Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (21): 4177-4187.doi: 10.3864/j.issn.0578-1752.2018.21.016

;

• SPECIAL FOCUS: SWINE FEVER AND AFRICAN SWINE FEVER • Previous Articles     Next Articles

African Swine Fever: A Major Threat to the Chinese Swine Industry

YuZi LUO(),Yuan SUN,Tao WANG,HuaJi QIU()   

  1. Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069
  • Received:2018-08-28 Accepted:2018-09-17 Online:2018-11-01 Published:2018-11-01
  • Contact: YuZi LUO,HuaJi QIU E-mail:luoyuzi@caas.cn;qiuhuaji@caas.cn

Abstract:

African swine fever (ASF) is a devastating disease of domestic and wild pigs caused by African swine fever virus (ASFV), and causes signi?cant economic losses to the pig industry in affected countries. Acute disease is characterized by high fever, hemorrhages in the skin and internal organs, and a high mortality rate up to 100%. The continuous spread of the disease through Africa, Europe and Russian Federation keeps the neighboring countries on heightened alert. In August 2018, ASF emerged in China for the first time and subsequently rapidly spread across many regions of China, posing a major threat to the Chinese pig industry. Considering unavailability of ASF vaccines, rapid and early diagnostic assays are urgently needed for on-site field testing. Developing an effective ASF vaccine continues to be challenging due to incomplete understanding of the virus. Recent attempts on attenuated live vaccines and gene-deleted vaccines have been reported with promising efficacy, which have been demonstrated to provide effective homologous protection and partial heterologous protection. This review summarizes the epidemiology, diagnostics, vaccines and control strategies and challenges of ASF.

Key words: African swine fever, China, epidemiology, diagnostics, vaccine, control strategy

Fig. 1

ASFV virion structure"

Fig. 2

Genomic organization of ASFV"

Fig. 3

The transmission cycles of ASFV"

Fig. 4

Genotypes and geographical distribution of ASFV (adapted from INIA-CISA, 2016)"

[1] COSTARD S, MUR L, LUBROTH J, SANCHEZ-VIZCAINO J M, PFEIFFER D U . Epidemiology of African swine fever virus. Virus Research, 2013,173(1):191-197.
doi: 10.1016/j.virusres.2012.10.030 pmid: 23123296
[2] ROWLANDS R J, MICHAUD V, HEATH L, HUTCHINGS G, OURA C, VOSLOO W, DWARKA R, ONASHVILI T, ALBINA E, DIXON L K . African swine fever virus isolate, Georgia, 2007. Emerging Infectious Diseases, 2008,14(12):1870-1874.
doi: 10.3201/eid1412.080591 pmid: 19046509
[3] GOGIN A, GERASIMOV V, MALOGOLOVKIN A, KOLBASOV D . African swine fever in the North Caucasus region and the Russian Federation in years 2007-2012. Virus Research, 2013,173:198-203.
doi: 10.1016/j.virusres.2012.12.007 pmid: 23266725
[4] OIE. 2018. World Animal Health Information Database (WAHID). .
[5] SáNCHEZ-VIZCAíNO J M, MUR L, BASTOS A D, PENRITH M L . New insights into the role of ticks in African swine fever epidemiology. Revue Scientifique et Technique, 2015,34(2):503-511.
doi: 10.20506/rst.34.2.2375 pmid: 26601452
[6] ZHOU X, LI N, LUO Y, LIU Y, MIAO F, CHEN T, ZHANG S, CAO P, LI X, TIAN K, QIU H J, HU R . Emergence of African swine fever in China, 2018. Transboundary and Emerging Diseases, 2018 Aug 13. doi: 10.1111/tbed.12989.[Epub ahead of print]
[7] DIXON L K, CHAPMAN D A, NETHERTON C L, UPTON C . African swine fever virus replication and genomics. Virus Research, 2013,173:3-14.
doi: 10.1016/j.virusres.2012.10.020 pmid: 23142553
[8] ALONSO C, BORCA M, DIXON L, REVILLA Y, RODRIGUEZ F, ESCRIBANO J M, ICTV REPORT CONSORTIUM . ICTV virus taxonomy profile:Asfarviridae. Journal of General Virology, 2018,99:613-614.
[9] GALINDO I, ALONSO C . African swine fever virus: A review. Viruses, 2017,9:103.
doi: 10.3390/v9050103 pmid: 28489063
[10] QUEMBO C J, JORI F, VOSLOO W, HEATH L . Genetic characterization of African swine fever virus isolates from soft ticks at the wildlife/domestic interface in Mozambique and identification of a novel genotype. Transboundary and Emerging Diseases, 2018,65:420-431.
doi: 10.1111/tbed.12700 pmid: 28921895
[11] GALINDO I, CUESTA-GEIJO M A, HLAVOVA K, MUñOZ- MORENO R, BARRADO-GIL L, DOMINGUEZ J, ALONSO C . African swine fever virus infects macrophages, the natural host cells, via clathrin- and cholesterol-dependent endocytosis. Virus Research, 2015,200:45-55.
doi: 10.1016/j.virusres.2015.01.022 pmid: 25662020
[12] HERNAEZ B, ALONSO C . Dynamin- and clathrin-dependent endocytosis in African swine fever virus entry. Journal of Virology, 2010,84(4):2100-2109.
doi: 10.1128/JVI.01557-09
[13] DENYER M S, WILKINSON P J . African swine fever. Encyclopedia of Immunology, 1998,76(2):54-56.
[14] MONTGOMERY R E . On a farm of swine fever occurring in British East Africa (Kenya Colony). Journal of Comparative Pathology, 1921,34:159-191.
doi: 10.1016/S0368-1742(21)80031-4
[15] PENRITH M L . History of ‘swine fever’ in Southern Africa. Journal of the South African Veterinary Association, 2013,84(1):e1.
[16] PENRITH M L, VOSLOO W . Review of African swine fever: transmission, spread and control. Journal of the South African Veterinary Association, 2009,80(2):58-62.
doi: 10.4102/jsava.v80i2.172 pmid: 19831264
[17] ANDERSON E C, HUTCHINGS G H, MUKARATI N, WILKINSON P J . African swine fever virus infection of the bushpig (Potamochoerus porcus) and its significance in the epidemiology of the disease. Veterinary Microbiology, 1998,62(1):1-15.
doi: 10.1016/S0378-1135(98)00187-4 pmid: 9659687
[18] WILKINSON P J . The persistence of African swine fever in Africa and the Mediterranean. Preventive Veterinary Medicine, 1984,2(1/4):71-82.
doi: 10.1016/0167-5877(84)90050-3
[19] HEUSCHELE W P, COGGINS L . Isolation of African swine fever virus from a giant forest hog. Bulletin of Epizootic Diseases of Africa, 1965, 13(3):255-256.
pmid: 4283999
[20] ARIAS M, SáNCHEZ-VIZCAíNO J M . African swine fever. Pediatric Transplantation, 2002,10(7):838-843.
[21] FAREZ S, MORLEY R S . Potential animal health hazards of pork and pork products. Revue Scientifique et Technique, 1997,16(1):65-78.
doi: 10.1016/S0167-5877(96)01088-4 pmid: 9329109
[22] OWOLODUN O A, BASTOS A D, ANTIABONG J F, OGEDENGBE M E, EKONG P S, YAKUBU B . Molecular characterisation of African swine fever viruses from Nigeria (2003-2006) recovers multiple virus variants and reaffirms CVR epidemiological utility. Virus Genes, 2010,41(3):361-368.
doi: 10.1007/s11262-009-0444-0 pmid: 20052526
[23] GALLARDO C, MWAENGO D M, MACHARIA J M, ARIAS M, TARACHA E A, SOLER A, OKOTH E, MARTíN E, KASITI J, BISHOP R P . Enhanced discrimination of African swine fever virus isolates through nucleotide sequencing of the p54, p72, and pB602L (CVR) genes. Virus Genes, 2009,38(1):85-95.
doi: 10.1007/s11262-008-0293-2 pmid: 19009341
[24] BASTOS A D, PENRITH M L, CRUCIÈRE C, EDRICH J L, HUTCHINGS G, ROGER F, COUACY-HYMANN E, R THOMSON G . Genotyping field strains of African swine fever virus by partial p72 gene characterisation. Archives of Virology, 2003,148(4):693-706.
doi: 10.1007/s00705-002-0946-8 pmid: 12664294
[25] BOSHOFF C I, BASTOS A D, GERBER L J, VOSLOO W . Genetic characterisation of African swine fever viruses from outbreaks in southern Africa (1973-1999). Veterinary Microbiology, 2007,121(1/2):45-55.
doi: 10.1016/j.vetmic.2006.11.007 pmid: 17174485
[26] LUBISI B A, BASTOS A D, DWARKA R M, VOSLOO W . Molecular epidemiology of African swine fever in East Africa. Archive of Virology, 2005,150(12):2439-2452.
doi: 10.1007/s00705-005-0602-1 pmid: 16052280
[27] BASTOS A D, PENRITH M L, MACOME F, PINTO F, THOMSON G R . Co-circulation of two genetically distinct viruses in an outbreak of African swine fever in Mozambique: no evidence for individual co-infection. Veterinary Microbiology, 2004,103(3/4):169-182.
doi: 10.1016/j.vetmic.2004.09.003 pmid: 15504588
[28] LUO Y, ATIM S A, SHAO L, AYEBAZIBWE C, SUN Y, LIU Y, JI S, MENG X Y, LI S, LI Y, MASEMBE C, STåHL K, WIDÉN F, LIU L, QIU H J . Development of an updated PCR assay for detection of African swine fever virus. Archives of Virology, 2017,162(1):191-199.
doi: 10.1007/s00705-016-3069-3 pmid: 27714502
[29] OURA C A, EDWARDS L, BATTEN C A . Virological diagnosis of African swine fever-comparative study of available tests. Virus Research, 2013,173:150-158.
doi: 10.1016/j.virusres.2012.10.022 pmid: 23131492
[30] GALLARDO C, NIETO R, SOLER A, PELAYO V, FERNáNDEZ- PINERO J, MARKOWSKA-DANIEL I, PRIDOTKAS G, NURMOJA I, GRANTA R, SIMÓN A, PÉREZ C, MARTíN E, FERNáNDEZ- PACHECO P, ARIAS M . Assessment of African swine fever diagnostic techniques as a response to the epidemic outbreaks in Eastern European Union countries: how to improve surveillance and control programs. Journal of Clinical Microbiology, 2015,53:2555-2565.
doi: 10.1128/JCM.00857-15 pmid: 4508403
[31] KING DP, REID S M, HUTCHINGS G H, GRIERSON S S, WILKINSON P J, DIXON L K, BASTOS A D, DREW T W . Development of a TaqMan PCR assay with internal amplification control for the detection of African swine fever virus. Journal of Virological Methods, 2003,107(1):53-61.
doi: 10.1016/S0166-0934(02)00189-1 pmid: 12445938
[32] MCKILLEN J, HJERTNER B, MILLAR A, MCNEILLY F, BELáK S, ADAIR B, ALLAN G . Molecular beacon real-time PCR detection of swine viruses. Journal of Virological Methods, 2007,140(1/2):155-165.
doi: 10.1016/j.jviromet.2006.11.018 pmid: 17196673
[33] LIU S, ZHAO Y, HU Q, LV C, ZHANG C, ZHAO R, HU F, LIN W, CUI S . A multiplex RT-PCR for rapid and simultaneous detection of porcine teschovirus, classical swine fever virus, and porcine reproductive and respiratory syndrome virus in clinical specimens. Journal of Virological Methods, 2011,172:88-92.
doi: 10.1016/j.jviromet.2010.12.023 pmid: 21192983
[34] GALLARDO C, ADEMUN A R, NIETO R, NANTIMA N, ARIAS M, MARTTN E, PELAYO V, BISHOP R P . Genotyping of African swine fever virus (ASFV) isolates associated with disease outbreaks in Uganda in 2007. African Journal of Biotechnology, 2013,10:3488-3497.
[35] HU L, LIN X Y, YANG Z X, YAO X P, LI G L, PENG S Z, WANG Y . A multiplex PCR for simultaneous detection of classical swine fever virus, African swine fever virus, highly pathogenic porcine reproductive and respiratory syndrome virus, porcine reproductive and respiratory syndrome virus and pseudorabies in swines. Poland Journal of Veterinary Science, 2015,18(4):715-723.
doi: 10.1515/pjvs-2015-0093 pmid: 26812812
[36] WILKOMSON D A . 'Third wave technologies' invader assays for nucleic acid detection. The Scientist, 1993,13(22):16.
[37] JAMES H E, EBERT K, MCGONIGLE R, REID S M, BOONHAM N, TOMLINSON J A, HUTCHINGS G H, DENYER M, OURA C A, DUKES J P, KING D P . Detection of African swine fever virus by loop-mediated isothermal amplification. Journal of Virological Methods, 2010,164(1-2):68-74.
doi: 10.1016/j.jviromet.2009.11.034 pmid: 202020202020202020202020
[38] GAO Y, MENG X Y, ZHANG H, LUO Y, SUN Y, LI Y, ABID M, QIU H J , 2018, Cross-priming amplification combined with immunochromatographic strip for rapid on-site detection of African swine fever virus. Sensors and Actuators B:Chemical, 2018,259:573-579.
doi: 10.1016/j.snb.2017.12.087
[39] BOTIJA CS . Diagnosis of African swine fever by immunofluorescence. Bulletin de Office International des Épizooties, 1970,72(11):819-839.
doi: 10.1007/BF02251387 pmid: 4934981
[40] BLOME S, GABRIEL C, BEER M . Modern adjuvants do not enhance the efficacy of an inactivated African swine fever virus vaccine preparation. Vaccine, 2014,32(31):3879-3882.
doi: 10.1016/j.vaccine.2014.05.051 pmid: 24877766
[41] TAKAMATSU H H, DENYER M S, LACASTA A, STIRLING C M, ARGILAGUET J M, NETHERTON C L, OURA C A, MARTINS C, RODRíGUEZ F . Cellular immunity in ASFV responses. Virus Research, 2013,173(1):110-121.
doi: 10.1016/j.virusres.2012.11.009 pmid: 23201582
[42] ESCRIBANO J M, GALINDO I, ALONSO C . Antibody-mediated neutralization of African swine fever virus: Myths and facts. Virus Research, 2013,173(1):101-109.
doi: 10.1016/j.virusres.2012.10.012 pmid: 23159730
[43] ARGILAGUET J M, PÉREZ-MARTíN E, NOFRARíAS M, GALLARDO C, ACCENSI F, LACASTA A, MORA M, BALLESTER M, GALINDO-CARDIEL I, LÓPEZ-SORIA S, ESCRIBANO J M, RECHE P A, RODRíGUEZ F, . DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies. PLoS ONE, 2012,7(9):e40942.
doi: 10.1371/journal.pone.0040942 pmid: 23049728
[44] LACASTA A, BALLESTER M, MONTEAGUDO P L, RODRíGUEZ J M, SALAS M L, ACCENSI F, PINA-PEDRERO S, BENSAID A, ARGILAGUET J, LÓPEZ-SORIA S, HUTET E, LE POTIER M F, RODRíGUEZ F . Expression library immunization can confer protection against lethal challenge with African swine fever virus. Journal of Virology, 2014,88(22):13322-13332.
doi: 10.1016/S1590-8658(00)80141-3 pmid: 4249112
[45] JANCOVICH JK, CHAPMAN D, HANSEN D T, ROBIDA M D, LOSKUTOV A, CRACIUNESCU F, BOROVKOV A, KIBLER K, GOATLEY L, KING K, NETHERTON C L, TAYLOR G, JACOBS B, SYKES K, DIXON L K . Immunization of pigs by DNA prime and recombinant vaccinia virus boost to identify and rank African swine fever virus immunogenic and protective proteins. Journal of Virology, 2018,92(8):e02219-17.
doi: 10.1128/JVI.02219-17 pmid: 29386289
[46] GÓMEZ-PUERTAS P, RODRíGUEZ F, OVIEDO J M, BRUN A, ALONSO C, ESCRIBANO J M . The African swine fever virus proteins p54 and p30 are involved in two distinct steps of virus attachment and both contribute to the antibody-mediated protective immune response. Virology, 1998,243(2):461-471.
doi: 10.1006/viro.1998.9068 pmid: 9568043
[47] NEILAN J G, ZSAK L, LU Z, BURRAGE T G, KUTISH G F, ROCK D L . Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection. Virology. 2004,319(2):337-342.
doi: 10.1016/j.virol.2003.11.011 pmid: 14980493
[48] BURMAKINA G, MALOGOLOVKIN A, TULMAN E R, ZSAK L, DELHON G, DIEL D G, SHOBOGOROV N M, MORGUNOV Y P, MORGUNOV S Y, KUTISH G F, KOLBASOV D, ROCK D L . African swine fever virus serotype-specific proteins are significant protective antigens for African swine fever. Journal of General Virology, 2016,97(7):1670-1675.
doi: 10.1099/jgv.0.000490 pmid: 27114233
[49] LOPERA-MADRID J, OSORIO J E, HE Y, XIANG Z, ADAMS L G, LAUGHLIN R C, MWANGI W, SUBRAMANYA S, NEILAN J, BRAKE D, BURRAGE T G, BROWN W C, CLAVIJO A, BOUNPHENG M A . Safety and immunogenicity of mammalian cell derived and Modified Vaccinia Ankara vectored African swine fever subunit antigens in swine. Veterinary Immunology and Immunopathology, 2017,185:20-33.
doi: 10.1016/j.vetimm.2017.01.004 pmid: 28241999
[50] LOKHANDWALA S, WAGHELA S D, BRAY J, MARTIN C L, SANGEWAR N, CHARENDOFF C, SHETTI R, ASHLEY C, CHEN C H, BERGHMAN L R, MWANGI D, DOMINOWSKI P J, FOSS D L, RAI S, VORA S, GABBERT L, BURRAGE T G, BRAKE D, NEILAN J, MWANGI W . Induction of robust immune responses in swine by using a cocktail of Adenovirus-vectored African swine fever virus antigens. Clinical and Vaccine Immunology, 2016,23(11):888-900.
doi: 10.1128/CVI.00395-16 pmid: 5098023
[51] LOKHANDWALA S, WAGHELA S D, BRAY J, SANGEWAR N, CHARENDOFF C, MARTIN C L, HASSAN W S, KOYNARSKI T, GABBERT L, BURRAGE T G, BRAKE D, NEILAN J, MWANGI W . Adenovirus-vectored novel African swine fever virus antigens elicit robust immune responses in swine. PLoS ONE, 2017,12(5):e0177007.
doi: 10.1371/journal.pone.0177007 pmid: 5421782
[52] LEITãO A, CARTAXEIRO C, COELHO R, CRUZ B, PARKHOUSE R M, PORTUGAL F, VIGáRIO J D, MARTINS C L . The non-haemadsorbing African swine fever virus isolate ASFV/NH/P68 provides a model for defining the protective anti-virus immune response. Journal of General Virology, 2001,82(3):513-523.
doi: 10.1099/0022-1317-82-3-513 pmid: 11172092
[53] MULUMBA-MFUMU L K, GOATLEY L C, SAEGERMAN C, TAKAMATSU H H, DIXON L K . Immunization of African indigenous pigs with attenuated genotype I African swine fever virus OURT88/3 induces protection against challenge with virulent strains of genotype I. Transboundary and Emerging Diseases, 2016,63(5):e323-7.
doi: 10.1111/tbed.12303 pmid: 25691347883
[54] KING K, CHAPMAN D, ARGILAGUET J M, FISHBOURNE E, HUTET E, CARIOLET R, HUTCHINGS G, OURA C A, NETHERTON C L, MOFFAT K, TAYLOR G, LE POTIER M K, DIXON L H . Protection of European domestic pigs from virulent African isolates of African swine fever virus by experimental immunisation. Vaccine, 2011,29(28):4593-4600.
doi: 10.1016/j.vaccine.2011.04.052 pmid: 3120964
[55] REVILLA Y, PENA L, VIñUELA E . Interferon-gamma production by African swine fever virus-specific lymphocytes. Scandinavian Journal of Immunology, 1992,35(2):225-230.
doi: 10.1111/j.1365-3083.1992.tb02854.x pmid: 1738818
[56] GALLARDO C, SáNCHEZ E G, PÉREZ-NÚñEZ D, NOGAL M, DE LEÓN P, CARRASCOSA á R, SOLER A, ARIAS M L, REVILLA Y . African swine fever virus (ASFV) protection mediated by NH/P68 and NH/P68 recombinant live-attenuated viruses. Vaccine, 2018,36(19):2694-2704.
doi: 10.1016/j.vaccine.2018.03.040 pmid: 29609966
[57] O’DONNELL V, HOLINKA L G, SANFORD B, KRUG P W, CARLSON J, PACHECO J M, REESE B, RISATTI G R, GLADUE D P, BORCA M V . African swine fever virus Georgia isolate harboring deletions of 9GL and MGF360/505 genes is highly attenuated in swine but does not confer protection against parental virus challenge. Virus Research, 2016,221:8-14.
doi: 10.1016/j.virusres.2016.05.014
[58] O'DONNELL V, RISATTI G R, HOLINKA LG, KRUG P W, CARLSON J, VELAZQUEZ-SALINAS L, AZZINARO P A, GLADUE D P, BORCA M V . Simultaneous deletion of the 9GL and UK genes from the African swine fever virus Georgia 2007 isolate offers increased safety and protection against homologous challenge. Journal of Virology, 2017,91(1):e01760-16.
doi: 10.1128/JVI.01760-16 pmid: 27795430
[59] MONTEAGUDO P L, LACASTA A, LÓPEZ E, BOSCH L, COLLADO J, PINA-PEDRERO S, CORREA-FIZ F, ACCENSI F, NAVAS M J, VIDAL E, BUSTOS M J, RODRíGUEZ J M, GALLEI A, NIKOLIN V, SALAS M L, RODRíGUEZ F . BA71ΔCD2: A new recombinant live attenuated African swine fever virus with cross-protective capabilities. Journal of Virology, 2017,91(21):e01058-17.
doi: 10.1128/JVI.01058-17
[60] SáNCHEZ-VIZCAíNO J M, MUR L, GOMEZ-VILLAMANDOS J C, CARRASCO L . An update on the epidemiology and pathology of African swine fever. Journal of Comparative Pathology, 2015,152(1):9-21.
doi: 10.1016/j.jcpa.2014.09.003 pmid: 25443146
[61] SáNCHEZ-VIZCAíNO J M, MUR L, MARTíNEZ-LÓPEZ B . African swine fever (ASF): Five years around Europe. Veterinary Microbiology, 2013,165(1/2):45-50.
doi: 10.1016/j.vetmic.2012.11.030 pmid: 23265248
[62] GALLARDO M C, REOYO A T, FERNáNDEZ-PINERO J, IGLESIAS I, MUñOZ M J, ARIAS M L . African swine fever: a global view of the current challenge. Porcine Health Management, 2015,1:21.
doi: 10.1186/s40813-015-0013-y pmid: 5382474
[63] SáNCHEZ-CORDÓN P J, MONTOYA M, REIS A L, DIXON L K . African swine fever: A re-emerging viral disease threatening the global pig industry. Veterinary Journal, 2018,233:41-48.
doi: 10.1016/j.tvjl.2017.12.025 pmid: 29486878
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[3] GENG RenHao,LIU Bo,WANG Fang,LUO YuFeng,QU HongFei,FAN XueZheng,QIN YuMing,DING JiaBo,XU GuanLong,SHEN QingChun,QIN AiJian. Establishment and Application of PCR Assay for Mycoplasma Contamination in Cell Culture and Live Virus Vaccine [J]. Scientia Agricultura Sinica, 2022, 55(7): 1458-1468.
[4] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[5] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[6] WANG YanWen,WANG MengJing,ZHANG Hong,GAO XinXin,GUO Jing,LI XuYong. Evolution of Human H9N2 Avian Influenza Virus in China from 1998 to 2021 [J]. Scientia Agricultura Sinica, 2022, 55(20): 4075-4090.
[7] CHEN XuHao,GAO Qiang,CHEN XinPing,ZHANG WuShuai. Temporal and Spatial Characteristics of Resources Input and Environmental Effects for Maize Production in the Three Provinces of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3170-3184.
[8] ZHANG FengXi,XIAO Qi,ZHU JiaPing,YIN LiHong,ZHAO XiaLing,YAN MingShuai,XU JinHua,WEN LiBin,NIU JiaQiang,HE KongWang. Preparation and Identification of Monoclonal Antibodies to P30 Protein and Establishment of Blocking ELISA to Detecting Antibodies Against African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2022, 55(16): 3256-3266.
[9] WEI Tian,WANG ChengYu,WANG FengJie,LI ZhongPeng,ZHANG FangYu,ZHANG ShouFeng,HU RongLiang,LÜ LiLiang,WANG YongZhi. Preparation of Monoclonal Antibodies Against the p30 Protein of African Swine Fever Virus and Its Mapping of Linear Epitopes [J]. Scientia Agricultura Sinica, 2022, 55(15): 3062-3070.
[10] WU QiuLin,JIANG YuYing,LIU Yuan,LIU Jie,MA Jing,HU Gao,YANG MingJin,WU KongMing. Migration Pathway of Spodoptera frugiperda in Northwestern China [J]. Scientia Agricultura Sinica, 2022, 55(10): 1949-1960.
[11] ZHANG JingYuan,MIAO FaMing,CHEN Teng,LI Min,HU RongLiang. Development and Application of a Real-Time Fluorescent RPA Diagnostic Assay for African Swine Fever [J]. Scientia Agricultura Sinica, 2022, 55(1): 197-207.
[12] PENG BiLin,LI MeiJuan,HU XiangYu,ZHONG XuHua,TANG XiangRu,LIU YanZhuo,LIANG KaiMing,PAN JunFeng,HUANG NongRong,FU YouQiang,HU Rui. Effects of Simplified Nitrogen Managements on Grain Yield and Nitrogen Use Efficiency of Double-Cropping Rice in South China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1424-1438.
[13] Qun ZHOU,XiaoFei CHEN,RuiCi KAN,Yu LI,Hui CAO,YanLing PENG,Bin ZHANG. Molecular Epidemiological Investigation of Porcine Group A Rotavirus in Sichuan from 2017 to 2019 [J]. Scientia Agricultura Sinica, 2021, 54(5): 1063-1072.
[14] Tao WANG,Yu HAN,Li PAN,Bing WANG,MaoWen SUN,Yi WANG,YuZi LUO,HuaJi QIU,Yuan SUN. Development of a TaqMan Real-Time PCR Targeting the MGF360-13L Gene of African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2021, 54(5): 1073-1080.
[15] ZHANG Li,TANG YaFei,LI ZhengGang,YU Lin,LAN GuoBing,SHE XiaoMan,HE ZiFu. Molecular Characteristic of Squash Leaf Curl China Virus (SLCCNV) Infecting Cucurbitaceae Crops in Guangdong Province [J]. Scientia Agricultura Sinica, 2021, 54(19): 4097-4109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!