Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (24): 4615-4624.doi: 10.3864/j.issn.0578-1752.2018.24.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

New Grouped Harvesting-Based Population Structures of Cotton

DONG HeZhong1(),ZHANG YanJun1,ZHANG DongMei1,DAI JianLong1,ZHANG WangFeng2()   

  1. 1 Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100
    2 Agricultural College of Shihezi University, Shihezi 832003, Xijiang
  • Received:2018-07-23 Accepted:2018-09-04 Online:2018-12-16 Published:2018-12-16

Abstract:

The construction of rational population structures is an important cultivation basis to achieve high yield and quality of cotton. ‘Small-sized plant under high plant density’, ‘moderate-sized plant under moderate plant density’ and ‘large-sized plant under low plant density’ are three types of traditional cotton population structures in China, which have been widely used in China's major cotton planting regions of Northwest inland, Yellow River and Yangtze River valley, respectively, and have played key roles in achieving stable and high yields of cotton in the nation. However, in the new era of cotton industry development, there occur such disadvantages that the traditional population structures are not suitable for grouped harvesting as well as both fiber quality and production efficiency improvements. The exploration of new population structures has become an important approach in the new period of cotton cultivation. In this paper, we concisely reviewed the main features and the disadvantages of traditional population structures. Based on the needs of light and cost-saving cultivation as well as quality improving and efficiency increasing in the new era, it was suggested that constructing 3 new types of population structures adapted to grouped harvesting, ‘reduced plant density with healthy plants’, ‘increased plant density with robust plants’, and ‘direct seeding and close planting with short plants’ to substitute the three traditional structures. On this basis, the key indicators and regulation technologies of the 3 new population structures were mainly discussed, and the future development of the new population structures both in research and practice were also prospected.

Key words: cotton, population structure, plant type, grouped harvesting, light and simplified cotton cultivation

Table 1

Types and main indicators of reasonable population structure based on grouped harvesting"

指标
Indicator
密植健株型
Vigorous plant under close planting
増密壮株型
Robust plant under increased plant density
直密矮壮型
Short and strong plant under direct seeding and high plant density
皮棉产量水平 Lint yield 2250-2400 kg·hm-2 1650-1800 kg·hm-2 ≈1500 kg·hm-2
适宜最大LAI Max LAI 4.0-4.5 3.6-4.0 3.5-4.0
LAI动态
LAI dynamics
适宜最大LAI在盛铃期
Max LAI occurs at peak boll-setting
适宜最大LAI在盛铃期
Max LAI occurs at peak boll-setting
适宜最大LAI在盛铃期
Max LAI occurs at peak boll-setting
株高 Plant height 75-85 cm 90-100 cm 80-90 cm
节枝比
Fruiting nodes/fruiting branches
2.0-2.5 2.8-3.3 2.5-3.0
棉柴比 Seedcotton/stalk 0.75-0.85 0.8-0.9 ≈0.85
非叶绿色器官
Non-leaf green organ
光合贡献8%以上
Photosynthetic contribution >8%
光合贡献5%以上
Photosynthetic contribution >5%
光合贡献6%以上
Photosynthetic contribution >6%
集中成铃
Centralized boll-setting
霜前花率85%—90%
Percentage of the pre-frost seedcotton is 85%-90%
伏桃与早秋桃占比75%—80%
Percentage of bolls in summer early autumn is 75%-80%
伏桃与早秋桃占比75%以上
Percentage of bolls in summer early autumn is over 75%
脱叶率 Defoliation rate >92% >95% >95%
适宜区域
Suitable area
西北内陆
Northwest inland
黄河流域
Yellow River valley
长江流域
Yangtze River valley

Table 2

Key practices for establishment of reasonable population structures"

关键措施
Key practices
密植健株型(西北内陆)
Vigorous plant under close planting (Northwest inland)
増密壮株型(黄河流域)
Robust plant under increased plant density (Yellow River valley)
直密矮壮型(长江流域)
Short and strong plant under direct seeding and high plant density (Yangtze River valley)
播种和出苗
Seeding and stand establishment
宽膜覆盖增温、适时滴水调墒,实现一播全苗,保障稳健基础群体
Wide film mulching to increase temperature and timely drip irrigation to regulate soil moisture to realize full stand establishment for an adequate basic population
单粒精量播种,缩小穴距、适增穴数,一播全苗,保障稳健基础群体
Reduce hole to hole spacing and increase the number of holes during precision monoseeding, to realize full stand establishment to ensure a moderate basic population
麦(大蒜、油菜)茬后抢时精量播种早熟棉,实现一播全苗,保障稳健基础群体
Timely direct seeding after wheat (garlic or rape) to realize full stand establishment and ensure a relatively large basic population
密度和株高
Plant density and plant height
适当降密,适增株高:南疆15.0×104—18.0×104 株/hm2,株高75—85 cm;北疆16.5×104—21.0×104株/hm2,株高70—80 cm
Reduce plant density to 15-18 plants/m2 with plant height of 75-85 cm in South Xinjiang, and 16.5 to 21 plants/m2 in North Xinjiang with plant height of 70-80 cm
缩株增密至7.5×104—9×104株/hm2,株高普降至90—110 cm;宽窄行改为等行中膜覆盖;适时适度封行
Reduce plant spacing and increase plant density to 7.5-9 plants/m2. Decrease plant height to 90-110 cm; Replace wide and narrow row and narrow film coverage with equal row spacing (76 cm) and medium film coverage to ensure timely and appropriate row closure
适当密植×104(9×104—12×104株/hm2),植株矮化(90—100 cm),适时适度封行,以密争早
Moderately dense planting (9-12 plants/m2) and reduction in plant height (90-100 cm) to ensure timely and appropriate row closure and earliness of cotton
田间管理
Field management
部分根区灌溉,水肥协同管理;及时脱叶催熟,脱叶彻底。
Partial root zone irrigation, fertigation management, timely defoliation and ripening, and complete defoliation
盛蕾期适时破膜促根下扎;速效肥与控释肥结合,种肥同播,实现一次性施肥
Remove plastic film at peak squaring to promote root development. The combination of chemical fertilizer and controlled-release fertilizer is used to achieve simultaneous seeding and fertilization
速效肥与控释肥结合,一次基施,实现一次性施肥
The combination of chemical fertilizer and controlled-release fertilizer can achieve one-time basal fertilization
[1] 凌启鸿, 张洪程, 丁艳锋, 张益彬 . 水稻高产技术的新发展——精确定量栽培. 中国稻米, 2005,11(1):3-7.
LING Q H, ZHANG H C, DING Y F, ZHANG Y B . New development of rice high-yield technology—precise quantitative cultivation. China Rice, 2005,11(1):3-7. (in Chinese)
[2] 毛树春 . 中国棉花栽培学. 上海: 上海科学技术出版社, 2013: 401-435.
MAO S C. China Cotton Plant Cultivation. Shanghai: Shanghai Science and Technology Press, 2013: 401-435. (in Chinese)
[3] 董合忠, 毛树春, 张旺锋, 陈德华 . 棉花优化成铃栽培理论及其新发展. 中国农业科学, 2014,47(3):441-451.
DONG H Z, MAO S C, ZHANG W F, CHEN D H . On boll-setting optimization theory for cotton cultivation and its new development. Scientia Agricultura Sinica, 2014,47(3):441-451. (in Chinese)
[4] 董合忠, 杨国正, 田立文, 郑曙峰 . 棉花轻简化栽培.北京: 科学出版社, 2016.
DONG H Z, YANG G Z, TIAN L W, ZHENG S F. Light and Simplified Cultivation of Cotton. Beijing: Science Press, 2016. ( in Chinese)
[5] 董合忠, 李维江, 张旺锋, 李雪源 .轻简化植棉. 北京: 中国农业出版社, 2018.
DONG H Z, LI W J, ZHANG W F, LI X Y. Light and Simplified Cotton Planting. Beijing: China Agricultural Press, 2018. ( in Chinese)
[6] 谈春松 . 棉花优质高产栽培. 北京: 中国农业出版社, 1992: 43-79.
TAN C S. High Quality and High Yield Cultivation of Cotton. Beijing: China Agriculture Press, 1992: 43-79. (in Chinese)
[7] 李少昆, 张旺锋, 马富裕, 王克如, 慕自新 . 北疆超高产棉花(皮棉2000 kg hm -2)生理特性研究 . 作物学报, 2000,26(4):508-512.
LI S K, ZHANG W F, MA F Y, WANG K R, MU Z X . A study on physiological characteristics of supper high-yield (lint 2000 kg/hm 2) cotton in north Xinjiang . Acta Agronomica Sinica, 2000,26(4):508-512. (in Chinese)
[8] YAO H S, ZHANG Y L, YI X P, HU Y Y, LUO H H, GOU L, ZHANG W F . Plant density alters nitrogen partitioning among photosynthetic components, leaf photosynthetic capacity and photosynthetic nitrogen use efficiency in field-grown cotton. Field Crops Research, 2015,184:39-49.
doi: 10.1016/j.fcr.2015.09.005
[9] YAO H S , ZHANG, YI X P, ZHANG X J, ZHANG W F. Cotton responds to different plant population densities by adjusting specific leaf area to optimize canopy photosynthetic use efficiency of light and nitrogen. Field Crops Research, 2016,188:10-16.
doi: 10.1016/j.fcr.2016.01.012
[10] YAO H S, ZHANG Y L, YI X P, ZUO W Q, LEI C Y, SUI L L, ZHANG W F . Characters in light-response curves of canopy photosynthetic use efficiency of light and N in responses to plant density in field-grown cotton. Field Crops Research, 2017,203:192-200.
[11] 李健伟, 肖绍伟, 夏冬, 崔建平, 张巨松 . 机采种植模式对不同株型棉花生长及产量的影响. 新疆农业大学学报, 2017,40(6):391-396.
LI J W, XIAO S W, XIA D, CUI J P, ZHANG J S . The effects of machine harvesting planting pattern on the growth and yield of cotton with different plant patterns. Journal of Xinjiang Agricultural University, 2017,40(6):391-396. (in Chinese)
[12] 田景山, 王文敏, 王聪, 牛玉萍, 罗宏海, 勾玲, 张亚黎, 张旺锋 . 机械采收方式对新疆棉纤维品质的影响. 纺织学报, 2016,37(7):13-17.
TIAN J S, WANG W M, WANG C, NIU Y P, LUO H H, GOU L, ZHANG Y L, ZHANG W F . Effect of cotton mechanical picking on fiber qualities in Xinjiang. Journal of Textile Research, 2016,37(7):13-17. (in Chinese)
[13] 梁亚军, 王俊铎, 郑巨云, 卞天阳, 龚照龙, 艾先涛, 李雪源 . 不同机采棉配置生长发育动态及产量的比较分析. 新疆农业科技, 2017,23:13-15.
LIANG Y J, WANG J D, ZHENG J Y, BIAN T Y, GONG Z L, AI X T, LI X Y . Dynamics of cotton growth and development and yield under different patterns of machine harvesting. Xinjiang Agricultural Sciences and Technology, 2017,23:13-15. (in Chinese)
[14] 白岩, 毛树春, 田立文, 李莉, 董合忠 . 新疆棉花高产简化栽培技术评述与展望. 中国农业科学, 2017,50(1):38-50.
BAI Y, MAO S C, TIAN L W, LI L, DONG H Z . Advances and prospects of high-yielding and simplified cotton cultivation technology in Xinjiang cotton-growing area. Scientia Agricultura Sinica, 2017,50(1):38-50. (in Chinese)
[15] 董建军, 李霞, 代建龙, 董合忠 . 适于机械收获的棉花“晚密简”栽培技术. 中国棉花, 2016,43(7):36-38.
DONG J J, LI X, DAI J L, DONG H Z . A cotton cultivation system of ‘late planting, high plant density and simplified management’ suitable for mechanical harvesting. China Cotton, 2016,43(7):36-38. (in Chinese)
[16] 董建军, 代建龙, 李霞, 李维江, 董合忠 . 黄河流域棉花轻简化栽培技术评述. 中国农业科学, 2017,50(22):4290-4298.
DONG J J, DAI J L, LI X, LI W J, DONG H Z . Review of light and simplified cotton cultivation technology in the Yellow River valley. Scientia Agricultura Sinica, 2017,50(22):4290-4298. (in Chinese)
[17] 李维江, 唐薇, 李振怀, 张冬梅, 董合忠 . 抗虫杂交棉的高产理论与栽培技术. 山东农业科学, 2005(3):21-24.
LI W J, TANG W, LI Z H, ZHANG D M, DONG H Z . High-yielding mechanism and cultivation techniques in Bt hybrid cotton.Shandong Agricultural Sciences, 2005(3):21-24. (in Chinese)
[18] 马宗斌, 李伶俐, 房卫平, 谢德意, 张东林 . 稀植留营养枝对杂交棉豫杂35通风透光特性及产量品质的影响. 浙江农业学报, 2006,18(2):94-98.
MA Z B, LI L L, FANG W P, XIE D Y, ZHANG D L . Effects of low density and retaining monopodiums on ventilation and penetrating light, and yield and quality of hybrid cotton Yuza 35. Acta Agriculturae Zhejiangensis, 2006,18(2):94-98. (in Chinese)
[19] 江曲, 陈金湘, 刘海荷, 王峰 . 棉花稀植大棵群体不同果枝产量与品质分布特征的研究. 作物研究, 2013,2(1):15-20.
JIANG Q, CHEN J X, LIU H H, WANG F . Studies on distribution characteristics of yield and fiber quality of different fruiting branch under low density planting in cotton. Crop Research, 2013,2(1):15-20. (in Chinese)
[20] 杨芳荃, 李育强, 张志刚 . 棉花杂种优势利用研究的理论与实践. 湖南农业科学, 2004(4):6-8.
YANG F Q, LI Y Q, ZHANG Z G . Research theory and practice of cotton hybrid vigour utilization.Hunan Agricultural Sciences, 2004(4):6-8. (in Chinese)
[21] 董合忠, 杨国正, 李亚兵, 田立文, 代建龙, 孔祥强 . 棉花轻简化栽培关键技术及其生理生态学机制. 作物学报, 2017,43(5):631-639.
DONG H Z, YANG G Z, LI Y B, TIAN L W, DAI J L, KONG X Q . Key technologies for light and simplified cultivation of cotton and their eco-physiological mechanisms. Acta Agronomica Sinica, 2017,43(5):631-639. (in Chinese)
[22] 李建峰, 王聪, 梁福斌, 陈厚川, 田景山, 康鹏, 张旺锋 . 新疆机采模式下棉花株行距配置对冠层结构指标及产量的影响. 棉花学报, 2017,29(2):157-165.
LI J F, WANG C, LIANG F B, CHEN H C, TIAN J S, KANG P, ZHANG W F . Row spacing and planting density affect canopy structure and yield in machine-picked cotton in Xinjiang. Cotton Science, 2017,29(2):157-165. (in Chinese)
[23] 陈冠文, 杨秀理, 张国建, 符林, 张鸿静 . 论新疆棉花高产栽培理论的战略转移——机采棉田等行距密植的优越性和主要栽培技术. 新疆农垦科技, 2014(4):11-13.
CHEN G W, YANG X L, ZHANG G J, FU L, ZHANG H J . The strategic transfer of high-yield cultivation theory of cotton in Xinjiang——The superiority of high planting density and row spacing of machine-harvested cotton and the main cultivation techniques.Xinjiang Farm Research of Science and Technology, 2014(4):11-13. (in Chinese)
[24] DAI J L, LI W J, TANG W, ZHANG D M, LI Z H, LU H Q, ENEJI A E, DONG H Z . Manipulation of dry matter accumulation and partitioning with plant density in relation to yield stability of cotton under intensive management. Field Crop Research, 2015,180:207-215.
doi: 10.1016/j.fcr.2015.06.008
[25] DAI J L, LI W J, ZHANG D M, TANG W, LI Z H, LU H Q, KONG X Q, LUO Z, XU S Z, DONG H Z . Competitive yield and economic benefits of cotton achieved through a combination of extensive pruning and a reduced nitrogen rate at high plant density. Field Crop Research, 2017,209:65-72.
[26] 管锋, 李智谋, 郭文高, 管恩相, 姚仁祥, 方杰, 刘立新, 李建彬 . 适于机械收获的棉花“直密早”栽培技术.中国种业, 2017(8):19-21.
GUAN F, LI Z M, GUO W G, GUAN E X, YAO R X, FANG J, LIU L X, LI J B . The ‘straight-dense-early’ cultivation technique of cotton suitable for mechanical harvesting. China Seed Industry, 2017(8):19-21. (in Chinese)
[27] 辛婉婉, 张志勇, 卜晶晶, 王清连 . 麦后直播和裸苗移栽早熟棉生长动态差异性研究. 中国棉花, 2014,41(1):20-23.
XIN W W, ZHANG Z Y, BU J J, WANG Q L . Study on growth trend differences of early-season cotton sowed directly and transplanted without root media after wheat harvest. China Cotton, 2014,41(1):20-23. (in Chinese)
[28] 李伶俐, 杜远仿, 张东林, 马宗斌, 谢德意 . 不同密度与缩节安用量对麦后短季棉光合特性及产量、品质的影响.河南农业科学, 2008(7):51-53.
LI L L, DU Y F, ZHANG D L, MA Z B, XIE D Y . Effects of different planting density and DPC on short-season cotton after wheat.Journal of Henan Agricultural Sciences, 2008(7):51-53. (in Chinese)
[29] 陈源, 衡丽, 胡大鹏, 张雷, 花明明, 陈德华, 张祥 . 麦茬直播棉适于机采的密度、化控技术. 江苏农业学报, 2015,31(6):1304-1311.
CHEN Y, HENG L, HU D P, ZHANG L, HUA M M, CHEN D H, ZHANG X . Density and chemical control technique for direct-seeded cotton after wheat harvested by mechanical plucking. Jiangsu Journal of Agricultural Sciences, 2015,31(6):1304-1311. (in Chinese)
[30] 徐守振, 左文庆, 陈民志, 随龙龙, 董恒义, 酒兴丽, 张旺锋 . 北疆植棉区滴灌量对化学打顶棉花植株农艺性状及产量的影响. 棉花学报, 2017,29(4):345-355.
XU S Z, ZUO W Q, CHEN M Z, SUI L L, DONG H Y, JIU X L, ZHANG W F . Effect of drip irrigation amount on the agronomic traits and yield of cotton grown with a chemical topping in northern Xinjiang, China. Cotton Science, 2017,29(4):345-355. (in Chinese)
[31] LUO Z, LIU H, LI WP, ZHAO Q, DAI J L, TIAN L W, DONG H Z . Effects of reduced nitrogen rate on cotton yield and nitrogen use efficiency as mediated by application mode or plant density. Field Crops Research, 2018,218:150-157.
doi: 10.1016/j.fcr.2018.01.003
[32] ZHANG D M, LUO Z, LIU S H, LI W J, TANG W, DONG H Z . Effects of deficit irrigation and plant density on the growth, yield and fiber quality of irrigated cotton. Field Crops Research, 2016,197:1-9.
doi: 10.1016/j.fcr.2016.06.003
[33] ZHAN D X, ZHANG C, YANG Y, LUO H H, ZHANG Y L, ZHANG W F . Water deficit alters cotton canopy structure and increases photosynthesis in the mid-canopy layer. Agronomy Journal, 2017,107(5):1947-1957.
doi: 10.2134/agronj14.0426
[34] 杨成勋, 张旺锋, 徐守振, 随龙龙, 梁福斌, 董恒义 . 喷施化学打顶剂对棉花冠层结构及群体光合生产的影响. 中国农业科学, 2016,49(9):1672-1684.
YANG C X, ZHANG W F, XU S Z, SUI L L, LIANG F B, DONG H Y . Effects of spraying chemical topping agents on canopy structure and canopy photosynthetic production in cotton. Scientia Agricultura Sinica, 2016,49(9):1672-1684. (in Chinese)
[35] 卢合全, 李振怀, 董合忠, 李维江, 唐薇, 张冬梅 . 黄河流域棉区高密度垄作对棉花的增产效应. 中国农业科学, 2013,46(19):4018-4026.
LU H Q, LI Z H, DONG H Z, LI W J, TANG W, ZHANG D M . Effects of raised-bed planting and high plant density on yield- increasing of cotton in the Yellow River basin. Scientia Agricultura Sinica, 2013,46(19):4018-4026. (in Chinese)
[36] 杨长琴, 张国伟, 刘瑞显, 倪万潮 . 不同播期与打顶时间对麦(油)后直播短季棉产量及纤维品质的影响. 棉花学报, 2017,29(6):525-532.
YANG C Q, ZHANG G W, LIU R X, NI W C . Effects of seeding date and topping date on yield and fiber quality of short-season cotton field-seeded after barley(rape)/wheat harvest. Cotton Science, 2017,29(6):525-532. (in Chinese)
[37] TAN Y E, YANG G Z, MUNSIF F, ALI S, HAFEEZ A . Planting density and sowing date strongly influence growth and lint yield of cotton crops. Field Crops Research, 2017,209:129-135.
doi: 10.1016/j.fcr.2017.04.019
[38] KHAN A., WANG L S, ALI S, TUNG S A, HAFEEZ ABDUL, YANG G Z . Optimal planting density and sowing date can improve cotton yield by maintaining reproductive organ biomass and enhancing potassium uptake. Field Crops Research, 2017,214:164-174.
doi: 10.1016/j.fcr.2017.09.016
[39] 李亚兵, 韩迎春, 冯璐, 王国平, 王占彪, 毛树春 . 我国棉花轻简化栽培关键技术研究进展. 棉花学报, 2017,29(增刊):80-88.
LI Y B, HAN Y C, FENG L, WANG G P, WANG Z B, MAO S C . Advances of light and simplified cultivation technologies in China. Cotton Science, 2017,29(Suppl.):80-88. (in Chinese)
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[3] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[4] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[5] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[6] WANG Ning,FENG KeYun,NAN HongYu,ZHANG TongHui. Effects of Combined Application of Organic Fertilizer and Chemical Fertilizer on Root Characteristics and Yield of Cotton Under Different Water Conditions [J]. Scientia Agricultura Sinica, 2022, 55(11): 2187-2201.
[7] QIN HongDe, FENG ChangHui, ZHANG YouChang, BIE Shu, ZHANG JiaoHai, XIA SongBo, WANG XiaoGang, WANG QiongShan, LAN JiaYang, CHEN QuanQiu, JIAO ChunHai. F1 Performance Prediction of Upland Cotton Based on Partial NCII Design [J]. Scientia Agricultura Sinica, 2021, 54(8): 1590-1598.
[8] MENG XinHao,DENG HongTao,LI Li,CUI ShunLi,Charles Y. CHEN,HOU MingYu,YANG XinLei,LIU LiFeng. QTL Mapping for Lateral Branch Angle Related Traits of Cultivated Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2021, 54(8): 1599-1612.
[9] TongYu HOU,TingLi HAO,HaiJiang WANG,Ze ZHANG,Xin LÜ. Advances in Cotton Growth and Development Modelling and Its Applications in China [J]. Scientia Agricultura Sinica, 2021, 54(6): 1112-1126.
[10] LOU ShanWei,DONG HeZhong,TIAN XiaoLi,TIAN LiWen. The " Short, Dense and Early" Cultivation of Cotton in Xinjiang: History, Current Situation and Prospect [J]. Scientia Agricultura Sinica, 2021, 54(4): 720-732.
[11] LI Qing,YU HaiPeng,ZHANG ZiHao,SUN ZhengWen,ZHANG Yan,ZHANG DongMei,WANG XingFen,MA ZhiYing,YAN YuanYuan. Optimization of Cotton Mesophyll Protoplast Transient Expression System [J]. Scientia Agricultura Sinica, 2021, 54(21): 4514-4524.
[12] NIE JunJun,DAI JianLong,DU MingWei,ZHANG YanJun,TIAN XiaoLi,LI ZhaoHu,DONG HeZhong. New Development of Modern Cotton Farming Theory and Technology in China - Concentrated Maturation Cultivation of Cotton [J]. Scientia Agricultura Sinica, 2021, 54(20): 4286-4298.
[13] ZHOU Meng,HAN XiaoXu,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Remote Sensing Estimation of Cotton Biomass Based on Parametric and Nonparametric Methods by Using Hyperspectral Reflectance [J]. Scientia Agricultura Sinica, 2021, 54(20): 4299-4311.
[14] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[15] ZHOU JingLong,FENG ZiLi,WEI Feng,ZHAO LiHong,ZHANG YaLin,ZHOU Yi,FENG HongJie,ZHU HeQin. Biocontrol Effect and Mechanism of Cotton Endophytic Bacterium YUPP-10 and Its Secretory Protein CGTase Against Fusarium Wilt in Cotton [J]. Scientia Agricultura Sinica, 2021, 54(17): 3691-3701.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!