Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (16): 3440-3450.doi: 10.3864/j.issn.0578-1752.2021.16.007

• PLANT PROTECTION • Previous Articles     Next Articles

Identification and Virulence Analysis of CAP Superfamily Genes in Valsa mali

WANG ChengLi(),YIN ZhiYuan,NIE JiaJun,LIN YongHui,HUANG LiLi()   

  1. College of Plant Protection, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, Shaanxi
  • Received:2020-11-08 Accepted:2020-12-17 Online:2021-08-16 Published:2021-08-24
  • Contact: LiLi HUANG E-mail:wein599@163.com;huanglili@nwsuaf.edu.cn

Abstract:

【Objective】CAP (Cysteine-rich secretory protein, Antigen 5 and Pathogenesis related protein 1) superfamily proteins widely exist in fungi, bacteria, animal and plant. This kind of proteins participates in the pathogenic process of the pathogen. The purpose of this study was to identify the CAP superfamily genes in Valsa mali and clarify their virulence roles.【Method】BLASTP was used to retrieve genes with the conserved CAP domains in the whole genome of V. mali. PCR amplification and gel electrophoresis detection were carried out with specific primers. Bioinformatics software and online databases were used for protein sequence characterization and phylogenetic analysis. RT-qPCR was used to analyze the gene expression profiles. Double-joint PCR was used to construct gene knocking-out cassettes, PEG-mediated protoplast transformation was used to obtain knocking-out mutants and complementation strains. To obtain gene knockout mutants, geneticin (G418) was used as a selection marker, and transformants were validated by four pairs of primers. To obtain gene complementation transformants, hygromycin (HPH) was used as a selection marker. The vegetative growth of these strains was determined by cultivation on PDA medium, and the virulence of these strains was verified by inoculation on apple twigs.【Result】Three CAP superfamily genes were identified in V. mali, named VmPR1a, VmPR1b and VmPR1c, respectively. The three CAP proteins all contain four conserved regions, including a N-terminal signal peptide, a N-terminal extension region (NTE), a CAP domain and a C-terminal extension region (CTE). Phylogenetic analysis showed that the three proteins belonged to different clades. VmPR1a was clustered in clade2 and closely related to Neurospora crassa CAP protein. VmPR1b was clustered in clade3 and closely related to CAP proteins of Fusarium spp.. VmPR1c was clustered in clade1 and also closely related to N. crassa CAP protein. RT-qPCR analysis showed that VmPR1a, VmPR1b and VmPR1c were significantly up-regulated during early stages of infection (6 h and 12 h). VmPR1a, VmPR1b and VmPR1c knockout mutants (ΔVmPR1a-7/23, ΔVmPR1b-20/31 and ΔVmPR1c-26/40, respectively) were obtained, and all mutants showed no apparent alteration in filamentous growth compared with that of the wild-type strain. The virulence of ΔVmPR1b-20/31 was not obviously influenced. However, the virulence of ΔVmPR1a-7/23 and ΔVmPR1c-26/40 was significantly reduced compared with that of the wild-type strain. Moreover, the virulence of gene complementation strains (VmPR1a/C and VmPR1c/C) was restored to comparable level as that of the wild-type. 【Conclusion】Three CAP super-family genes were identified in V. mali (VmPR1a, VmPR1b and VmPR1c), and VmPR1a and VmPR1c are virulence factors of V. mali.

Key words: Valsa mali, CAP protein, gene identification, gene knockout, virulence

Table 1

Primers information used in this study"

引物 Primer 序列 Sequence (5′→3′)
VmPR1a-F ggggactcttgaccatggtaATGAAGCCCGCTC
VmPR1a-R ctcaccatcctaggactagtTAACGCCAGAAACAGTACCA
VmPR1b-F ggggactcttgaccatggta ATGCACTTCTCAACTCGTCC
VmPR1b-R ctcaccatcctaggactagtAGCAGAGGTTGGGGTCTC
VmPR1c-F ggggactcttgaccatggta ATGAAGTCATCATCGCTCTT
VmPR1c-R ctcaccatcctaggactagtTACGCTGACGTTCACGGA
pCA1302-F/R TAAGGGATGACGCACAAT/CGGACACGCTGAACTTGT
qRT-VmPR1a-F/R AGTCGCCAGACTCCGGATCCG/GACCAACTGCGTGAAGTGGC
qRT-VmPR1b-F/R ACATCCTCGTCTGCTGCTGCTG/GGTCTCGCTAACTCCAGAACGA
qRT-VmPR1c-F/R CATGACCTACGGTGACACGTA/GAGTCAGCGTCAGTAGAGGC
G6PDH-F/R TCAGAACAAGTTCGAGGGCGACAA/TGAGGGCAATAGAGGGCTTGTTCA
VmPR1a-5F/6R ACGCTTTCATCCAGACTTTT/CCTTCTCCTTGTGGCTTTGT
VmPR1b-5F/6R CACTTCTCAACTCGTCCCG/ACCGTCCGAAGCAATACC
VmPR1c-5F/6R GAGGTTACGACCGTTGAGAC/CAGTGAAAAGGGGATGGC
Neo-F/R CACAGCACCGACCACAAA/CCAGCAGTAGACACTTGGAATC
PDL2-VmPR1a-F cgactcactatagggcgaattgggtactcaaattggttataaACGCTTTCATCCAGACTTTT
PDL2-VmPR1a-R ccaccccggtgaacagctcctcgcccttgctcacctcgagCCTTCTCCTTGTGGCTTTGT
PDL2-VmPR1c-F cgactcactatagggcgaattgggtactcaaattggttataaCGATTTGGGCAACTTGAG
PDL2-VmPR1c-R ccaccccggtgaacagctcctcgcccttgctcacctcgagGCGATAGCCAGAAAACATAG

Fig. 1

Construction of gene knocking-out cassettes"

Fig. 2

Gel electrophoresis detection of VmPR1a, VmPR1b and VmPR1c"

Fig. 3

Phylogenetic analysis of VmPR1a, VmPR1b and VmPR1c The maximum-likelihood method was used for the construction of phylogenetic-tree. Bootstrap value supporting for each branch is indicated"

Fig. 4

Prediction of the signal peptide, conserved domain and active amino acid site in V. mali CAP superfamily proteins"

Fig. 5

Relative expression level of VmPR1a, VmPR1b and VmPR1c at different infection stages of V. mali"

Fig. 6

PCR detection of mutants and complementation strains"

Fig. 7

Colony morphology and colony diameter of the wild-type, mutants and complementation strains inoculated on PDA medium"

Fig. 8

Pathogenicity detection of the VmPR1a, VmPR1b and VmPR1c mutants"

[1] GIBBS G M, ROELANTS K, O’BRYAN M K. The CAP superfamily: Cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins—roles in reproduction, cancer, and immune defense. Endocrine Reviews, 2008, 29(7):865-897.
doi: 10.1210/er.2008-0032
[2] OLRICHS N K, HELMS J B. Novel insights into the function of the conserved domain of the CAP superfamily of proteins. AIMS Biophysics, 2016, 3(2):232-246.
doi: 10.3934/biophy.2016.2.232
[3] YAMAZAKI Y, MORITA T. Structure and function of snake venom cysteine-rich secretory proteins. Toxicon, 2004, 44(3):227-231.
doi: 10.1016/j.toxicon.2004.05.023
[4] KELLEHER A, DARWICHE R, REZENDE W C, FARIAS L P, LEITE L C C, SCHNEITER R, ASOJO O A. Schistosoma mansoni venom allergen-like protein 4 (SmVAL4) is a novel lipid-binding SCP/TAPS protein that lacks the prototypical CAP motifs. Acta Crystallographica, 2014, 71(8):2186-2196.
[5] MILNE T J, ABBENANTE G, TYNDALL J D A, HALLIDAY J, LEWIS R J. Isolation and characterization of a cone snail protease with homology to CRISP proteins of the pathogenesis-related protein superfamily. Journal of Biological Chemistry, 2003, 278(33):31105-31110.
doi: 10.1074/jbc.M304843200
[6] KING T P, MORAN D, WANG D F, KOCHOUMIAN L, CHAIT B T. Structural studies of a hornet venom allergen antigen 5, Dol m V and its sequence similarity with other proteins. Protein Sequences and Data Analysis, 1990, 3(3):263-266.
[7] VAN LOON L C, VAN KAMMEN A. Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. ‘Samsun’ and ‘Samsun NN’: II. Changes in protein constitution after infection with tobacco mosaic virus Virology, 1970, 40:190-211.
[8] CHEN Y L, LEE C Y, CHENG K T, CHANG W H, HUANG R N, NAM H G, CHEN Y R. Quantitative peptidomics study reveals that a wound-induced peptide from PR-1 regulates immune signaling in tomato. The Plant Cell, 2014, 26:4135-4148.
doi: 10.1105/tpc.114.131185
[9] ROHM M, LINDEMANN E, HILLER E, ERMERT D, LEMUTH K, TRKULJA D, SOGUKPINAR O, BRUNNER H, RUPP S, URBAN C F, SOHN K. A family of secreted pathogenesis-related proteins in Candida albicans. Molecular Microbiology, 2013, 87(1):132-151.
doi: 10.1111/mmi.2013.87.issue-1
[10] PRADOS-ROSALES R C, ROLDAN-RODRIGUEZ R, SERENA C, LOPEZ-BERGES M S, GUARRO J, MARTÍNEZ-DEL-POZO Á, DI PIETRO A. A pr-1-like protein of Fusarium oxysporum functions in virulence on mammalian hosts. Journal of Biological Chemistry, 2012, 287(26):21970-21979.
doi: 10.1074/jbc.M112.364034
[11] TEIXEIRA P J P, THOMAZELLA D P T, VIDAL R O, DO PRADO P F V, REIS O, BARONI R M, FRANCO S F, MIECZKOWSKI P, PEREIRA G A G, MONDEGO J M C. The fungal pathogen Moniliophthora perniciosa has genes similar to plant PR-1 that are highly expressed during its interaction with cacao. PLoS ONE, 2012, 7(9):e45929.
doi: 10.1371/journal.pone.0045929
[12] LU S, EDWARDS M C. Molecular characterization and functional analysis of PR-1-like proteins identified from the wheat head blight fungus Fusarium graminearum. Phytopathology, 2018, 108(4):510-520.
doi: 10.1094/PHYTO-08-17-0268-R
[13] YIN Z Y, LIU H Q, LI Z P, KE X W, DOU D L, GAO X N, SONG N, DAI Q Q, WU Y X, XU J R, KANG Z S, HUANG L L. Genome sequence of Valsa canker pathogens uncovers a potential adaptation of colonization of woody bark. New Phytologist, 2015, 208(4):1202-1216.
doi: 10.1111/nph.2015.208.issue-4
[14] 王旭丽. 中国苹果树腐烂病菌的种类: rDNA-ITS序列和表型比较研究[D]. 杨凌: 西北农林科技大学, 2007.
WANG X L. Pathogen of apple tree valsa canker in China: A combined analysis of phenotypic characteristics and rDNA-ITS sequences[D]. Yangling: Northwest A&F University, 2007. (in Chinese)
[15] KE X, HUANG L L, HAN Q M, GAO X N, KANG Z S. Histological and cytological investigations of the infection and colonization of apple bark by Valsa mali var. mali. Australasian Plant Pathology, 2013, 42(1):85-93.
doi: 10.1007/s13313-012-0158-y
[16] 杜战涛, 李正鹏, 高小宁, 黄丽丽, 韩青梅. 陕西省苹果树腐烂病周年消长及分生孢子传播规律研究. 果树学报, 2013, 30(5):819-822.
DU Z T, LI Z P, GAO X N, HUANG L L, HAN Q M. Study on the conidia dispersal and the disease dynamics of apple tree canker caused by Valsa mali var. mali in Shaanxi. Journal of Fruit Science, 2013, 30(5):819-822. (in Chinese)
[17] 林晓, 孙传茹, 王彩霞, 练森, 董向丽, 李保华. 影响苹果树腐烂病菌侵染致病的流行因子. 中国农业科学, 2021, 54(11):2333-2342.
LIN X, SUN C R, WANG C X, LIAN S, DONG X L, LI B H. Epidemic factors affecting the infection and occurrence of Valsa mali. Scientia Agricultura Sinica, 2021, 54(11):2333-2342. (in Chinese)
[18] BESSHO H, TSUCHIYA S, SOEJIMA J. Screening methods of apple trees for resistance to Valsa canker. Euphytica, 1994, 77(1/2):15-18.
doi: 10.1007/BF02551454
[19] ABE K, KOTODA N, KATO H, SOEJIMA J. Genetic studies on resistance to Valsa canker in apple: Genetic variance and breeding values estimated from intra- and inter-specific hybrid progeny populations. Tree Genetics and Genomes, 2011, 7(2):363-372.
doi: 10.1007/s11295-010-0337-3
[20] 刘欣颖, 吕松, 王忆, 王昆, 李天红, 韩振海, 张新忠. 苹果种质资源对苹果树腐烂病抗性评价. 果树学报, 2011, 28(5):843-848.
LIU X Y, LÜ S, WANG Y, WANG K, LI T H, HAN Z H, ZHANG X H. Evaluation of resistance of Malus germplasms to apple canker (Valsa ceratosperma). Journal of Fruit Science, 2011, 28(5):843-848. (in Chinese)
[21] YIN Z Y, KE X W, HUANG D X, GAO X N, VOEGELE R T, KANG Z S, HUANG L L. Validation of reference genes for gene expression analysis in Valsa mali var. mali using real-time quantitative PCR. World Journal of Microbiology and Biotechnology, 2013, 29(9):1563-1571.
doi: 10.1007/s11274-013-1320-6
[22] YU J, HAMARI Z, HAN K, SEO J, REYES-DOMÍNGUEZ Y, SCAZZOCCHIO C. Double-joint PCR: A PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genetics and Biology, 2004, 43:973-981.
[23] 高静, 李艳波, 柯希望, 康振生, 黄丽丽. PEG介导的苹果腐烂病菌原生质体转化. 微生物学报, 2011, 51(9):1194-1199.
GAO J, LI Y B, KE X W, KANG Z S, HUANG L L. Development of genetic transformation system of Valsa mali of apple mediated by PEG. Acta Microbiologica Sinica, 2011, 51(9):1194-1199. (in Chinese)
[24] 臧睿, 黄丽丽, 康振生, 王旭丽. 陕西苹果树腐烂病菌(Cytospora spp.)不同分离株的生物学特性与致病性研究. 植物病理学报, 2007, 37(4):343-351.
ZANG R, HUANG L L, KANG Z S, WANG X L. Biological characteristics and pathogenicity of different isolates of Cytospora spp. isolated from apple trees in Shaanxi Province. Acta Phytopathologica Sinica, 2007, 37(4):343-351. (in Chinese)
[25] 许春景. 苹果树腐烂病菌三个果胶酶基因的致病功能研究[D]. 杨凌: 西北农林科技大学, 2016.
XU C J. Pathogenic function of three pectinase genes in Valsa mali[D]. Yangling: Northwest A&F University, 2016. (in Chinese)
[26] WU Y X, XU L S, YIN Z Y, DAI Q Q, GAO X N, FENG H, VOEGELE R T, HUANG L L. Two members of the velvet family, VmVeA and VmVelB, affect conidiation, virulence and pectinase expression in Valsa mali. Molecular Plant Pathology, 2018, 19(7):1639-1651.
doi: 10.1111/mpp.2018.19.issue-7
[27] FENG H, XU M, ZHENG X, ZHU T Y, GAO X N, HUANG L L. MicroRNAs and their targets in apple (Malus domestica cv. “Fuji”) involved in response to infection of pathogen Valsa mali. Frontiers in Plant Science, 2017, 8:2081.
doi: 10.3389/fpls.2017.02081
[28] XU M, GUO Y, TIAN R Z, GAO C, GUO F R, VOEGELE R T, BAO J Y, LI C J, JIA C H, FENG H, HUANG L L. Adaptive regulation of virulence genes by microRNA-like RNAs in Valsa mali. New Phytologist, 2020, 227:899-913.
doi: 10.1111/nph.v227.3
[29] JONES J D, DANGL J L. The plant immune system. Nature, 2006, 444(7117):323-329.
doi: 10.1038/nature05286
[30] VLEESHOUWERS V G, OLIVER R P. Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. Molecular Plant-Microbe Interactions, 2014, 27(3):196-206.
doi: 10.1094/MPMI-10-13-0313-IA
[31] LI Z, YIN Z Y, FAN Y, XU M, KANG Z S, HUANG L L. Candidate effector proteins of the necrotrophic apple canker pathogen Valsa mali can suppress BAX-induced PCD. Frontiers in Plant Science, 2015, 6:579.
[32] ZHANG M, FENG H, ZHAO Y H, SONG L L, GAO C, XU X M, HUANG L L. Valsa mali pathogenic effector VmPxE1 contributes to full virulence and interacts with the host peroxidase MdAPX1 as a potential target. Frontiers in Microbiology, 2018, 9:821.
doi: 10.3389/fmicb.2018.00821
[33] ZHANG M, XIE S C, ZHAO Y H, MENG X, SONG L L, FENG H, HUANG L L. Hce2 domain-containing effectors contribute to the full virulence of Valsa mali in a redundant manner. Molecular Plant Pathology, 2019, 20(6):843-856.
doi: 10.1111/mpp.2019.20.issue-6
[1] LIU RUI, ZHAO YuHan, FU ZhongJu, GU XinYi, WANG YanXia, JIN XueHui, YANG Ying, WU WeiHuai, ZHANG YaLing. Distribution and Variation of PWL Gene Family in Rice Magnaporthe oryzae from Heilongjiang Province and Hainan Province [J]. Scientia Agricultura Sinica, 2023, 56(2): 264-274.
[2] WANG WenJuan,SU Jing,CHEN Shen,YANG JianYuan,CHEN KaiLing,FENG AiQing,WANG CongYing,FENG JinQi,CHEN Bing,ZHU XiaoYuan. Pathogenicity and Avirulence Genes Variation of Magnaporthe oryzae from a Rice Variety Meixiangzhan 2 in Guangdong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1346-1358.
[3] TANG ZiYun,HU JianXin,CHEN Jin,LU YiXing,KONG LingLi,DIAO Lu,ZHANG FaFu,XIONG WenGuang,ZENG ZhenLing. Relationship Between Biofilm Formation and Molecular Typing of Staphylococcus aureus from Animal Origin [J]. Scientia Agricultura Sinica, 2022, 55(3): 602-612.
[4] CHEN ChaoXi,LI YuHan,TAN Min,WANG Lu,HUANG ZhiHong. Biofilm-Forming Phenotype, Antibacterial Resistance Genes, Integrase Genes and Virulence Genes Detection of Escherichia coli Isolated from Yaks and Tibetan Pigs in Northwest Sichuan Plateau [J]. Scientia Agricultura Sinica, 2021, 54(23): 5144-5162.
[5] CAI Ni,YAN DuoZi,NONG XiangQun,WANG GuangJun,TU XiongBing,ZHANG ZeHua. Adhesin Gene mad2 Knockout and Functional Effects on Biological Characteristics and Inducing Plant Responses in Metarhizium anisopliae [J]. Scientia Agricultura Sinica, 2021, 54(22): 4800-4812.
[6] LIN Xiao,SUN ChuanRu,WANG CaiXia,LIAN Sen,DONG XiangLi,LI BaoHua. Epidemic Factors Affecting the Infection and Occurrence of Valsa mali [J]. Scientia Agricultura Sinica, 2021, 54(11): 2333-2342.
[7] GuangZhi ZHANG,MingYan WANG,Yi LUO,ShiHang XU,ShunDong HE,ShangJin CUI. The Zoonotic Bacterium-Helicobacter suis and Its Research Progress [J]. Scientia Agricultura Sinica, 2020, 53(6): 1278-1286.
[8] ZHANG Lei,JIA Qi,WU Wei,ZHAO LuPing,XUE Bing,LIU HuanHuan,SHANG Jing,YONG TaiWen,LI Qing,YANG WenYu. Species Identification and Virulence Determination of Beauveria bassiana Strain BEdy1 from Ergania doriae yunnanus [J]. Scientia Agricultura Sinica, 2020, 53(14): 2974-2982.
[9] YANG ZhiYuan,DUAN HuiJuan,WANG XiaoLei,LIU LiXin,ZHAO JiCheng,PAN Jie,LIU YueHuan,LIN Jian. Virulence, E Gene Sequence and Antigenic Difference of 4 Duck Tembusu Virus Isolations [J]. Scientia Agricultura Sinica, 2019, 52(23): 4406-4414.
[10] MENG Feng,ZHANG YaLing,JIN XueHui,ZHANG XiaoYu,JIANG Jun. Detection and Analysis of Magnaporthe oryzae Avirulence Genes AVR-Pib, AVR-Pik and AvrPiz-t in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2019, 52(23): 4262-4273.
[11] SUN Ke,ZHU HaoDan,HE KongWang,WANG DanDan,ZHOU JunMing,YU ZhengYu,Lü LiXin,NI YanXiu. Biological Characteristics of Transcriptional Regulator GalR in Streptococcus suis Serotype 4 [J]. Scientia Agricultura Sinica, 2019, 52(19): 3485-3494.
[12] WANG DanDan, TANG YuTing, MA YueHui, WANG LiGang, PAN DengKe, JIANG Lin. Studying the Molecular Mechanism of Heart Development by Using ZBED6 Gene Knockout Pig [J]. Scientia Agricultura Sinica, 2018, 51(7): 1390-1400.
[13] REN ShiLong, BAI Hui, WANG yongFang, QUAN JianZhang, DONG ZhiPing, LI ZhiYong, XING JiHong. Identification and Analysis of Magnaporthe oryzae of Foxtail Millet Avirulence Genes [J]. Scientia Agricultura Sinica, 2018, 51(6): 1079-1088.
[14] HOU Rui, WANG ChenFang. The Function of the Carbon Metabolism Regulator FgCreA in Fusarium graminearum [J]. Scientia Agricultura Sinica, 2018, 51(2): 257-267.
[15] YIN Xin, MA ShuJie, LI Mei, DENG GuoHua, HOU YuJie, CUI PengFei, SHI JianZhong, CHEN HuaLan. Amino Acid Substitutions of E627V in Polymerase Basic Protein 2 Gene Increases the Pathogenicity of the H7N9 Influenza Virus in Mice [J]. Scientia Agricultura Sinica, 2018, 51(17): 3379-3388.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!