Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (1): 45-55.doi: 10.3864/j.issn.0578-1752.2019.01.005

• PLANT PROTECTION • Previous Articles     Next Articles

Effects of the Interference of Key Magnetic Response Genes on the Longevity of Brown Planthopper (Nilaparvata lugens) Under Near-Zero Magnetic Field

HE JingLan1(),ZHANG Ming1,LIU RuiYing1,WAN GuiJun1,PAN WeiDong2,CHEN FaJun1()   

  1. 1College of Plant Protection, Nanjing Agricultural University, Nanjing 210095
    2 Beijing Key Laboratory of Bioelectromagetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190
  • Received:2018-08-02 Accepted:2018-09-11 Online:2019-01-01 Published:2019-01-12
  • Contact: FaJun CHEN E-mail:2016102054@njau.edu.cn;fajunchen@njau.edu.cn

Abstract:

【Objective】Cryptochrome (Cry) and iron-sulfur cluster protein IscA (iron-sulfur cluster assembly, MagR) are potential magnetic receptor proteins in organisms. In this study, key magnetic response genes of the brown planthopper (Nilaparvata lugens) were knocked-down by RNA interference (RNAi), including NlCry1, NlCry2 and NlMagR. The objective of this study is to investigate the role of these three magnetic response genes in the longevity mediation of N. lugens in near-zero magnetic field (NZMF). Thus, the response of these three genes to magnetic field could be studied indirectly.【Method】Newly emerged brachypterous female and male adults of N. lugens fed in the lab magnetic field were chosen as the experimental material, and RNAi technology was used to inhibit the key magnetic response genes’ (NlCry1, NlCry2 and NlMagR) expression by injection of double stranded RNA, respectively. Then the RNAi treated adults were immediately transformed into the geomagnetic field (GMF) and NZMF respectively to observe their longevity. The total RNA of the RNAi treated adults under GMF was extracted by using the RNAiso Plus method on the 1st, 2nd and 3rd day after the microinjection, respectively. And then the gene expressions of NlCry1, NlCry2 and NlMagR were measured by using the RT-qPCR (real-time quantitative polymerase chain reaction) after the reverse transcription synthesis of first strand DNA in order to test the efficiency of RNAi. 【Result】There was no significant difference in the longevity of female and male adults after the injection of dsNlCry1 between the treatments of NZMF and GMF, while after the injection of dsNlCry2, the longevity of female (27.78%) and male (50.04%) adults under NZMF was significantly longer than that of the individuals under GMF, respectively. Moreover, the longevity of female adults injected with dsNlCry2 was shorter under GMF while longer under NZMF than that of individuals injected with dsGFP, even if the difference was not significant. The longevity of male adults injected with dsNlCry2 was shorter than that of individuals injected with dsGFP under NZMF (25.41%) and GMF (10.73%), respectively, and the difference under GMF reached the significant level. Furthermore, the longevity of female adults injected with dsNlMagR was significantly shorter (16.48%) than that of individuals injected with dsGFP under the NZMF. 【Conclusion】There is a difference in the regulation of the key genes of magnetic susceptibility (NlCry1, NlCry2 and NlMagR) on the female and male longevity for N. lugens under the change of magnetific field. Hereinto, the NlCry2 susceptibly responses to the changes of magnetic fields, which shows that the gene knock-down and its interaction with magnetic field changes can significantly influence the longevity of female and male adults, and characterized as “sexual dimorphism”. Similarly, the NlMagR (IscA) also sensitively responds to magnetic field changes, but just for the female adults of N. lugens under the NZMF in contrast to the GMF. However, there is no response of NlCry1 to magnetic field changes, and this gene may not be involved in the regulation of female and male longevity for N. lugens.

Key words: magnetic field changes, brown planthopper (Nilaparvata lugens), magnetic response gene, RNA interference (RNAi), adult longevity, magnetic bio-effect

Table 1

Primers and their sequences used in this study"

引物用途 Use of primers 引物名称 Primer name 引物序列 Primer sequence (5′-3′)
cDNA克隆
cDNA cloning
dsNlCry1-F TAATACGACTCACTATAGGGTCAGACATGGGCTTCGATT
dsNlCry1-R TAATACGACTCACTATAGGGCATTTGGTAAGTTAGCGGTGGA
dsNlCry2-F TAATACGACTCACTATAGGGTGTCAGCATCAATAAGTGGAGG
dsNlCry2-R TAATACGACTCACTATAGGGGCACACCAAACTTGTCGTC
dsNlMagR-F TAATACGACTCACTATAGGGAGAAAGGAAAGTTTGACGAAG
dsNlMagR-R TAATACGACTCACTATAGGGAGCCCTAAATATTAACATCGT
dsGFP-F TAATACGACTCACTATAGGGACGTAAACGGCCACAAGTTC
dsGFP-R TAATACGACTCACTATAGGGTGTTCTGCTGGTAGTGGTCG
实时荧光定量PCR
RT-qPCR
qNlCry1-F CAGACATGGGCTTCGATTTCA
qNlCry1-R ACCAGCACTTTCTCCGTCAAAT
qNlCry2-F CGCATACTCTCTACAGACTTGAT
qNlCry2-R CACCGTCTGGAATTTGCGATAC
qNlMagR-F CGTTTAATACCTTCAAGAGCAGCAC
qNlMagR-R CCCTACTTTCAAGCCGATAGCAT
qActin-F CTTCTAAACGCCAACCACTCC
qActin-R TCACCCGAAATCACTCACGA
q18S-F TGTCTGCTTAATTGCGATAACGAAC
q18S-R CCTCAAACTTCCATCGGCTTG

Fig. 1

Relative expression level of corresponding RNA of the newly emerged brachypterous female adults of N. lugens after respectively injected with dsNlCry1, dsNlCry2 and dsNlMagR All of the sampled brown planthoppers are newly emerged brachypterous female adults and placed in the geomagnetic field that B=49 μT; * and ** mean significantly different between the dsRNA and the control dsGFP by the T test at P<0.05 and P<0.01, respectively"

Table 2

Two-way ANOVA for the effects of RNAi (dsNlCry1 vs. dsGFP) and magnetic fields (GMF vs. NZMF) on the longevity of female and male adults of N. lugens"

影响因子
Impact factor
雌虫寿命 Female longevity 雄虫寿命 Male longevity
FF value PP value FF value PP value
RNAi 2.87 0.092 0.90 0.34
磁场 Magnetic?field (MF) 0.34 0.56 0.60 0.44
RNAi×磁场 RNAi×MF 0.54 0.47 1.88 0.17

Fig. 2

The longevity of female (A) and male (B) adults of N. lugens after dsNlCry1 injection under geomagnetic field (GMF) and near-zero magnetic field (NZMF) The same lowercase and uppercase letters indicate no significant difference between the treatments of dsNlCry1 and dsGFP for the same sex N. lugens under same magnetic field of GMF or NZMF, and between the treatments of GMF and NZMF for same sex N. lugens injected of dsNlCry1 or dsGFP by the T test (P>0.05), respectively"

Table 3

Two-way ANOVA for the effects of RNAi (dsNlCry2 vs. dsGFP) and magnetic fields (GMF vs. NZMF) on the longevity of female and male adults of N. lugens"

影响因子
Impact factor
雌虫寿命 Female longevity 雄虫寿命 Male longevity
FF value PP value FF value PP value
RNAi 2.33 0.13 1.64 0.20
磁场 Magnetic?field (MF) 0.70 0.40 4.14 0.044*
RNAi×磁场 RNAi×MF 4.45 0.037* 7.08 0.009**

Fig. 3

The longevity of female (A) and male (B) adults of N. lugens after dsNlCry2 injection under geomagnetic field (GMF) and near-zero magnetic field (NZMF) Different lowercase and uppercase letters indicate significantly different between the treatments of dsNlCry2 and dsGFP for the same sex N. lugens under same magnetic field of GMF or NZMF, and between the treatments of GMF and NZMF for same sex N. lugens injected of dsNlCry2 or dsGFP by the T test (P<0.05), respectively"

Table 4

Two-way ANOVA for the effects of RNAi (dsNlMagR vs. dsGFP) and magnetic fields (GMF vs. NZMF) on the longevity of female and male adults of N. lugens"

影响因子
Impact factor
雌虫寿命 Female longevity 雄虫寿命 Male longevity
FF value PP value FF value PP value
RNAi 3.97 0.048* 0.11 0.74
磁场 Magnetic?field (MF) 1.33 0.25 0.08 0.78
RNAi×磁场 RNAi×MF 0.68 0.41 2.59 0.11

Fig. 4

The longevity of female (A) and male (B) adults of N. lugens after dsNlMagR injection under geomagnetic field (GMF) and near-zero magnetic field (NZMF) Different lowercase and uppercase letters indicate significantly different between the treatments of dsNlMagR and dsGFP for the same sex N. lugens under same magnetic field of GMF or NZMF, and between the treatments of GMF and NZMF for same sex N. lugens injected of dsNlMagR or dsGFP by the T test (P<0.05), respectively"

[1] 朱晓璐, 王江云 . 地磁场与生物的磁感应现象. 自然杂志, 2013,35(3):200-206.
doi: 10.3969/j.issn.0253-9608.2013.03.007
ZHU X L, WANG J Y . The effect of geomagnetism on biomagnetism. Chinese Journal of Nature, 2013,35(3):200-206. (in Chinese)
doi: 10.3969/j.issn.0253-9608.2013.03.007
[2] DINI L, ABBRO L . Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron, 2005,36(3):195-217.
doi: 10.1016/j.micron.2004.12.009
[3] 莫炜川, 刘缨, 赫荣乔 . 亚磁场及其生物响应机制. 生物化学与生物物理进展, 2012,39(9):835-842.
doi: 10.3724/SP.J.1206.2011.00597
MO W C, LIU Y, HE R Q . A biological perspective of the hypomagnetic field: from definition towards mechanism. Progress in Biochemistry and Biophysics, 2012,39(9):835-842. (in Chinese)
doi: 10.3724/SP.J.1206.2011.00597
[4] 贺静澜, 万贵钧, 张明, 潘卫东, 陈法军 . 生物地磁响应研究进展. 生物化学与生物物理进展, 2018,45(7):689-704.
HE J L, WAN G J, ZHANG M, PAN W D, CHEN F J . Progress in the study of giomagnetic responses of organisms. Progress in Biochemistry and Biophysics, 2018,45(7):689-704. (in Chinese)
[5] LOHMANN K J, LOHMANN C M, PUTMAN N F . Magnetic maps in animals: nature’s GPS. The Journal of Experimental Biology, 2007,210(21):3697-3705.
doi: 10.1242/jeb.001313 pmid: 17951410
[6] SCHENCK J F . Safety of strong, static magnetic fields. Journal of Magnetic Resonance Imaging, 2000,12(1):2-19.
doi: 10.1002/1522-2586(200007)12:1<2::AID-JMRI2>3.0.CO;2-V pmid: 10931560
[7] ROSEN A D . Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell Biochemistry and Biophysics, 2003,39(2):163-173.
doi: 10.1385/CBB:39:2:163 pmid: 14515021
[8] 王学斌, 徐慕玲, 李兵, 李东风, 蒋锦昌 . 亚磁空间中孵化的一日龄小鸡味觉回避长时记忆受损. 科学通报, 2003,48(19):2042-2045.
doi: 10.3321/j.issn:0023-074X.2003.19.008
WANG X B, XU M L, LI B, LI D F, JIANG J C . Long-term memory was impaired in one-trial passive avoidance task of day-old chicks hatching from hypomagnetic field space. Chinese Science Bulletin, 2003,48(19):2042-2045. (in Chinese)
doi: 10.3321/j.issn:0023-074X.2003.19.008
[9] ZHANG B, LU H, WANG X, ZHOU X J, XU S Y, ZHANG K, JIANG J C, LI Y, GUO A K . Exposure to hypomagnetic field space for multiple generations causes amnesia in Drosophila melanogaster. Neuroscience Letters, 2004,371(2/3):190-195.
[10] PRATO F S, ROBERTSON J A, DESJARDINS D, HENSEL J, THOMAS A W . Daily repeated magnetic field shielding induces analgesia in CD-1 mice. Bioelectromagnetics, 2005,26(2):109-117.
doi: 10.1002/bem.20056 pmid: 15672364
[11] MO W C, FU J P, DING H M, LIU Y, HUA Q, HE R Q . Hypomagnetic field alters circadian rhythm and increases algesia in adult male mice. Progress in Biochemistry and Biophysics, 2015,42(7):639-646.
[12] BLISS V L, HEPPNER F H . Circadian activity rhythm influenced by near zero magnetic field. Nature, 1976,261(5559):411-412.
doi: 10.1038/261411a0 pmid: 934271
[13] FESENKO E E, MEZHEVIKINA L M, OSIPENKO M A, GORDON R Y, KHUTZIAN S S . Effect of the “zero” magnetic field on early embryogenesis in mice. Electromagnetic Biology and Medicine, 2010,29(1/2):1-8.
doi: 10.3109/15368371003627290 pmid: 20230271
[14] MO W C, LIU Y, COOPER H M, HE R Q . Altered development of Xenopus embryos in a hypogeomagnetic field. Bioelectromagnetics, 2012,33(3):238-246.
doi: 10.1002/bem.20699 pmid: 21853450
[15] BINHI V N, SARIMOV R M . Zero magnetic field effect observed in human cognitive processes. Electromagnetic Biology and Medicine, 2009,28(3):310-315.
doi: 10.3109/15368370903167246 pmid: 20001705
[16] BINHI V N , SARIMOV R M. Effect of the hypomagnetic field on the size of the eye pupil. Biological Physics, 2013, arXiv: 1302. 2741.
[17] GURFINKEL Y I, VASIN A L, MATVEEVA T A, SASONKO M L . Evaluation of the hypomagnetic environment effects on capillary blood circulation, blood pressure and heart rate. Human Physiology, 2016,42(7):809-814.
doi: 10.1134/S0362119716070057 pmid: 25087408
[18] SHAW J, BOYD A, HOUSE M, WOODWARD R, MATHES F, COWIN G, SAUNDERS M, BAER B . Magnetic particle-mediated magnetoreception. Journal of the Royal Society Interface, 2015,12(110):0499.
doi: 10.1098/rsif.2015.0499 pmid: 26333810
[19] RITZ T, ADEM S, SCHULTEN K . A model for photoreceptor-based magnetoreception in birds. Biophysical Journal, 2000,78(2):707-718.
doi: 10.1016/S0006-3495(00)76629-X
[20] WILTSCHKO R, WILTSCHKO W . Magnetic Orientation in Animals. Berlin Heidelberg: Springer-Verlag, 1995: 33-41.
[21] QIN S Y, YIN H, YANG C L, DOU Y F, LIU Z M, ZHANG P, YU H, HUANG Y L, FENG J, HAO J F, HAO J, DENG L Z, YAN X Y, DONG X L, ZHAO Z X, JIANG T J, WANG H W, LUO S J, XIE C . A magnetic protein biocompass. Nature Materials, 2016,15(2):217-226.
doi: 10.1038/nmat4484 pmid: 26569474
[22] LONG X, YE J, ZHAO D, ZHANG S J . Magnetogenetics: remote non-invasive magnetic activation of neuronal activity with a magnetoreceptor. Science Bulletin, 2015,60(24):2107-2119.
doi: 10.1007/s11434-015-0902-0 pmid: 4692962
[23] ZHANG X, LI J F, WU Q J, LI B, JIANG J C . Effects of hypomagnetic field on noradrenergic activities in the brainstem of golden hamster. Bioelectromagnetics, 2007,28(2):155-158.
doi: 10.1002/bem.20290 pmid: 17016848
[24] CHAPMAN J W, DRAKE V A, REYNOLDS D R . Recent insights from radar studies of insect flight. Annual Review of Entomology, 2011,56:337-356.
doi: 10.1146/annurev-ento-120709-144820
[25] PAN W D, WAN G J, XU J J, LI X M, LIU Y X, QI L P, CHEN F J . Evidence for the presence of biogenic magnetic particles in the nocturnal migratory brown planthopper, Nilaparvata lugens. Scientific Reports, 2016,6:18771.
doi: 10.1038/srep18771 pmid: 4700427
[26] WAN G J, JIANG S L, ZHAO Z C, XU J J, TAO X R, SWORD G A, GAO Y B, PAN W D, CHEN F J . Bio-effects of near-zero magnetic fields on the growth, development and reproduction of small brown planthopper, Laodelphax striatellus and brown planthopper, Nilaparvata lugens. Journal of Insect Physiology, 2014,68:7-15.
doi: 10.1016/j.jinsphys.2014.06.016 pmid: 24995837
[27] WAN G J, YUAN R, WANG W J, FU KY, ZHAO J Y, JIANG S L, PAN W D, SWORD G A, CHEN F J . Reduced geomagnetic field may affect positive phototaxis and flight capacity of a migratory rice planthopper. Animal Behaviour, 2016,121:107-116.
doi: 10.1016/j.anbehav.2016.08.024
[28] XU J J, ZHANG Y C, WU J Q, WANG W H, LI Y, WAN G J, CHEN F J, SWORD G A, PAN W D . Molecular characterization, spatial-temporal expression and magnetic response patterns of the iron-sulfur cluster assembly1 (IscA1) in the rice planthopper, Nilaparvata lugens. Insect Science, 2017, DOI 10.1111/1744-7917. 12546.
[29] XU J J, WAN G J, HU D B, HE J, CHEN F J, WANG X H, HUA H X, PAN W D . Molecular characterization, tissue and developmental expression profiles of cryptochrome genes in wing dimorphic brown planthoppers, Nilaparvata lugens. Insect Science, 2016,23(6):805-818.
doi: 10.1111/1744-7917.12256 pmid: 26227859
[30] GEGEAR R J, CASSELMAN A, WADDELL S, REPPERT S M . CRYPTOCHROME mediates light-dependent magnetosensitivity in Drosophila. Nature, 2008,454(7207):1014-1018.
doi: 10.1038/nature07183 pmid: 2559964
[31] YOSHII T, AHMAD M , HELFRICH-FÖRSTER C. Cryptochrome mediates light-dependent magnetosensitivity of Drosophila’s circadian clock. PLoS Biology, 2009,7(4):e1000086.
[32] FEDELE G, GREEN E W, ROSATO E, KYRIACOU C P . An electromagnetic field disrupts negative geotaxis in Drosophila via a CRY-dependent pathway. Nature Communications, 2014,5:4391.
doi: 10.1038/ncomms5391 pmid: 25019586
[33] WAN G J, WANG W J, XU J J, YANG Q F, DAI M J, ZHANG F J, SWORD G A, PAN W D, CHEN F J . Cryptochromes and hormone signal transduction under near-zero magnetic fields: New clues to magnetic field effects in a rice planthopper. PLoS ONE, 2015,10(7):e0132966.
doi: 10.1371/journal.pone.0132966 pmid: 4501744
[34] ZHU H, YUAN Q, FROY O, CASSELMAN A, REPPERT S M . The two CRYs of the butterfly. Current Biology, 2005,15(23):R953-R954.
doi: 10.1016/j.cub.2005.11.030 pmid: 16332522
[35] HENRICH V C, RYBCZYNSKI R, GILBERT L I . Peptide hormones, steroid hormones, and puffs: mechanisms and models in insect development. Vitamins and Hormones, 1998,55:73-125.
doi: 10.1016/S0083-6729(08)60934-6
[36] STAY B . A review of the role of neurosecretion in the control of juvenile hormone synthesis: A tribute to Berta Scharrer. Insect Biochemistry and Molecular Biology, 2000,30(8/9):653-662.
doi: 10.1016/S0965-1748(00)00036-9 pmid: 1087610810876108
[37] YAMANAKA N, REWITZ K F , O’CONNOR M B. Ecdysone control of developmental transitions: Lessons from Drosophila research. Annual Review of Entomology, 2013,58:497-516.
[38] DUBROVSKY E B . Hormonal cross talk in insect development. TRENDS in Endocrinology and Metabolism, 2005,16(1):6-11.
doi: 10.1016/j.tem.2004.11.003 pmid: 15620543
[39] SANDRELLI F, COSTA R, KYRIACOU C P, ROSATO E . Comparative analysis of circadian clock genes in insects. Insect Molecular Biology, 2008,17(5):447-463.
doi: 10.1111/j.1365-2583.2008.00832.x pmid: 18828836
[40] YAMANAKA N, ROMERO N M, MARTIN F A, REWITZ K F, SUN M , O’CONNOR M B, LÉOPOLD P. Neuroendocrine control of Drosophila larval light preference. Science, 2013,341(6150):1113-1116.
[41] JENSEN L T, CULOTTA V C . Role of Saccharomyces cerevisiae ISA1 and ISA2 in iron homeostasis. Molecular and Cellular Biology, 2000,20(11):3918-3927.
[42] KAUT A, LANGE H, DIEKERT K, KISPAL G, LILL R . Isa1p is a component of the mitochondrial machinery for maturation of cellular iron-sulfur proteins and requires conserved cysteine residues for function. The Journal of Biological Chemistry, 2000,275(21):15955-15961.
doi: 10.1074/jbc.M909502199 pmid: 10748136
[43] PELZER W, MUHLENHOFF U, DIEKERT K, SIEGMUND K, KISPAL G, LILL R . Mitochondrial Isa2p plays a crucial role in the maturation of cellular iron-sulfur proteins. FEBS Letters, 2000,476(3):134-139.
doi: 10.1016/S0014-5793(00)01711-7 pmid: 10913600
[44] NILSSON R, SCHULTZ I J, PIERCE E L, SOLTIS K A, NARANUNTARAT A, WARD D M, BAUGHMAN J M, PARADKAR P N, KINGSLEY P D, CULOTTA V C, KAPLAN J, PALIS J, PAW B H, MOOTHA V K . Discovery of genes essential for Heme biosynthesis through large-scale gene expression analysis. Cell Metabolism, 2009,10(2):119-130.
doi: 10.1016/j.cmet.2009.06.012 pmid: 19656490
[45] AL-HASSNAN Z N, AL-DOSARY M, ALFADHEL M, FAQEIH E A, ALSAGOB M, KENANA R, ALMASS R, AL-HARAZI O S, AL-HINDI H, MALIBARI O I, ALMUTARI F B, TULBAH S, ALHADEQ F, AL-SHEDDI T, ALAMRO R, AL-ASMARI A, ALMUNTASHRI M, ALSHAALAN H, AL-MOHANNA F A, COLAK D, KAYA N . ISCA2 mutation causes infantile neurodegenerative mitochondrial disorder. Journal of Medical Genetics, 2015,52(3):186-194.
doi: 10.1136/jmedgenet-2014-102592 pmid: 25539947
[46] GELLING C, DAWES I W, RICHHARDT N, LILL R , MÜHLENHOFF U. Mitochondrial Iba57p is required for Fe/S cluster formation on aconitase and activation of radical SAM enzymes. Molecular and Cellular Biology, 2008,28(5):1851-1861.
doi: 10.1128/MCB.01963-07 pmid: 911106
[1] GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960.
[2] YIN Fei,LI ZhenYu,SAMINA Shabbir,LIN QingSheng. Expression and Function Analysis of Cytochrome P450 Genes in Plutella xylostella with Different Chlorantraniliprole Resistance [J]. Scientia Agricultura Sinica, 2022, 55(13): 2562-2571.
[3] WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346.
[4] CHEN ErHu,MENG HongJie,CHEN Yan,TANG PeiAn. Cuticle Protein Genes TcCP14.6 and TcLCPA3A are Involved in Phosphine Resistance of Tribolium castaneum [J]. Scientia Agricultura Sinica, 2022, 55(11): 2150-2160.
[5] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[6] GE XinZhu,SHI YuXing,WANG ShaSha,LIU ZhiHui,CAI WenJie,ZHOU Min,WANG ShiGui,TANG Bin. Sequence Analysis of Harmonia axyridis Pyruvate Kinase Gene and Its Regulation of Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2021, 54(23): 5021-5031.
[7] YU WeiDong,PAN BiYing,QIU LingYu,HUANG Zhen,ZHOU Tai,YE Lin,TANG Bin,WANG ShiGui. The Structure Characteristics and Biological Functions on Regulating Trehalose Metabolism of Two NlTret1s in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2020, 53(23): 4802-4812.
[8] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[9] LIU XiaoJian,GUO Jun,ZHANG XueYao,MA EnBo,ZHANG JianZhen. Molecular Characteristics and Function Analysis of Nuclear Receptor Gene LmE75 in Locusta migratoria [J]. Scientia Agricultura Sinica, 2020, 53(11): 2219-2231.
[10] YAO LiXiao,FAN HaiFang,ZHANG QingWen,HE YongRui,XU LanZhen,LEI TianGang,PENG AiHong,LI Qiang,ZOU XiuPing,CHEN ShanChun. Function of Citrus Bacterial Canker Resistance-Related Transcription Factor CitMYB20 [J]. Scientia Agricultura Sinica, 2020, 53(10): 1997-2008.
[11] MA Wen,LIU Jiao,ZHANG XueYao,SHEN GuoHua,QIN XueMei,ZHANG JianQin. Enzymatic Characteristics and Metabolic Analysis to Malathion and p,p’-DDT of LmGSTS2 from Locusta migratoria [J]. Scientia Agricultura Sinica, 2019, 52(8): 1389-1399.
[12] DING YanJuan,LIU YongKang,LUO YuJia,DENG YingMei,XU HongXing,TANG Bin,XU CaiDi. Potential Functions of Nilaparvata lugens GSK-3 in Regulating Glycogen and Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2019, 52(7): 1237-1246.
[13] JunBo PENG,XingHong LI,Wei ZHANG,Ying ZHOU,JinBao HUANG,JiYe YAN. Pathogenicity and Gene Expression Pattern of the Exocrine Protein LtGH61A of Grape Canker Fungus [J]. Scientia Agricultura Sinica, 2019, 52(24): 4518-4526.
[14] . Inhibition of Porcine Reproductive and Respiratory Syndrome Virus Replication by Plasmid-derived Short Hairpin RNA Targeting to M Protein Gene [J]. Scientia Agricultura Sinica, 2008, 41(1): 259-264 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!