Q, WU X L, KOVALCHUK A, ZHANG W M, HUANG J . Rap2B, a novel P53 target, regulates P53-mediated pro-survival function. Cell Cycle, 2013,12(8):1279-1291.
doi: 10.4161/cc.24364
[21] WANG Y, WENG H, ZHANG Y, LONG Y, LI Y, NIU Y, SONG F, BU Y . The Prr11-Ska2 bidirectional transcription unit is negatively regulated by P53 through Nf-Y in lung cancer cells. International Journal of Molecular Sciences, 2017, doi: 10.3390/ijms18030534.
[22] WONG M Y, YU Y, WALSH W R, YANG J L . Microrna-34 family and treatment of cancers with mutant or wild-type P53 (Review). International Journal of Oncology, 2011,38(5):1189-1195.
[23] 张建芳, 于利君 . 泛素结合酶9及P53在卵巢上皮癌中的表达及意义. 中国药物与临床, 2018(03):371-373.
ZHANG J F, YU L J . Expression and significance of ubiquitin- binding enzyme 9 and P53 in ovarian epithelial carcinoma.Chinese Remedies & Clinics, 2018(03):371-373. (in Chinese)
[24] 张瑞涛, 史惠蓉, 任芳, 曹媛, 姬鹏程, 王文文 . G2/M期P53/Cdk1通路对卵巢癌细胞增殖和凋亡的影响. 安徽医科大学学报, 2018(04):502-508.
ZHANG R T, SHI H R, REN F, CAO Y, JI P C, WANG W W . Roles of P53 /CDK1 pathway of G2 /M checkpoint on proliferation and apoptosis of ovarian cancer cells.Acta Universitatis Medicinalis Anhui, 2018(04):502-508.(in Chinese)
[25] MAKRIGIANNAKIS A, AMIN K, COUKOS G, TILLY J L, COUTIFARIS C . Regulated expression and potential roles of P53 and Wilms' Tumor suppressor gene (Wt1) during follicular sevelopment in the human ovary. Journal of Clinical Endocrinology and Metabolism, 2000,85(1):449-459.
[26] SIROTKIN A V, BENCO A, TANDLMAJEROVA A, VASICEK D, KOTWICA J, DARLAK K, VALENZUELA F . Transcription factor P53 can regulate proliferation, apoptosis and secretory activity of luteinizing porcine ovarian granulosa cell cultured with and without ghrelin and Fsh. Reproduction, 2008,136(5):611-618.
doi: 10.1530/REP-08-0229
[27] RAMJI D P, FOKA P . Ccaat/Enhancer-binding proteins: Structure, function and regulation. Biochemical Journal, 2002,365(3):561-575.
doi: 10.1042/bj20020508
[28] FAN H Y, LIU Z, JOHNSON P F, RICHARDS J S . CCAAT/ enhancer-binding proteins (C/EBP)-α and -β are essential for ovulation, luteinization, and the expression of key target genes. Molecular Endocrinology, 2011,25(2):253-268.
doi: 10.1210/me.2010-0318
[29] PIONTKEWITZ Y, ENERBACK S, HEDIN L . Expression of ccaat enhancer binding protein-alpha (C/Ebp Alpha) in the rat ovary: Implications for follicular development and ovulation. Developmental Biology, 1996,179(1):288-296.
doi: 10.1006/dbio.1996.0258
[30] FAN H Y, LIU Z, JOHNSON P F, RICHARD J S . CCAAT/enhancer- binding proteins (C/EBP)-α and -β are essential for ovulation, luteinization, and the expression of key target genes. Molecular Endocrinology, 2011,25(2):253-268.
doi: 10.1210/me.2010-0318
[1] WANG JiaMin,SHI JiaChen,MA FangFang,CAI Yong,QIAO ZiLin. Effects of Soy Isoflavones on the Proliferation and Apoptosis of Yak Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(8): 1667-1675.
[2] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[3] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[4] MingJie XING,XianHong GU,XiaoHong WANG,Yue HAO. Effects of IL-15 Overexpression on Myoblast Differentiation of Porcine Skeletal Muscle Cells [J]. Scientia Agricultura Sinica, 2022, 55(18): 3652-3663.
[5] YANG ChangPei,WANG NaiXiu,WANG Kai,HUANG ZiQing,LIN HaiLan,ZHANG Li,ZHANG Chen,FENG LuQiu,GAN Ling. Effects and Mechanisms of Exogenous GABA Against Oxidative Stress in Piglets [J]. Scientia Agricultura Sinica, 2022, 55(17): 3437-3449.
[6] DENG FuLi,SHEN Dan,ZHONG RuQing,ZHANG ShunFen,LI Tao,SUN ShuDong,CHEN Liang,ZHANG HongFu. Non-Starch Polysaccharide Enzymes Cocktail of Corn-Miscellaneous Meal-Based Diet Optimization by In Vitro Method and Its Effects on Intestinal Microbiome in Finishing Pigs [J]. Scientia Agricultura Sinica, 2022, 55(16): 3242-3255.
[7] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[8] HU RongRong,DING ShiJie,GUO Yun,ZHU HaoZhe,CHEN YiChun,LIU Zheng,DING Xi,TANG ChangBo,ZHOU GuangHong. Effects of Trolox on Proliferation and Differentiation of Pig Muscle Stem Cells [J]. Scientia Agricultura Sinica, 2021, 54(24): 5290-5301.
[9] TANG ZhenShuang,YIN Dong,YIN LiLin,MA YunLong,XIANG Tao,ZHU MengJin,YU Mei,LIU XiaoLei,LI XinYun,QIU XiaoTian,ZHAO ShuHong. To Evaluate the “Two-Step” Genomic Selection Strategy in Pig by Simulation [J]. Scientia Agricultura Sinica, 2021, 54(21): 4677-4684.
[10] DU JiaWei,DU XinZe,YANG XinRan,SONG GuiBing,ZHAO Hui,ZAN LinSen,WANG HongBao. Interference in TP53INP2 Gene Inhibits the Differentiation of Bovine Myoblasts [J]. Scientia Agricultura Sinica, 2021, 54(21): 4685-4693.
[11] ZHANG DanDan,XU TengTeng,GAO Di,QI Xin,NING Wei,RU ZhenYuan,ZHANG XiangDong,GUO TengLong,SHENTU LuYan,YU Tong,MA YangYang,LI YunSheng,ZHANG YunHai,CAO ZuBing. Transcription Factor TEAD4 Regulates Early Embryonic Development in Pigs [J]. Scientia Agricultura Sinica, 2021, 54(20): 4456-4465.
[12] SHI Jiang,WANG JiaTong,PENG QunHua,LÜ Haipeng,BALDERMANN Susanne,LIN Zhi. Changes in Lipid-Soluble Pigments in Fresh Tea Leaves Treated by Methyl Jasmonate and During Postharvest Oolong Tea Manufacturing [J]. Scientia Agricultura Sinica, 2021, 54(18): 3984-3997.
[13] DU Xing,ZENG Qiang,LIU Lu,LI QiQi,YANG Liu,PAN ZengXiang,LI QiFa. Identification of the Core Promoter of Linc-NORFA and Its Transcriptional Regulation in Erhualian Pig [J]. Scientia Agricultura Sinica, 2021, 54(15): 3331-3342.
[14] YU ZhengWang,ZHOU ZhongXin. Functions of Antibacterial and Inducing Defense Peptide Expression of Medium-Chain Fatty Acid and Its Application in Piglet Feeds [J]. Scientia Agricultura Sinica, 2021, 54(13): 2895-2905.
[15] Xin ZHANG,KongLin HUO,XingXing SONG,DuoNi ZHANG,Wen HU,ChuanHuo HU,Xun LI. Effects of GnIH on Autophagy and Apoptosis of Porcine Ovarian Granulosa Cells via p38MAPK Signaling Pathway [J]. Scientia Agricultura Sinica, 2020, 53(9): 1904-1912.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!