Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (24): 4659-4676.doi: 10.3864/j.issn.0578-1752.2018.24.007
• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles Next Articles
WANG Fei1,2,3(),YANG ShengTian2,WEI Yang2,YANG XiaoDong2,3,DING JianLi1,2,3(
)
[1] |
ALLBED A, KUMAR L, ALDAKHEEL Y Y . Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region. Geoderma, 2014,230:1-8.
doi: 10.1016/j.geoderma.2014.03.025 |
[2] |
SCUDIERO E, SKAGGS T H, CORWIN D L . Regional scale soil salinity evaluation using Landsat 7, western San Joaquin Valley, California, USA.Geoderma Regional, 2014(2/3):82-90.
doi: 10.1016/j.geodrs.2014.10.004 |
[3] |
SCUDIERO E, SKAGGS T H, CORWIN D L . Regional-scale soil salinity assessment using Landsat ETM + canopy reflectance. Remote Sensing of Environment, 2015,169:335-343.
doi: 10.1016/j.rse.2015.08.026 |
[4] |
TAGHIZADEH-MEHRJARDI R, MINASNY B, SARMADIAN F, MALONE B P . Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma, 2014,213:15-28.
doi: 10.1016/j.geoderma.2013.07.020 |
[5] |
WU W, MHAIMEED A S , AL-SHAFIE W M,ZIADAT F,DHEHIBI B,NANGIA V,PAUW E D.Mapping soil salinity changes using remote sensing in Central Iraq. Geoderma Regional, 2014(2/3):21-31.
doi: 10.1016/j.geodrs.2014.09.002 |
[6] |
YAHIAOUI I, DOUAOUI A, QIANG Z, ZIANE A . Soil salinity prediction in the Lower Cheliff plain(Algeria) based on remote sensing and topographic feature analysis. Journal of Arid Land, 2015,7(6):794-805.
doi: 10.1007/s40333-015-0053-9 |
[7] |
ZHANG T T, QI J G, GAO Y, OUYANG Z T, ZENG S L, ZHAO B . Detecting soil salinity with MODIS time series VI data. Ecological Indicators, 2015,52:480-489.
doi: 10.1016/j.ecolind.2015.01.004 |
[8] |
ZHANG T-T, ZENG S-L, GAO Y, OUYANG Z-T, LI B, FANG C-M, ZHAO B . Using hyperspectral vegetation indices as a proxy to monitor soil salinity. Ecological Indicators, 2011,11(6):1552-1562.
doi: 10.1016/j.ecolind.2011.03.025 |
[9] |
GARCíA M, OYONARTE C, VILLAGARCíA L, CONTRERAS S, DOMINGO F, PUIGDEFáBREGAS J . Monitoring land degradation risk using ASTER data: The non-evaporative fraction as an indicator of ecosystem function. Remote Sensing of Environment, 2008,112(9):3720-3736.
doi: 10.1016/j.rse.2008.05.011 |
[10] |
LI X, YANG K, ZHOU Y. Progress in the study of oasis-desert interactions.Agricultural and Forest Meteorology 2016,230-231:1-7. DOI: 10.1016/j.agrformet.2016.08.022
doi: 10.1016/j.agrformet.2016.08.022 |
[11] |
GONG L, RAN Q, HE G, TIYIP T . A soil quality assessment under different land use types in Keriya river basin, Southern Xinjiang, China. Soil and Tillage Research, 2015,146:223-229.
doi: 10.1016/j.still.2014.11.001 |
[12] |
TUTEJA N K, BEALE G, DAWES W, VAZE J . Predicting the effects of landuse change on water and salt balance-a case study of a catchment affected by dryland salinity in NSW, Australia. Journal of Hydrology, 2003,283(1):67-90.
doi: 10.1016/S0022-1694(03)00236-1 |
[13] |
WANG Y, LI Y . Land exploitation resulting in soil salinization in a desert-oasis ecotone. Catena, 2013,100:50-56.
doi: 10.1016/j.catena.2012.08.005 |
[14] |
HENGL T , MENDES D J J, HEUVELINK G B, RUIPEREZ G M, KILIBARDA M, BLAGOTIĆ A, SHANGGUAN W, WRIGHT M N, GENG X, BAUERMARSCHALLINGER B. SoilGrids250m: Global gridded soil information based on machine learning. Plos One, 2017,12(2):e0169748.
doi: 10.1371/journal.pone.0169748 pmid: 5313206 |
[15] |
SCHILLACI C, LOMBARDO L, SAIA S, FANTAPPIè M ,MäRKER M,ACUTIS M. Modelling the topsoil carbon stock of agricultural lands with the Stochastic Gradient Treeboost in a semi-arid Mediterranean region. Geoderma, 2017,286:35-45.
doi: 10.1016/j.geoderma.2016.10.019 |
[16] | HASTIE T, TIBSHIRANI R, FRIEDMAN J H, FRANKLIN J . The elements of statistical learning, second edition: data mining, inference, and prediction. Mathematical Intelligencer, 2009,27(2):83-85. |
[17] |
ANGILERI S E, CONOSCENTI C, HOCHSCHILD V ,MäRKER M, ROTIGLIANO E, AGNESI V. Water erosion susceptibility mapping by applying Stochastic Gradient Treeboost to the Imera Meridionale River Basin (Sicily, Italy). Geomorphology, 2016,262:61-76.
doi: 10.1016/j.geomorph.2016.03.018 |
[18] |
HEUNG B, BULMER C E, SCHMIDT M G . Predictive soil parent material mapping at a regional-scale: A Random Forest approach. Geoderma, 2014,214:141-154.
doi: 10.1016/j.geoderma.2013.09.016 |
[19] |
HEUNG B, HO H C, ZHANG J, KNUDBY A, BULMER C E, SCHMIDT M G . An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping. Geoderma, 2016,265:62-77.
doi: 10.1016/j.geoderma.2015.11.014 |
[20] |
LIEß M, GLASER B, HUWE B . Uncertainty in the spatial prediction of soil texture: Comparison of regression tree and Random Forest models. Geoderma, 2012,170:70-79.
doi: 10.1016/j.geoderma.2011.10.010 |
[21] | BREIMAN L. . Random Forests Machine Learning, 2001,45(1):5-32. |
[22] | FRIEDMAN J H. Stochastic Gradient Boosting. Computational Statistics & Data Analysis, 2002,38(4):367-378. |
[23] |
DING J, YU D. Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan-Kuqa Oasis,China,using remote sensing and electromagnetic induction instruments.. Geoderma ,2014,235 236:316-322.
doi: 10.1016/j.geoderma.2014.07.028 |
[24] |
BENNETT S J, BARRETTLENNARD E G, COLMER T D . Salinity and waterlogging as constraints to saltland pasture production: a review. Agriculture Ecosystems & Environment, 2009,129(4):349-360.
doi: 10.1016/j.agee.2008.10.013 |
[25] |
WANG F, CHEN X, LUO G, HAN Q . Mapping of regional soil salinities in Xinjiang and strategies for amelioration and management. Chinese Geographical Science, 2015,25(3):321-336.
doi: 10.1007/s11769-014-0718-x |
[26] |
MINASNY B, MCBRATNEY A B . A conditioned Latin hypercube method for sampling in the presence of ancillary information Computers & Geosciences, 2006,32(9):1378-1388.
doi: 10.1016/j.cageo.2005.12.009 |
[27] | 鲁如坤 . 土壤农业化学分析方法.北京: 中国农业科技出版社, 1999. |
LU R K. Methods for Soil Agrochemistry Analysis. Beijing: China Agricultural Science and Technology Press, 1999. (in Chinese). | |
[28] |
SONG W, MU X, RUAN G, GAO Z, LI L, YAN G . Estimating fractional vegetation cover and the vegetation index of bare soil and highly dense vegetation with a physically based method. International Journal of Applied Earth Observations & Geoinformation, 2017,58:168-176.
doi: 10.1016/j.jag.2017.01.015 |
[29] | RICHARDS L A . Diagnosis and Improvement of Saline and Alkali Soils. Usda Agriculture Handbook, 1954,60(3):290. |
[30] |
MONDAL P . Quantifying surface gradients with a 2-band Enhanced Vegetation Index (EVI2). Ecological Indicators, 2011,11(3):918-924.
doi: 10.1016/j.ecolind.2010.10.006 |
[31] | 陈红艳, 赵庚星, 陈敬春, 王瑞燕, 高明秀 . 基于改进植被指数的黄河口区盐渍土盐分遥感反演. 农业工程学报, 2015,31(5):107-114. |
CHEN H Y, ZHAO G X, CHEN J C, WANG R Y, GAO M X . Remote sensing inversion of saline soil salinity based on modified vegetation index in estuary area of Yellow River. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(5):107-114. (in Chinese) | |
[32] |
METTERNICHT G I, ZINCK J A . Remote sensing of soil salinity: potentials and constraints. Remote Sensing of Environment, 2003,85(1):1-20.
doi: 10.1016/S0034-4257(02)00188-8 |
[33] |
YU R, LIU T, XU Y, ZHU C, ZHANG Q, QU Z, LIU X, LI C . Analysis of salinization dynamics by remote sensing in Hetao Irrigation District of North China. Agricultural Water Management, 2010,97(12):1952-1960.
doi: 10.1016/j.agwat.2010.03.009 |
[34] |
CECCATO P, GOBRON N, FLASSE S, PINTY B, TARANTOLA S . Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1: Theoretical approach. Remote Sensing of Environment, 2002,82(2):188-197.
doi: 10.1016/S0034-4257(02)00037-8 |
[35] | LIAW A, WIENER M . Classification and Regression by RandomForest.R News, 2002(2/3):18-22. |
[36] |
ELITH J, LEATHWICK J R, HASTIE T . A working guide to boosted regression trees. Journal of Animal Ecology, 2008,77(4):802-813.
doi: 10.1111/j.1365-2656.2008.01390.x pmid: 18397250 |
[37] |
SVETNIK V, LIAW A, TONG C, CULBERSON J C, SHERIDAN R P, FEUSTON B P . Random Forest:A Classification and Regression Tool for Compound Classification and QSAR Modeling. Journal of Chemical Information and Computer Sciences, 2003,43(6):1947-1958.
doi: 10.1021/ci034160g pmid: 14632445 |
[38] |
NAGHIBI S A, POURGHASEMI H R, DIXON B . GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environmental Monitoring & Assessment, 2016,188(1):44.
doi: 10.1007/s10661-015-5049-6 pmid: 26687087 |
[39] | YOUSSEF A M, POURGHASEMI H R, POURTAGHI Z S ,AL-KATHEERI M M.Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides, 2016,13(5):839-856. |
[40] |
YANG R M, ZHANG G L, LIU F, LU Y Y, YANG F, YANG F, YANG M, ZHAO Y G, LI D C . Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem. Ecological Indicators, 2016,60:870-878.
doi: 10.1016/j.ecolind.2015.08.036 |
[41] | BLANCO C M G, GOMEZ V M B, CRESPO P, LIEß M . Spatial prediction of soil water retention in a Páramo landscape: Methodological insight into machine learning using random forest. Geoderma, 2018,316:100-114. |
[42] |
MULDER V L, LACOSTE M , RICHER-DE-FORGES A C, MARTIN M P, ARROUAYS D . National versus global modelling the 3D distribution of soil organic carbon in mainland France. Geoderma, 2016,263:16-34.
doi: 10.1016/j.geoderma.2015.08.035 |
[43] | 王玉刚, 李彦, 肖笃宁 . 土地利用对天山北麓土壤盐渍化的影响. 水土保持学报, 2009,23(5):179-183. |
WANG Y G, LI Y, XIAO D N . Effects of land use type on soil salinization at Northern Slope of Tianshan Mountain. Journal of Soil and Water Conservation, 2009,23(5):179-183. (in Chinese) |
[1] | FENG ZiHeng,SONG Li,ZHANG ShaoHua,JING YuHang,DUAN JianZhao,HE Li,YIN Fei,FENG Wei. Wheat Powdery Mildew Monitoring Based on Information Fusion of Multi-Spectral and Thermal Infrared Images Acquired with an Unmanned Aerial Vehicle [J]. Scientia Agricultura Sinica, 2022, 55(5): 890-906. |
[2] | WU Jun,GUO DaQian,LI Guo,GUO Xi,ZHONG Liang,ZHU Qing,GUO JiaXin,YE YingCong. Prediction of Soil Organic Carbon Content in Jiangxi Province by Vis-NIR Spectroscopy Based on the CARS-BPNN Model [J]. Scientia Agricultura Sinica, 2022, 55(19): 3738-3750. |
[3] | GUO Can,YUE XiaoFeng,BAI YiZhen,ZHANG LiangXiao,ZHANG Qi,LI PeiWu. Research on the Application of a Balanced Sampling-Random Forest Early Warning Model for Aflatoxin Risk in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(17): 3426-3436. |
[4] | SHEN Zhe,ZHANG RenLian,LONG HuaiYu,XU AiGuo. Research on Spatial Distribution of Soil Texture in Southern Ningxia Based on Machine Learning [J]. Scientia Agricultura Sinica, 2022, 55(15): 2961-2972. |
[5] | ZHOU Meng,HAN XiaoXu,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Remote Sensing Estimation of Cotton Biomass Based on Parametric and Nonparametric Methods by Using Hyperspectral Reflectance [J]. Scientia Agricultura Sinica, 2021, 54(20): 4299-4311. |
[6] | FEI ShuaiPeng,YU XiaoLong,LAN Ming,LI Lei,XIA XianChun,HE ZhongHu,XIAO YongGui. Research on Winter Wheat Yield Estimation Based on Hyperspectral Remote Sensing and Ensemble Learning Method [J]. Scientia Agricultura Sinica, 2021, 54(16): 3417-3427. |
[7] | ZHOU Ke,LIU Le,ZHANG YanNa,MIAO Ru,YANG Yang. Area Extraction and Growth Monitoring of Winter Wheat in Henan Province Supported by Google Earth Engine [J]. Scientia Agricultura Sinica, 2021, 54(11): 2302-2318. |
[8] | ZHANG JiFeng,WANG ZhenHua,ZHANG JinZhu,DOU YunQing,HOU YuSheng. The Influences of Different Nitrogen and Salt Levels Interactions on Fluorescence Characteristics, Yield and Quality of Processed Tomato Under Drip Irrigation [J]. Scientia Agricultura Sinica, 2020, 53(5): 990-1003. |
[9] | ZHANG ZhenHua,DING JianLi,WANG JingZhe,GE XiangYu,WANG JinJie,TIAN MeiLing,ZHAO QiDong. Digital Soil Properties Mapping by Ensembling Soil-Environment Relationship and Machine Learning in Arid Regions [J]. Scientia Agricultura Sinica, 2020, 53(3): 563-573. |
[10] | XIA ShuFeng,WANG Fan,WANG LongJun,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,DAI TingBo,JIANG Dong. Study on the Adaptability of Wheat Reaching the Protein Content Standard of Soft Wheat in Jiangsu Province [J]. Scientia Agricultura Sinica, 2020, 53(24): 4992-5004. |
[11] | XI Xue,ZHAO GengXing,GAO Peng,CUI Kun,LI Tao. Inversion of Soil Salinity in Coastal Winter Wheat Growing Area Based on Sentinel Satellite and Unmanned Aerial Vehicle Multi-Spectrum— A Case Study in Kenli District of the Yellow River Delta [J]. Scientia Agricultura Sinica, 2020, 53(24): 5005-5016. |
[12] | SHEN Zhe,ZHANG RenLian,LONG HuaiYu,WANG Zhuan,ZHU GuoLong,SHI QianXiong,YU KeFan,XU AiGuo. Research on Spatial Distribution of Soil Particle Size Distribution in Loess Region Based on Three Spatial Prediction Methods—Taking Haiyuan County in Ningxia as an Example [J]. Scientia Agricultura Sinica, 2020, 53(18): 3716-3728. |
[13] | QIU MengLong,CAO XiaoShu,ZHOU Jian,FENG XiaoLong,GAO XingChuan. Spatial Differentiation and Impact Factors of Grain Yield Per Hectare in Weibei Plateau Based on GWR Model: A Case Study of Binxian County, Shannxi [J]. Scientia Agricultura Sinica, 2019, 52(2): 273-284. |
[14] | LIU HuiFang,HE Zheng,JIA Biao,LIU Zhi,LI ZhenZhou,FU JiangPeng,MU RuiRui,KANG JianHong. Photosynthetic Response Characteristics of Maize Under Drip Irrigation Based on Machine Learning [J]. Scientia Agricultura Sinica, 2019, 52(17): 2939-2950. |
[15] | ZHANG ChunLan, YANG GuiJun, LI HeLi, TANG FuQuan, LIU Chang, ZHANG LiYan. Remote Sensing Inversion of Leaf Area Index of Winter Wheat Based on Random Forest Algorithm [J]. Scientia Agricultura Sinica, 2018, 51(5): 855-867. |
|