Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (17): 3379-3388.doi: 10.3864/j.issn.0578-1752.2018.17.012

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Amino Acid Substitutions of E627V in Polymerase Basic Protein 2 Gene Increases the Pathogenicity of the H7N9 Influenza Virus in Mice

YIN Xin, MA ShuJie, LI Mei, DENG GuoHua, HOU YuJie, CUI PengFei, SHI JianZhong, CHEN HuaLan   

  1. Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences/State Key Laboratory of Veterinary Biotechnology, Harbin 150001
  • Received:2018-04-08 Online:2018-09-01 Published:2018-09-01

Abstract: 【Background】 The low pathogenic H7N9 virus (see note 1.1) that emerged in 2013 in China showed low virulence to poultry and were not virulent to the mammalian model-mice. However, a low-pathogenic H7N9 virus isolated in Hunan in 2015 (HuN/S40726 in abbreviation) showed high virulence in mammalian mice. The reason of the change in the virulence of the virus in mammals might be the alteration of the PB2 E627V mutation of the virus. 【Objective】 in order to reveal the causes of the viral virulence change and the mechanism of the enhancement of the pathogenicity in mammals, and to provide human H7N9 virus infection and early warning of the increased risks, we conducted this study. 【Method】We conducted comparative experiments on mammalian virulence and related gene loci that could lead to changes in viral pathogenicity with the low pathogenic H7N9 virus strain (SH/S1053 in abbreviation) and HuN/S40726 virus strain. We had successfully established a reverse genetic operating system of HuN/S40726 virus and rescued related viruses of rHuN/S40726, rHuN/S40726-PB2/627E and rHuN/S40726-PB2/627K. The virulences of the above three mutants against mammals were evaluated by using a mouse infection model, and then the differences in the pathogenicity of the related viruses in mice were analyzed. The polymerase complex expression plasmid system of HuN/S40726 and its mutant plasmids were constructed, whereas the SH/S1053 polymerase complex expression plasmid system were constructed as a background control. The dual-luciferase assay system was used to detect the polymerase activity of different mutants of amino acid 627 of PB2 protein in 293T cells, and the intrinsic mechanism of the virulence of amino acid at position 627 of PB2 protein was further analyzed. 【Result】 By comparative analysis of mammalian virulence and related gene loci that might cause changes in viral pathogenicity, we speculated that the cause of the change in the virulence of the HuN/S40726 virus in mammals might be in the E627V mutation of the PB2 protein. The results of pathogenicity tests on rescued virus and mutant strains in mice showed that the change of PB2 protein E627V significantly enhanced the virulence of HuN/S40726 virus in mice. The virus MLD50 was changed from ≥ 6.5 log10EID50 to 3.5 log10EID50 and the virulence of the virus was increased by at least 1 000 folds. The results of polymerase activity assay showed that the change of PB2 E627V significantly improved the polymerase activity of HuN/S40726 virus in mammalian cells both at 33 or 37, and it was associated with the pathogenicity of the virus in mice. 【Conclusion】 The 627 amino acid (V) of PB2 protein determined the high virulence of the HuN/S40726 virus in mice. The alteration of PB2 protein E627V could significantly enhance the polymerase activity of HuN/S40726 virus in mammalian cells, and it was an important factor that caused the HuN/S40726 virus to be highly pathogenic to mammals.

Key words: H7N9, PB2, E627V, virulence, polymerase activity

[1]    GAO R B, CAO B, HU Y W, FENG Z J, WANG D Y, HU W F, CHEN J, JIE Z J, QIU H B, XU K, XU X W, LU H Z, ZHU W F, GAO Z C, XIANG N J, SHEN Y Z, HE Z B, GU Y, ZHANG Z Y, YANG Y, ZHAO X, ZHOU L, LI X D, ZOU S M, ZHANG Y, LI X Y, YANG L, GUO J F, DONG J, LI Q, DONG L B, ZHU Y, BAI T, WANG S W, HAO P, YANG W Z, ZHANG Y P, HAN J, YU H J, LI D X, GAO G F, WU G Z, WANG Y, YUAN Z H, SHU Y L. Human infection with a novel avian-origin influenza A (H7N9) virus. New England Journal of Medicine, 2013, 368(20): 1888-1897.
[2]    SHI J Z, DENG G H, KONG H H, GU C Y, MA S J, YIN X, ZENG X Y, CUI P F, CHEN Y, YANG H L, WAN X P, WANG X R, LIU L L, CHEN P C, JIANG Y P, LIU J X, GUAN Y T, SUZUKI Y, LI M, QU Z Y, GUAN L Z, ZANG J K, GU W L, HAN S Y, SONG Y M, HU Y Z, WANG Z, GU L L, YANG W Y, LIANG L B, BAO H M, TIAN G B, LI Y B, QIAO C L, JIANG L, LI C J, BU Z G, CHEN H L.H7N9 virulent mutants detected in chickens in China pose an increased threat to humans. Cell Research, 2017, 27(12): 1409-1421.
[3]    CHEN Y, LIANG W F,YANG S G, WU N P, GAO H N, SHENG J F,YAO H P,WO J N,FANG Q,CUI D W, LI Y C, YAO X, ZHANG Y T, WU H B, ZHENG S F, DIAD H Y, XIA S C, ZHANG Y J,CHAN K H, TSOI H W,TENG J L L, SONG W J, WANG P, LAU S Y, ZHENG M, CHAN J F W, TO K K W, CHEN H L, LI L J, YUEN K Y. Human infections with the emerging avian influenza A H7N9 virus from wet market poultry: clinical analysis and characterisation of viral genome. Lancet, 2013, 381(9881): 1916-1925.
[4]    CUI P F, DENG G H, SHI J Z, KONG H H, LIU L L, GUAN Y T, SUZUKI Y, CHEN H L. New influenza A(H7N7) viruses detected in live poultry markets in China. Virology, 2016, 499: 165-169.
[5]    HAN J, JIN M, ZHANG P, LIU J, WANG L, WEN D, WU X, LIU G, ZOU Y, LV X, DONG X, SHAO B, GU S, ZHOU D, LENG Q, ZHANG C, LAN K. Epidemiological link between exposure to poultry and all influenza A(H7N9) confirmed cases in Huzhou city, China, March to May 2013. Eurosurveillance, 2013, 18(20): 6-11.
[6]    LI Q, ZHOU L, ZHOU M H, CHEN Z P, LI F R, WU H Y, XIANG N J, CHEN E F, TANG F Y, WANG D Y, MENG L, HONG Z H, TU W X, CAO Y, LI L L, DING F, LIU B, WANG M, XIE R H, GAO R B, LI X D, BAI T, ZOU S M, HE J, HU J Y, XU Y T, CHAI C L, WANG S W, GAO Y J, JIN L M, ZHANG Y P, LUO H M, YU H J, HE J F, LI Q, WANG X J, GAO L D, PANG X H, LIU G H, YAN Y S, YUAN H SHU Y L, YANG W Z, WANG Y, WU F, UYEKI T M,FENG Z J. Epidemiology of human Infections with avian influenza A(H7N9) virus in China. New England Journal of Medicine, 2014, 370(6): 520-532.
[7]    SHI J Z, DENG G H, ZENG X Y, KONG H H, WANG X Y, LU K P, WANG X R, MU G D, XU X L, CUI P F, BAO H M, TIAN G BCHEN H L. Novel influenza A(H7N2) virus in chickens, Jilin Province, China, 2014. Emerging Infectious Diseases, 2014, 20(10): 1719-1722.
[8]    SHI J Z, DENG G H, LIU P H, ZHOU J P, GUAN L Z, LI W H, LI X Y, GUO J, WANG G J, FAN J, WANG J L, LI Y Y, JIANG Y P, LIU L L, TIAN G B, LI C J, CHEN H L, Isolation and characterization of H7N9 viruses from live poultry markets-Implication of the source of current H7N9 infection in humans. Chinese Science Bulletin, 2013, 58(16): 1857-1863
[9]    BELSERJ A,GUSTIN K M, PEARCE M B, MARNES T R, ZENG H, PAPPAS C, SUN X J, CARENY P J, VILLANUEVA J M, STEVENS J, KATZ J M, TUMPEY T M. Pathogenesis and transmission of avian influenza A (H7N9) virus in ferrets and mice. Nature, 2013, 501(7468): 556-559.
[10]   WATANABE T, KISO M, FUKUYAMA S, NAKAJIMA N, IMAI M, YAMADA S, MURAKAMI S, YAMAYOSHI S, IWATSUKI- HORIMOTO K, SAKODA Y,TAKASHITA E, MCBRIDE R, NODA T, HATTA M, IMAI H, ZHAO D M, KISHIDA N, SHIRAKURA M, DE VRIES R P, SHICHINOHE S, OKAMATSU M, TAMURA T, TOMITA Y, FUJIMOTO N, GOTO K, KATSURA H, KAWAKAMI E, ISHIKAWA I, WATANABE S, ITO M, SAKAI-TAGAWA Y, SUGITA Y, URAKI R, YAMAJIA R, EISFELD A J, ZHONG G X, FAN S F, PING J H, MAHER E A, HANSON A, UCHIDA Y, SAITO T, OZAWA M, NEUMANN G,KIDA H, ODAGIRI T, PAULSON J C, HASEGAWA H, TASHIRO M, KAWAOKA Y. Characterization of H7N9 influenza A viruses isolated from humans. Nature, 2013, 501(7468): 551-555.
[11]   WATANABE T, WATANABE S, MAHER E A, NEUMANNe G, KAWAOKA Y. Pandemic potential of avian influenza A (H7N9) viruses. Trends Microbiol, 2014, 22(11): 623-631.
[12]   ZHOU J F, WANG D Y, GAO R B, ZHAO B H, SONG J D, QI X, ZHANG Y J, SHI Y L, YANG L, ZHU W F, BAI T, QIN K, LAN Y, ZOU S M, GUO J F, DONG J, DONG L B, ZHANG Y, WEI H J, LI X D, LU J, LIU L Q, ZHAO X, LI X Y, HUANG W J, WEN L Y, BO H, XIN L, CHEN Y K, XU C L, PEI Y Q, YANG Y, ZHANG X D, WANG S W, FENG Z J, HAN J, YANG W Z, GAO G F, WU G Z, LI D X, WANG Y, SHU Y L. Biological features of novel avian influenza A (H7N9) virus. Nature, 2013, 499(7459): 500.
[13]   FAN S F, HATTA M, KIM J H, HAIFMANN P, IMAI M, MACHEN C A, LE M Q, NGUYEN T, NEUMANN G, KAWAOKA Y. Novel residues in avian influenza virus PB2 protein affect virulence in mammalian hosts. Nature Communications, 2014, 5(5): 5021.
[14]   LABADIE K, AFONSO E D, RAMEIX-WELTI M A, VAN DER WERF S, NAFFAKH N. Host-range determinants on the PB2 protein of influenza A viruses control the interaction between the viral polymerase and nucleoprotein in human cells. Virology, 2007, 362(2): 271-282.
[15]   LI W X, LEE H H Y, LIR F, ZHU H M, YI G, PEIRIS J S M, YANG Z F, MOK C K P. The PB2 mutation with lysine at 627 enhances the pathogenicity of avian influenza (H7N9) virus which belongs to a non-zoonotic lineage. Scientific Reports, 2017, 7(1): 2352.
[16]   MOK C K P, LEE H H Y, LESTRA M, NICHOLLS J M, CHAN M C W, SIA S F, ZHU H C, POON L L M, GUAN Y, PEIRIS J S M. Amino acid substitutions in polymerase basic protein 2 gene contribute to the pathogenicity of the novel A/H7N9 influenza virus in mammalian hosts. Journal of Virology, 2014, 88(6): 3568-3576.
[17]   YAMAYOSHI S, FUKUYAMA S, YAMADA S, ZHAO D M, MURAKAMI S, URAKI R, WATANABE T, TOMITA Y, NEUMANN G, KAWAOKA Y. Amino acids substitutions in the PB2 protein of H7N9 influenza A viruses are important for virulence in mammalian hosts. Scientific Reports, 2015, 5: 8039.
[18]   ZHANG H, LI X Y, Guo J, LI L, CHANG C, LI Y Y, BIAN C, XU K, CHEN H L, SUN B. The PB2 E627K mutation contributes to the high polymerase activity and enhanced replication of H7N9 influenza virus. Journal of General Virology, 2014, 95: 779-786.
[19]   ZHANG Q Y, SHI J Z, DENG G H, GUO J, Zeng X Y, HE X J, KONG H H, GU C Y, LI X Y, LIU J X, WANG G J, CHEN Y, LIU L L, LIANG L B, LI Y Y, FAN J, WANG J L, LI W H, GUAN L Z, LI Q M, YANG H L, CHEN P C, JIANG L, GUAN Y T, XIN X G, JIANG Y P, TIAN G B, WANG X R, QIAO C L, LI C J, BU Z G, CHEN H L. H7N9 influenza viruses are transmissible in ferrets by respiratory droplet. Science, 2013, 341(6144): 410-414.
[20]   IMAI M, WATANABE T, KISO M, NAKAJIMA N, YAMAYOSHI S, IWATSUKI-HORIMOTO K, HATTA M, YAMAYOSHI S, ITO M, SAKAI-TAGAWA Y, SHIRAKURA M, TAKASHITA E, FUJISAKI S, MCBRIDE R, THOMPSON A J, TAKAHASHI K, MAEMURA T, MITAKE H, CHICA S, ZHONG G X,FAN S F, OISHI K, YASUHARA A, TAKADA K, NAKAO T, FUKUYAMA S, YAMASHITA M, LOPES T J S, NEUMANN G, ODAGIRI T, WATANABE S, SHU Y L, PAULSON J C, HASEGAWA H, KAWAOKA Y. A highly pathogenic avian h7n9 influenza virus isolated from a human is lethal in some ferrets infected via respiratory droplets. Cell Host & Microbe, 2017, 22(5): 615-626.
[21]   CHEN H, BRIGHT R A, SUBBARA K, SMITH C, COX N J, KATZ J M, MATSUOK Y. Polygenic virulence factors involved in pathogenesis of 1997 Hong Kong H5N1 influenza viruses in mice. Virus Research, 2007, 128(1/2): 159-163.
[22]   CHUTINIMITKUL S, VAN RIEL D, MUNSTER V J, VAN DEN BRAND J M A, RIMMELZWAAN G F, KUIKEN T, OSTERHAUS A D M E, FOUCHIER R A M, DE WIT E. In Vitro assessment of attachment pattern and replication efficiency of H5N1 influenza a viruses with altered receptor specificity. Journal of Virology, 2010, 84(13): 6825-6833.
[23]   FORNEK J L, GILLIM-ROSS L, SANTOS C, CARTER V, WARD J M, CHENG L I, PROLL S, KATZE M G, SUBBARAO K. A single-amino-acid substitution in a polymerase protein of an H5N1 influenza virus is associated with systemic infection and impaired T-Cell activation in mice. Journal of Virology, 2009, 83(21): 11102-11115.
[24]   GAO Y W, ZHANG Y, SHINYA K, Deng G H, JIANG Y P, LI Z J, GUAN Y T, TIAN G B, LI Y B, SHI J Z, LIU L L, ZENG X Y, BU Z G, XIA X Z, KAWAOKA Y, CHEN H L. Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. Plos Pathogens, 2009, 5(12): e1000709.
[25]   HATTA M, GAO P, HALFMANN P, KAWAOKA Y. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. science, 2001, 293(5536): 1840-1842.
[26]   HATTA M, HATTA Y, KIM J H, WATANABE S, SHINYA K, LIEN T N P S, LE Q M, KAWAOKA Y. Growth of H5N1 influenza a viruses in the upper respiratory tracts of mice. Plos Pathogens, 2007, 3(10): 1374-1379.
[27]   MANZOOR R, SAKODA Y, NOMURA N, TSUDA Y, OZAKI H, OKAMATSU M, KIDA H. PB2 protein of a Hhighly pathogenic avian influenza virus strain A/chicken/Yamaguchi/7/2004 (H5N1) determines its replication potential in pigs. Journal of Virology, 2009, 83(4): 1572-1578.
[28]   STEEL J, LOWEN A C, MUBAREKA S, PALESE P. Transmission of influenza virus in a mammalian host is increased by PB2 amino Acids 627K or 627E/701N. Plos Pathogens, 2009, 5(1): e1000252.
[29]   YAMADA S, SUZUKI Y, SUZUKI T, LE M Q, NIDOM C A, SAKAI-TAGAWA Y, MURAMOTO Y, ITO M, KISO M, HPRIMOTO T, SHINYA K, SAWADA T, KISO M, USUI T, MURATA T, LIN Y P, HAY A, HAIRE L F, STEVENS D J, RUSSELL R J, GAMBLIN S J, SKEHEL J J, KAWAOKA Y. Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature, 2006, 444(7117): 378-382.
[30]   ZHANG Y, ZHANG Q Y, KONG H H, JIANG Y P, GAO Y W, DENG G H, SHI J Z, TIAN G B, Liu, L. L, LIU J X, GUAN Y T, BU Z G, CHEN H L. H5N1 hybrid viruses bearing 2009/H1N1 virus genes transmit in Guinea pigs by respiratory Droplet. Science, 2013, 340(6139): 1459-1463.
[31]   LONG J S, GIOTIS E S, MONCORG O, FRISE R, MISTRY B, JAMES J, MORISSONM, IQBAL M, VIGNAL A, SKINNER M A, BARCLAY W S. Species difference in ANP32A underlies influenza A virus polymerase host restriction. Nature, 2016, 529(7584): 101-104
[1] LIU RUI, ZHAO YuHan, FU ZhongJu, GU XinYi, WANG YanXia, JIN XueHui, YANG Ying, WU WeiHuai, ZHANG YaLing. Distribution and Variation of PWL Gene Family in Rice Magnaporthe oryzae from Heilongjiang Province and Hainan Province [J]. Scientia Agricultura Sinica, 2023, 56(2): 264-274.
[2] WANG WenJuan,SU Jing,CHEN Shen,YANG JianYuan,CHEN KaiLing,FENG AiQing,WANG CongYing,FENG JinQi,CHEN Bing,ZHU XiaoYuan. Pathogenicity and Avirulence Genes Variation of Magnaporthe oryzae from a Rice Variety Meixiangzhan 2 in Guangdong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1346-1358.
[3] TANG ZiYun,HU JianXin,CHEN Jin,LU YiXing,KONG LingLi,DIAO Lu,ZHANG FaFu,XIONG WenGuang,ZENG ZhenLing. Relationship Between Biofilm Formation and Molecular Typing of Staphylococcus aureus from Animal Origin [J]. Scientia Agricultura Sinica, 2022, 55(3): 602-612.
[4] CHEN ChaoXi,LI YuHan,TAN Min,WANG Lu,HUANG ZhiHong. Biofilm-Forming Phenotype, Antibacterial Resistance Genes, Integrase Genes and Virulence Genes Detection of Escherichia coli Isolated from Yaks and Tibetan Pigs in Northwest Sichuan Plateau [J]. Scientia Agricultura Sinica, 2021, 54(23): 5144-5162.
[5] CAI Ni,YAN DuoZi,NONG XiangQun,WANG GuangJun,TU XiongBing,ZHANG ZeHua. Adhesin Gene mad2 Knockout and Functional Effects on Biological Characteristics and Inducing Plant Responses in Metarhizium anisopliae [J]. Scientia Agricultura Sinica, 2021, 54(22): 4800-4812.
[6] WANG ChengLi,YIN ZhiYuan,NIE JiaJun,LIN YongHui,HUANG LiLi. Identification and Virulence Analysis of CAP Superfamily Genes in Valsa mali [J]. Scientia Agricultura Sinica, 2021, 54(16): 3440-3450.
[7] GuangZhi ZHANG,MingYan WANG,Yi LUO,ShiHang XU,ShunDong HE,ShangJin CUI. The Zoonotic Bacterium-Helicobacter suis and Its Research Progress [J]. Scientia Agricultura Sinica, 2020, 53(6): 1278-1286.
[8] ZHANG Lei,JIA Qi,WU Wei,ZHAO LuPing,XUE Bing,LIU HuanHuan,SHANG Jing,YONG TaiWen,LI Qing,YANG WenYu. Species Identification and Virulence Determination of Beauveria bassiana Strain BEdy1 from Ergania doriae yunnanus [J]. Scientia Agricultura Sinica, 2020, 53(14): 2974-2982.
[9] MENG Feng,ZHANG YaLing,JIN XueHui,ZHANG XiaoYu,JIANG Jun. Detection and Analysis of Magnaporthe oryzae Avirulence Genes AVR-Pib, AVR-Pik and AvrPiz-t in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2019, 52(23): 4262-4273.
[10] YANG ZhiYuan,DUAN HuiJuan,WANG XiaoLei,LIU LiXin,ZHAO JiCheng,PAN Jie,LIU YueHuan,LIN Jian. Virulence, E Gene Sequence and Antigenic Difference of 4 Duck Tembusu Virus Isolations [J]. Scientia Agricultura Sinica, 2019, 52(23): 4406-4414.
[11] SUN Ke,ZHU HaoDan,HE KongWang,WANG DanDan,ZHOU JunMing,YU ZhengYu,Lü LiXin,NI YanXiu. Biological Characteristics of Transcriptional Regulator GalR in Streptococcus suis Serotype 4 [J]. Scientia Agricultura Sinica, 2019, 52(19): 3485-3494.
[12] REN ShiLong, BAI Hui, WANG yongFang, QUAN JianZhang, DONG ZhiPing, LI ZhiYong, XING JiHong. Identification and Analysis of Magnaporthe oryzae of Foxtail Millet Avirulence Genes [J]. Scientia Agricultura Sinica, 2018, 51(6): 1079-1088.
[13] DU JiGe, XUE Qi, ZHU Zhen, LI QiHong, YIN ChunSheng, YAO WenSheng, KANG Kai, CHEN XiaoYun. Expression and Evaluation of Protective Efficacy of No-toxic Clostridium perfringens ε Toxin Derivative [J]. Scientia Agricultura Sinica, 2018, 51(11): 2206-2215.
[14] ZHANG JunXiang, JI ZhiRui, WANG Na, XU ChengNan, CHI FuMei, ZHOU ZongShan. Gene Cloning and Functional Analysis of GcAP1 Complex Beta Subunit in Glomerella cingulata [J]. Scientia Agricultura Sinica, 2017, 50(8): 1430-1439.
[15] CHEN Xue-feng, YU Cheng-peng, LIU Qiong-guang . Functional Analysis of flhDC and fliA in Dickeya zeae [J]. Scientia Agricultura Sinica, 2016, 49(24): 4726-4734.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!