Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (24): 4710-4719.doi: 10.3864/j.issn.0578-1752.2018.24.011

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Expression Analysis of Five Genes in the Gonadal Axis of Small Tail Han Sheep and Sunite Sheep

ZHANG ZhuangBiao1(),DI Ran1,LIU QiuYue1,HU WenPing1,WANG XiangYu1,TIAN ZhiLong1,ZHANG XiaoSheng2,ZHANG JinLong2,CHU MingXing1()   

  1. 1 Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture/ Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193
    2 Tianjin Institute of Animal Sciences, Tianjin 300381
  • Received:2018-04-18 Accepted:2018-07-07 Online:2018-12-16 Published:2018-12-16

Abstract:

【Background】With the continuous improvement of living standard, mutton with rich protein and low cholesterol content is increasingly favored in daily life, and the overall consumption demand of mutton is increasing year by year. However, in recent years, the shortage of mutton-based sheep products has caused the price of mutton to remain high, resulting in a contradiction between supply and demand of mutton. In the early researches on the performance of sheep, it was found that the reproductive performance had an important impact on the mutton production. Therefore, improving the fecundity of sheep is of great significance for changing the situation of slow turnaround and poor efficiency of meat sheep production in China. The litter size is the most important reproductive trait, but the litter size is a quantitative trait of low heritability and is controlled by micro-multiple genes. Therefore, traditional breeding methods are difficult to rapidly improve litter size. In recent years, with the advent of molecular marker technology, researchers have discovered some major genes that affect the fertility of sheep, such as BMPR1B, BMP15, GDF9 and other genes, afterwards, researches began to use conventional breeding methods combined with these molecular markers to cultivate new sheep breeds with high fecundity. Studies have shown that in addition to these major genes that have been discovered, there are still some genes that have a certain regulatory effect on the fecundity of sheep. Based on this situation, the purpose of this study was to explore the differential expression of candidate genes which may affect the fertility of sheep. 【Objective】 BMP2, BMP6, BMP7, CAST and CART, in the tissues associated with the gonadal axis (brain, cerebellum, hypothalamus, pituitary, uterus, ovary and oviduct) in Small Tail Han sheep and Sunite sheep, which would provide a reference for clarifying the mechanism of high fecundity of sheep. 【Method】 Polytocous Small Tail Han sheep and monotocous Sunite sheep were used as the experimental animals, and real-time fluorescence quantitative PCR was performed to detect the expression difference of these five genes in seven gonadal-related tissues in two sheep breeds. 【Result】 The results showed that BMP2 gene was expressed in all seven tissues of the gonadal axis. The expression of BMP2 in hypothalamus in Small Tail Han sheep was higher than that in Sunite sheep (P<0.05). The expression of BMP2 in oviduct, ovary, pituitary and cerebellum in Small Tail Han sheep was higher than that in Sunite sheep (P<0.01), however, the expression difference of this gene in the brain and uterus of the two sheep breeds was not significant (P>0.05). The expression of BMP6 in pituitary, ovary and oviduct in Small Tail Han sheep was higher than that in Sunite sheep (P<0.01), although the expression level of this gene in the hypothalamus and uterus of Small Tail Han sheep was higher than that of Sunite sheep, however, the expression difference was not significant (P>0.05). The expression of BMP7 in pituitary and brain of Small Tail Han sheep was higher than that in Sunite sheep (P<0.05), the expression of BMP7 in hypothalamus, oviduct and ovary of Small Tail Han sheep was higher than that of Sunite sheep (P<0.01), but there was no significant difference in the expression of this gene in the cerebellum and uterus of Small Tail Han sheep and Sunite sheep (P>0.05). The trace expression of CAST was found in hypothalamus and pituitary, and the higher expression in other tissues in two sheep breeds, the expression of CAST gene in oviduct and uterus of Small Tail Han sheep was higher than that of Sunite sheep (P<0.01), however, the expression levels of this gene in the brains of Small Tail Han sheep and Sunite sheep were almost the same (P>0.05). The CART was highly expressed in hypothalamus of two sheep breeds. The expression of CART gene in pituitary of Sunite sheep was higher than that of Small Tail Han sheep (P<0.05), and the expression of CART in brain of Small Tail Han sheep was higher than that of Sunite sheep (P<0.01), whereas, there was no significant difference in the expression of this gene in other tissues used in this experiment of two sheep breeds (P>0.05). 【Conclusion】 These results implied that the five genes may have some regulatory roles on sheep fertility.

Key words: sheep, litter size, candidate genes, gonadal axis, tissue expression

Table 1

The sequences,amplified products and Tm(annealing temperature)of PCR for six primer pairs"

基因名称
Name
引物序列
Primer sequence
片段大小
Length (bp)
退火温度
Tm (℃)
BMP2 F:5′-ATCACCTGAACTCCACGAA-3′ 140 60
R: 5′-TACCACCTTCTCATTCTCATC-3′
BMP6 F:5′- AGCAGACTACAACAGCAGCGA-3′ 267 60
R:5′- AGCACCGAGATGGCGTTCA-3′
BMP7 F:5′- AAAACAGCAGCAGCGACCAGAG-3′ 123 68
R:5′- CCTCACAGTAGTAGGCGGCATAGC-3′
CAST F:5′-TGGGGCCCAATGACGCCATCGATG - 3′ 222 60
R:5′- GGTGGAGCAGCACTTCTGATCACC - 3′
CART F:5′- AGCAGCCACCATCAGAGAAA - 3′ 214 60
R:5′- TCCAGAGCAGTATCCATGTCT - 3′
β-actin F:5′- CCAACCGTGAGAAGATGACC-3′ 97 60
R:5′- CCCGAGGCGTACAGGGACAG-3′

Table 2

System of reverse transcription"

试剂
Reagent
各试剂加入量
Volume of each reagent
PrimeScript 反转录混合引物Ⅰ
PrimeScript RT Enzyme Mix Ⅰ
1.0 μL
Oligo dT引物 Oligo dT Primer 1.0 μL
随机引物 Random 6 mers 1.0 μL
5×PrimeScript荧光定量缓冲液
5×PrimeScript Buffer (for Real Time)
4.0 μL
RNA 1.0 μg
双蒸水 RNase-Free ddH2O 12μL

Table 3

System of real time fluorescent quantitative PCR"

试剂
Reagent
各试剂加入量
Volume of each reagent (μL)
荧光定量Ex Taq引物Ⅱ
SYBR Premix Ex Taq
10.0
上游引物(10 μmol·L-1
Upstream primer (10 μmol·L-1)
0.8
下游引物(10 μmol·L-1
Downstream primer (10 μmol·L-1)
0.8
cDNA 模板(500 ng·μL-1
cDNA template (500 ng·μL-1)
2.0
双蒸水 RNase-Free ddH2O 6.4

Fig. 1

Electrophoresis of the RNA"

Fig. 2

Expression of BMP2 in tissues of Small Tail Han sheep and Sunite sheep"

Fig. 3

Expression of BMP6 in tissues of Small Tail Han and Sunite sheep"

Fig. 4

Expression of BMP7 in tissues of Small Tail Han and Sunite sheep"

Fig. 5

Expression of CAST in tissues of Small Tail Han and Sunite sheep"

Fig. 6

Expression of CART in tissues of Small Tail Han and Sunite sheep"

[1] JUENGEL J L, FRENCH M C, QUIRKE L D, KAUFF A, SMITH G W, JOHNSTONE P D . Differential expression of CART in ewes with differing ovulation rates. Reproduction, 2017,9(23):471-479.
doi: 10.1530/REP-16-0657 pmid: 28115581
[2] JUENGEL J L, DAVIS G H, MCNATTY K P . Using sheep lines with mutations in single genes to better understand ovarian function. Reproduction, 2013,146(4):111-123.
doi: 10.1530/REP-12-0509 pmid: 23801782
[3] MULSANT P, LECERF F, FABRE S FRÉDÉRIC L,STÉPHANE F,LAURENT S,PHILIPPE M,ISABELLE L,CLAUDINE P,JULIETTE R,DANIELLE M, ISABELLE C,EDMOND C,JACQUES T,JACQUES T,LOYS B,YVES C, NOUR C,JEAN-MICHEL E ,. Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Merino ewes. Proceedings of the National Academy of Sciences of the United States of America, 2001,98(9):5104-5109.
[4] WILSON T, WU X Y, JUENGEL J L, ROSS I K, LUMSDEN J M, LORD E A, DODDS K G, WALLING G A, MCEWAN J C , O'CONNELL A R,MCNATTY K P,MONTGOMERY G W . Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells. Biology of Reproduction, 2001,64(4):1225-1235.
doi: 10.1095/biolreprod64.4.1225 pmid: 11259271
[5] CAMPBELL B K, KENDALL N R, BAIRD D T . Effect of direct ovarian infusion of bone morphogenetic protein 6 (BMP6) on ovarian function in sheep. Biology of Reproduction, 2009,81(5):1016-1023.
doi: 10.1095/biolreprod.109.076653 pmid: 19641181
[6] JUENGEL J L, FRENCH M C, QUIRKE L D, KAUFF A, SMITH G W, JOHNSTONE P D . The role of bone morphogenetic proteins 2, 4, 6 and 7 during ovarian follicular development in sheep: contrast to rat. Reproduction, 2006,131(3):501-513.
doi: 10.1530/rep.1.00958 pmid: 16514193
[7] DEHNAVI E, AZARI M A, HASANI S, NASSIRY M R, MOHAJER M, AHMADI A . Genetic variability of calpastatin and calpain genes in Iranian Zel sheep using PCR-RFLP and PCR-SSCP methods. Iranian Journal of Biotechnology, 2012,10(2):136-139.
[8] SHIMASAKI S, ZACHOW R J, LI D, KIM H, IEMURA S, UENO N, SAMPATH K, CHANG R J, ERICKSON G F . A functional bone morphogenetic protein system in the ovary. Proceedings of the National Academy of Sciences of the United States of America, 1999,96(6):7282-7287.
doi: 10.1073/pnas.96.13.7282 pmid: 10377406
[9] MASSAGUE J . TGFβ signaling: receptors, transducers, and Mad proteins. Cell, 1996,85(7):947-950.
doi: 10.1016/S0092-8674(00)81296-9 pmid: 8674122
[10] MIYAZONO K, MAEDA S, IMAMURA T . BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine & Growth Factor Reviews, 2005,16(3):251-263.
[11] SHIMASAKI S, MOORE K, OTSUKA F, ERICKSON G F . The bone morphogenetic protein system in mammalian reproduction. Endocrine Reviews, 2004,25(1):72-101.
[12] LOCHAB A K, EXTAVOUR C G . Bone morphogenetic protein (BMP) signaling in animal reproductive system development and function. Developmental Biology, 2017,427(2):258-269.
doi: 10.1016/j.ydbio.2017.03.002 pmid: 28284906
[13] LIU Z, SHEN J, PU K, KATUS H A ,PLÖGER F,TIEFENBACHER C P,CHEN X,BRAUN T.GDF5 and BMP2 inhibit apoptosis via activation of BMPR2 and subsequent stabilization of XIAP. Biochimica Et Biophysica Acta Molecular Cell Research, 2009,1793(12):1819-1827.
doi: 10.1016/j.bbamcr.2009.09.012 pmid: 19782107
[14] OTSUKA F, YAO Z, LEE T, YAMAMOTO S, ERICKSON G F, SHIMASAKI S . Bone morphogenetic protein-15-Identification of target cells and biological functions. Journal of Biological Chemistry, 2000,275(50):39523-39528.
doi: 10.1074/jbc.M007428200 pmid: 10998422
[15] ROSSIRO D A, CUNHA E V, PORTELA A M, PASSOS J R, COSTA J J, SILVA A W, SARAIVA M V, PEIXOTO C A, DONATO M A, VAN D R, SILVA J R . Influence of BMP-2 on early follicular development and mRNA expression of oocyte specific genes in bovine preantral follicles cultured in vitro. Histology & Histopathology, 2016,31(3):339-348.
doi: 10.14670/HH-11-674 pmid: 26435174
[16] DA C E, LRF M, SOUSA G B , ARAúJO V R, VASCONCELOS G L, AWB S, SILVA J . Effect of bone morphogenetic proteins 2 and 4 on survival and development of bovine secondary follicles cultured in vitro. Theriogenology, 2018,110(1):44-51.
doi: 10.1016/j.theriogenology.2017.12.032 pmid: 29331831
[17] FOROUGHINIA G, FAZILEH A, EGHBALSAIED S . Expression of genes involved in BMP and estrogen signaling and AMPK production can be important factors affecting total number of antral follicles in ewes. Theriogenology, 2017,91(5):36-43.
doi: 10.1016/j.theriogenology.2016.12.023
[18] MIKOSIK A, JASIULEWICZ A, DACA A, HENC I ,FRĄCKOWIAK J E . Roles of calpain-calpastatin system (CCS) in human T cell activation. Oncotarget, 2016,7(47):76479-76495.
doi: 10.18632/oncotarget.13259 pmid: 27835610
[19] MOHAMMADI M, NASIRI M B, ALAMI-SAEID K, FAYAZI J, MAMOEE M, SADR A . Polymorphism of calpastatin gene in Arabic sheep using PCR-RFLP. African Journal of Biotechnology, 2008,7(15):2682-2684.
[20] CHUNG H, DAVIS M . PCR-RFLP of the ovine calpastatin and its association with growth. Asian Journal of Animal & Veterinary Advances, 2012,7(8):641-652.
[21] RANJBARI M, HASHEMI A, MARDANI K, DARVISHZADEH R . Allelic polymorphism of Makoei sheep calpastatin gene identified by polymerase chain reaction and single strand conformation polymorphism. Journal of Agricultural Science and Technology, 2012,14(3):533-538.
doi: 10.1103/PhysRevC.86.014319
[22] TAIT R G, CUSHMAN R A, MCNEEL A K, CASAS E, SMITH T P, FREETLY H C, BENNETT G L . μ-Calpain (CAPN1), calpastatin (CAST), and growth hormone receptor (GHR) genetic effects on Angus beef heifer performance traits and reproduction. Theriogenology, 2018,113(3):1-7.
doi: 10.1016/j.theriogenology.2018.02.002
[23] MIHM M, EVANS A C . Mechanisms for dominant follicle selection in monovulatory species: a comparison of morphological, endocrine and intraovarian events in cows, mares and women. Reproduction in Domestic Animals, 2008,43(Suppl.2):48-56.
doi: 10.1111/j.1439-0531.2008.01142.x pmid: 18638104
[24] WEBB R, CAMPBELL B K . Development of the dominant follicle: mechanisms of selection and maintenance of oocyte quality. Society of Reproduction & Fertility Supplement, 2007,64(1):141-163.
doi: 10.5661/RDR-VI-141 pmid: 17491145
[25] GILCHRIST R B, RITTER L J , ARMSTRONG D T .Oocyte-somatic cell interactions during follicle development in mammals. Animal Reproduction Science, 2004, 82-83:431-446.
doi: 10.1016/j.anireprosci.2004.05.017 pmid: 15271471
[26] JUENGEL J L, MCNATTY K P . The role of proteins of the transforming growth factor-beta superfamily in the intraovarian regulation of follicular development. Human Reproduction Update, 2005,11(2):143-160.
[27] SILVA J R, FIGUEIREDO J R, VAN D H . Involvement of growth hormone (GH) and insulin-like growth factor (IGF) system in ovarian folliculogenesis. Theriogenology, 2009,71(8):1193-1208.
[28] KOBAYASHI Y, JIMENEZ-KRASSEL F, LI Q, YAO J, HUANG R, IRELAND J J, COUSSENS P M, SMITH G W . Evidence that cocaine- and amphetamine-regulated transcript is a novel intraovarian regulator of follicular atresia. Endocrinology, 2004,145(11):5373-5383.
doi: 10.1210/en.2004-0283 pmid: 15271876
[29] YAO J, REN X, IRELAND J J, COUSSENS P M, SMITH T P, SMITH G W . Generation of a bovine oocyte cDNA library and microarray: resources for identification of genes important for follicular development and early embryogenesis. Physiological Genomics, 2005,19(1):84-92.
doi: 10.1152/physiolgenomics.00123.2004 pmid: 15375196
[30] ROGGE G, JONES D, HUBERT G W, LIN Y, KUHAR M J . CART peptides: regulators of body weight, reward and other functions. Nature Reviews: Neuroscience, 2010,11(3):218.
doi: 10.1038/nrn2493 pmid: 4418456
[31] KOBAYASHI Y, JIMENEZ-KRASSEL F, IRELAND J J, SMITH G W . Evidence of a local negative role for cocaine and amphetamine regulated transcript (CART), inhibins and low molecular weight insulin like growth factor binding proteins in regulation of granulosa cell estradiol production during follicular waves in cattle. Reproductive Biology and Endocrinology, 2006,4(1):22-31.
doi: 10.1186/1477-7827-4-22 pmid: 16611367
[32] HUANG Y, YAO X L, MENG J Z, LIU Y, JIANG X L, CHEN J W, LI P F, REN Y S, LIU W Z, YAO J B, FOLGER J K, SMITH G W, LV L H . Intrafollicular expression and potential regulatory role of cocaine- and amphetamine-regulated transcript in the ovine ovary. Domestic Animal Endocrinology, 2016,54(1):30-36.
[33] SEN A, BETTEGOWDA A, JIMENEZKRASSEL F, IRELAND J J, SMITH G W . Cocaine- and amphetamine-regulated transcript regulation of follicle-stimulating hormone signal transduction in bovine granulosa cells. Endocrinology, 2007,148(9):4400-4410.
doi: 10.1210/en.2007-0332 pmid: 17569753
[34] LV L, JIMENEZ-KRASSEL F, SEN A, BETTEGOWDA A, MONDAL M, FOLGER J K, LEE K B, IRELAND J J, SMITH G W . Evidence supporting a role for cocaine- and amphetamine-regulated transcript (CARTPT) in control of granulosa cell estradiol production associated with dominant follicle selection in cattle. Biology of Reproduction, 2009,81(3):580-586.
doi: 10.1095/biolreprod.109.077586 pmid: 19439726
[35] KOBAYASHI Y , JIMENEZ K F Q, YAO J, HUANG R, IRELAND J J, COUSSENS P M, SMITH G W .Evidence that cocaine- and amphetamine-regulated transcript is a novel intraovarian regulator of follicular atresia. Endocrinology, 2004,145(11):5373-5383.
doi: 10.1210/en.2004-0283 pmid: 15271876
[36] HIM L, KRISTENSEN P, LARSEN P J, WULFF B S . CART, a new anorectic peptide. The International Journal of Biochemistry & Cell Biology, 1998,30(12):1281-1284.
doi: 10.1016/S1357-2725(98)00110-1 pmid: 9924797
[37] MAKOWSKA K, GONKOWSKI S . Cocaine-and amphetamine- regulated transcript (cart) peptide in mammals gastrointestinal system-a review. Annals of Animal Science, 2017,17(1):3-21.
[38] VICENTIC A, JONES D C . The CART (cocaine-and amphetamine- regulated transcript) system in appetite and drug addition. Journal of Pharmacology and Experimental Therapeutics, 2007,320(2):499-506.
doi: 10.1124/jpet.105.091512 pmid: 16840648
[39] 刘志国, 王冰源, 牟玉莲, 魏泓, 陈俊海, 李奎 . 分子编写育种——动物育种的发展方向.中国农业科学, 2018(12):2398-2409.
Liu Z G, Wang B Y , Yan Y l, Wei W, Chen J H, Li K. Breeding by Molecular Writing (BMW): the Future Development of Animal Breeding. Scientia Agricultura Sinica, 2018(12):2398-2409.
[40] 徐业芬, 李齐发, 李二林 . 湖羊BMP2、BMP4、BMP6 和BMP7 基因mRNA 表达水平与排卵数关系的研究. 中国农业科学, 2009,42(10):3655-3661.
XU Y F, LI Q F, LI E L . Relationship between mRNA Expression of BMP2, BMP4, BMP6 and BMP7 genes and number of ovulation in Hu sheep. Scientia Agricultura Sinica, 2009,42(10):3655-3661. (in Chinese)
[41] 杨燕燕, 杜文, 刘永斌 . BMP6基因在单、双羔蒙古羊不同生理时期卵巢组织中的差异表达及分析. 畜牧与饲料科学, 2017,38(3):25-27.
YANG Y Y, DU W, LIU Y B . Difference expression and analysis of BMP6 gene in ovary tissues of single and double lamb Mongolian sheep at different physiological stages. Animal Husbandry And feed Science, 2017,38(3):25-27. (in Chinese)
[42] DUBE J L, WANG P, ELVIN J, LYONS K M, CELESTE A J, MATZUK M M . The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes. Molecular Endocrinology, 1998,12(12):1809-1817.
doi: 10.1210/mend.12.12.0206 pmid: 9849956
[43] HINO J, TAKAO M, TAKESHITA N, KONNO Y, NISHIZAWA T, MATSUO H , KANGAWA K. cDNA cloning and genomic structure of human bone morphogenetic protein-3B (BMP-3b). Biochemical & Biophysical Research Communications, 1996,223(2):304-310.
doi: 10.1006/bbrc.1996.0889 pmid: 8670277
[44] JAATINEN R, ROSEN V, TUURI T, RITVOS O . Identification of ovarian granulosa cells as a novel site of expression for bone morphogenetic protein-3 (BMP-3/osteogenin) and regulation of BMP-3 messenger ribonucleic acids by chorionic gonadotropin in cultured human granulosa-luteal cells. Journal of Clinical Endocrinology & Metabolism, 1996,81(11):3877-3882.
doi: 10.1210/jc.81.11.3877 pmid: 8923832
[45] LYONS K M, PELTON R W, HOGAN B L . Patterns of expression of murine Vgr-1 and BMP-2a RNA suggest that transforming growth factor-beta-like genes coordinately regulate aspects of embryonic development. Genes & Development, 1989,3(11):1657-1668.
doi: 10.1101/gad.3.11.1657 pmid: 2481605
[46] TAKAO M, HINO J, TAKESHITA N, KONNO Y, NISHIZAWA T, MATSUO H, KANGAWA K . Identification of rat bone morphogenetic protein-3b (BMP-3b), a new member of BMP-3. Biochemical & Biophysical Research Communications, 1996,219(2):656-662.
[47] SOUZA C J, CAMPBELL B K, MCNEILLY A S, BAIRD D T . Effect of bone morphogenetic protein2 (BMP2) on oestradiol and inhibin A production by sheep granulosa cells, and localization of BMP receptors in the ovary by immunohistochemistry. Reproduction, 2002,123(3):363-370.
doi: 10.1530/rep.0.1230363 pmid: 11882013
[48] 邝美倩, 金鹏锦, 王若丞, 孙玲伟, 王锋, 李鹏, 成志军, 茆达干 . 限饲对湖羊子宫RGMb基因及BMP系统成员表达的影响. 畜牧兽医学报, 2017,48(5):863-870.
RUAN M Q, JIN P J, WANG R J, SUN L W, WANG F, LI P, CHENG Z J, MAO D G . Effect of feed restriction on expression of RGMb gene and BMP system members in Huyang uterus. Chinese Journal of Animal and Veterinary Sciences, 2017,48(5):863-870. (in Chinese)
[49] DÍAZ P U, HEIN G J, BELOTTI E M, RODRÍGUEZ F M, REY F, AMWEG A N, MATILLER V, BARAVALLE M E, ORTEGA H H, SALVETTI N R . BMP2, 4 and 6 and BMPR1B are altered from early stages of bovine cystic ovarian disease development. Reproduction, 2016,152(4):333-350.
doi: 10.1530/REP-15-0315 pmid: 27486268
[50] LIU F, PLACZEK M . Axon guidance effects of classical morphogens Shh and BMP7 in the hypothalamo-pituitary system. Neuroscience Letters, 2013,553(8):104-109.
doi: 10.1016/j.neulet.2013.08.027 pmid: 23978511
[51] TAKEDA M, OTSUKA F, SUZUKI J, KISHIDA M, OGURA T, TAMIYA T, MAKINO H . Involvement of activin/BMP system in development of human pituitary gonadotropinomas and nonfunctioning adenomas. Biochemical & Biophysical Research Communications, 2003,306(4):812-818.
doi: 10.1016/S0006-291X(03)01052-0 pmid: 12821114
[52] VALDECANTOS P A , MIANA R D C B, GARCÍA E V, GARCÍA D C, ROLDÁN-OLARTE M, MICELI D C. Expression of bone morphogenetic protein receptors in bovine oviductal epithelial cells: Evidence of autocrine BMP signaling. Animal Reproduction Science, 2017,185(10):89-96.
doi: 10.1016/j.anireprosci.2017.08.006 pmid: 28830629
[53] OTSUKA F, MOORE R K, SHIMASAKI S . Biological function and cellular mechanism of bone morphogenetic protein-6 in the ovary. Journal of Biological Chemistry, 2001,276(35):32889-32895.
doi: 10.1074/jbc.M103212200 pmid: 11447221
[54] VINOD K D, GULZAR R, SELVARAJU S, NAZAR S, PARTHIPAN S, PRASAD R V, JAMUNA K V, RAVINDRA J P . Effect of bone morphogenetic protein-2 (bmp-2) on sheep granulosa cell steriodogenic function. Journal of Cell & Tissue Research, 2014,14(2):4233-4236.
[55] 于雪静, 庞钰莹, 贺俊平, 姜晓龙, 吕丽华 . 蛋鸡下丘脑CART mRNA序列测定及分析. 畜牧兽医科技信息, 2013, ( 4):21-23.
YU X J, PANG Y Y, HE J P, JIANG X L, LV L H . Determination and analysis of CART mRNA sequence in hypothalamus of laying hens. Chinese Journal of Animal Husbandry and Veterinary Medicine, 2013, ( 4):21-23. (in Chinese)
[56] 李鹏飞, 李富禄, 于秀菊, 吕丽华 . 猪CART mRNA全CDS区序列的克隆与表达载体的构建. 福建农林大学学报(自然科学版), 2011,40(6):52-55.
LI P F, LI F L, YU X J, LÜ L H . Cloning of the full CDS region of pig CART mRNA and construction of its expression vector. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2011,40(6):52-55. (in Chinese)
[57] JONES D C, KUHAR M J . Cocaine-amphetamine-regulated transcript expression in the rat nucleus accumbens is regulated by adenylyl cyclase and the cyclic adenosine 5′-monophosphate/protein kinase a second messenger system. Journal of Pharmacology and Experimental Therapeutics, 2006,317(1):454-461.
doi: 10.1124/jpet.105.096123 pmid: 16322355
[58] CHMIELOWSKA M, BARANOWSKA B, WOLINSKA-WITORT E, MARTYNSKA L, KALISZ M, LITWINIUK A, BIK W . The effect of Cart on pituitary hormones release from cultured pituitary cells: harvested from fasted and fed ad libitum male rats. Peptides, 2017,9(1):20-25.
doi: 10.1016/j.peptides.2017.03.003 pmid: 28300671
[59] 李鹏飞, 岳文斌, 黄洋, 孙晋艳, 李晓明, 庞钰莹, 于学静, 贺俊平, 孟金柱, 任有蛇, 吕丽华 . 可卡因-苯丙胺调控转录肽对绵羊卵巢卵泡颗粒细胞雌激素产生的影响. 畜牧兽医学报, 2013,44(6):853-857.
LI P F, YUE W B, HUANG Y, SUN J Y, LI X M, PANG Y Y, YU X J, HE J P, MENG J Z, REN Y S, LV L H . Effect of cocaine- amphetamine-controlled transcription peptide on estrogen production of ovarian follicle granulosa cells in sheep. Chinese Journal of Animal and Veterinary Sciences, 2013,44(6):853-857. (in Chinese)
[60] 李鹏飞, 孟金柱, 于雪静, 庞钰莹, 杜海燕, 李晓明, 姚晓磊, 赵妙妙, 吕丽华 . 外源性dsRNA对蛋鸡卵泡CART基因表达及雌激素和孕酮分泌的影响. 畜牧兽医学报, 2016,47(3):515-520.
LI P F, MENG J Z, YU X J, PANG Y Y, DU H Y, LI X M, YAO X L, ZHAO M M, LV L H . Effects of exogenous dsRNA on CART gene expression and estrogen and progesterone secretion in follicles of laying hens. Chinese Journal of Animal and Veterinary Sciences, 2016,47(3):515-520. (in Chinese)
[61] 张菊 . 绵羊CAST、MC4R和BTGl基因的克隆、组织表达和遗传多态性分析[D]. 中国农业科学院, 2009.
ZHANG J . Cloning, tissue expression and genetic polymorphism analysis of CAST, MC4R and BTG1 genes in sheep[D]. Chinese Academy of Agricultural Sciences, 2009.
[62] KAPPES S M, BENNETT G L, KEELE J W, ECHTERNKAMP S E, GREGORY K E, THALLMAN R M . Initial results of genomic scans for ovulation rate in a cattle population selected for increased twinning rate. Journal of Animal Science, 2000,78(12):3053-3059.
doi: 10.2527/2000.78123053x pmid: 11132819
[63] LIEN S, KARLSEN A, KLEMETSDAL G, VÅGE D I, OLSAKER I, KLUNGLAND H, AASLAND M, HERINGSTAD B, RUANE J, GOMEZ-RAYA L. A primary screen of the bovine genome for quantitative trait loci affecting twinning rate. Mammalian Genome, 2000,11(10):877-882.
doi: 10.1007/s003350010180 pmid: 11003703
[64] GARCIA M D, MICHAL J J, GASKINS C T, REEVES J J, OTT T L, LIU Y, JIANG Z . Significant association of the calpastatin gene with fertility and longevity in dairy cattle. Animal Genetics, 2006, 37(3):确良304-305.
doi: 10.1111/j.1365-2052.2006.01443.x pmid: 16734705
[65] BYUN S O, ZHOU H, FRAMPTON C M, HICKFORD J G . No association between variation in the ovine calpastatin gene and either longevity or fertility in sheep. Animal Genetics, 2009,41(2):222-224.
doi: 10.1111/j.1365-2052.2009.01982.x pmid: 19917051
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] LIU YuFang,CHEN YuLin,ZHOU ZuYang,CHU MingXing. miR-221-3p Regulates Ovarian Granulosa Cells Apoptosis by Targeting BCL2L11 in Small-Tail Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(9): 1868-1876.
[3] CHE DaLu,ZHAO LiChen,CHENG SuCai,LIU AiYu,LI XiaoYu,ZHAO ShouPei,WANG JianCheng,WANG Yuan,GAO YuHong,SUN XinSheng. Effect of Litter Bed on Growth Performance and Odor Emission in Fattening Lamb [J]. Scientia Agricultura Sinica, 2022, 55(24): 4943-4956.
[4] LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768.
[5] SONG ShuZhen, GAO LiangShuang, LI Hong, GONG XuYin, LIU LiShan, WEI YuBing. Effects of Feeding Levels on Muscle Tissue Structure and Muscle Fiber Composition Related Genes in Sheep [J]. Scientia Agricultura Sinica, 2022, 55(21): 4304-4314.
[6] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[7] ChunTao ZHANG,Tao MA,Yan TU,QiYu DIAO. Effects of Circadian Rhythm on Rumen Fermentation and Nutrient Digestion of Mutton Sheep [J]. Scientia Agricultura Sinica, 2022, 55(18): 3664-3674.
[8] LIU WangJing,TANG DeFu,AO ChangJin. Effect of Allium mongolicum Regel and Its Extracts on the Growth Performance, Carcass Characteristics, Meat Quality and Serum Biochemical Indices of Captive Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(17): 3461-3472.
[9] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[10] LIANG Peng,ZHANG TianWen,MENG Ke,SHAO ShunCheng,ZOU ShiFan,RONG Xuan,QIANG Hao,FENG DengZhen. Association Analysis of the ADIPOQ Variation with Sheep Growth Traits [J]. Scientia Agricultura Sinica, 2022, 55(11): 2239-2256.
[11] KE Na,HAO ZhiYun,WANG JianQing,ZHEN HuiMin,LUO YuZhu,HU Jiang,LIU Xiu,LI ShaoBin,ZHAO ZhiDong,HUANG ZhaoChun,LIANG WeiWei,WANG JiQing. The miR-221 Inhibits the Viability and Proliferation of Ovine Mammary Epithelial Cells by Targeting IRS1 [J]. Scientia Agricultura Sinica, 2022, 55(10): 2047-2056.
[12] ZHANG PengFei,SHI LiangYu,LIU JiaXin,LI Yang,WU ChengBin,WANG LiXian,ZHAO FuPing. Advance in Genome-Wide Scan of Runs of Homozygosity in Domestic Animals [J]. Scientia Agricultura Sinica, 2021, 54(24): 5316-5326.
[13] WANG Qian,LI Zheng,ZHAO ShanShan,QIE MengJie,ZHANG JiuKai,WANG MingLin,GUO Jun,ZHAO Yan. Application of Stable Isotope Technology in the Origin Traceability of Sheep [J]. Scientia Agricultura Sinica, 2021, 54(2): 392-399.
[14] LI SongMei,QIU YuGe,CHEN ShengNan,WANG XiaoMeng,WANG ChunSheng. CRISPR/Cas9 Mediated Exogenous Gene Knock-in at ROSA26 Locus in Sheep Umbilical Cord Mesenchymal Stem Cells [J]. Scientia Agricultura Sinica, 2021, 54(2): 400-411.
[15] YAN YongLiang,SHI XiaoLei,ZHANG JinBo,GENG HongWei,XIAO Jing,LU ZiFeng,NI ZhongFu,CONG Hua. Genome-Wide Association Study of Grain Quality Related Characteristics of Spring Wheat [J]. Scientia Agricultura Sinica, 2021, 54(19): 4033-4047.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!