Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (8): 1430-1439.doi: 10.3864/j.issn.0578-1752.2017.08.007

• PLANT PROTECTION • Previous Articles     Next Articles

Gene Cloning and Functional Analysis of GcAP1 Complex Beta Subunit in Glomerella cingulata

ZHANG JunXiang, JI ZhiRui, WANG Na, XU ChengNan, CHI FuMei, ZHOU ZongShan   

  1. Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, Liaoning
  • Received:2016-12-26 Online:2017-04-16 Published:2017-04-16

Abstract: 【Objective】 The objectives of this study are to determine the function of β subunit of adaptor protein GcAP1 complex in growth and pathogenicity of Glomerella leaf spot of apple pathogen Glomerella cingulata, investigate expression patterns of the GcAP1β in the fungal growth and pathogenicity, decipher whether or not GcAP1β regulate the expression of endopolygalacturonase genes CgPG1 and CgPG2, pectin lyase genes pnl-1 and pnl-2, pectate lyase genes pelA and pelB, and to lay a foundation for further studies of adaptor protein in pathogenic signal transduction pathways of G. cingulata. 【Method】 Based on the GcAP1β deletion vector and GcAP1β-gfp fused expression vector, the Δgcap1β mutant and the GcAP1β complementation strain Δgcap1β-GcAP1β were structured using ATMT, respectively, verified by RT-PCR and Southern blot analysis. Colony growth rate, sporulation, germination rate, appressorial formation rate and pathogenicity of the Δgcap1β mutant and the GcAP1β complementation strain Δgcap1β-GcAP1β were assayed, compared with the wild-type strain W16. GcAP1β subcellular localization was carried out with the bioinformatics softwares ProtComp 9.0 and TMHMM, along with signal observation of GcAP1β-GFP. The GcAP1β expression levels in hyphae, conidia, appressoria and pathogenicity stage were identified by qRT-PCR. Moreover, the expression levels of CgPG1, CgPG2, pnl-1, pnl-2, pelA and pelB in the wild-type strain W16 and the Δgcap1β mutant were detected, respectively. 【Result】 GcAP1β is 2 321 bp in length, including 3 introns, which encodes a 720 amino acids. Compared with the wild-type strain W16, the Δgcap1β mutant showed a rill-like fold colony and decreased growth, while sporulation, germination rate and appressorial formation rate were unaffected. Virulence of the Δgcap1β mutant reduced significantly, which induced tiny spots on the leaves. Moreover, the GcAP1β complementation strain Δgcap1β-GcAP1β fully restored the phenotype flaws by reintroducing GcAP1β to the Δgcap1β mutant. Fluorescent signal showed that the fused protein GcAP1β-GFP was distributed to the cytoplasm. qRT-PCR analysis showed that GcAP1β expresses through the lifecycle of G. cingulata, and the highest expression level of GcAP1β occurred at the post-invasion to leaves. Compared with WT, the Δcgap1β mutant showed a drastic reduction of CgPG1 transcripts (20.3%), CgPG2 transcripts (16.5%), pnl-1 transcripts (8.2%), pnl-2 transcripts (14.4%), pelA transcripts (4.4%) and pelB transcripts (0.8%). 【Conclusion】 The adaptor protein GcAP1 complex is distributed to the cytoplasm and is necessary for growth and development of G. cingulata; GcAP1 regulates the expression of CgPG1, CgPG2, pnl-1, pnl-2, pelA and pelB and is a vital virulence factor of G. cingulata.

Key words: adaptor protein, pectinase, apple, Colletotrichum, virulence

[1]    JACKSON L P, KELLY B T, MCCOY A J, GAFFRY T, JAMES L C, COLLINS B M, HONING S, EVANS P R, OWEN D J. A large-scale conformational change couples membrane recruitment to cargo binding in the AP2 clathrin adaptor complex. Cell, 2010, 141(7): 1220-1229.
[2]    李保华, 王彩霞, 董向丽. 我国苹果主要病害研究进展与病害防治中的问题. 植物保护, 2013, 39(5): 46-54.
Li B H, Wang C X, DONG X L. Research progress in apple diseases and problems in the disease management in China. Plant protection, 2013, 39(5): 46-54. (in Chinese)
[3]    WANG C X, ZHANG Z F, LI B H, WANG H Y, DONG X L. First report of Glomerella leaf spot of apple caused by Glomerella cingulata in China. Plant Disease, 2012, 96(6): 912.
[4]    任斌, 高小宁, 韩青梅, 黄丽丽. 苹果炭疽叶枯病病原Glomerella cingulata及其侵染过程. 植物保护学报, 2014, 41(5): 608-614.
REN B, GAO X N, HAN Q M, HUANG L L. Etiology and infection process of Glomerella cingulata causing Glomerella leaf spot of apple. Acta Phytophylacica Sinica, 2014, 41(5): 608-614. (in Chinese)
[5]    张俊祥, 吴建圆, 冀志蕊, 迟福梅, 蒋晓玲, 董庆龙, 周宗山. 农杆菌介导的苹果炭疽叶枯病菌遗传转化及插入突变体的筛选. 基因组学与应用生物学, 2014, 33(6): 1261-1267.
ZHANG J X, WU J Y, JI Z R, CHI F M, JIANG X L, DONG Q L, ZHOU Z S. Agrobacterium tumefaciens-mediated transformation of Glomerella cingulata and screening pathogenicity-deficient mutants. Genomics and Applied Biology, 2014, 33(6): 1261-1267. (in Chinese)
[6]    GONZÁLEZ E, SUTTON T B. Population diversity within isolates of Colletotrichum spp. causing Glomerella leaf spot and bitter rot of apples in three orchards in north Carolina. Plant Disease, 2004, 88(12): 1335-1340.
[7]    VELHO A C, STADNIK M J, CASANOVA L, MONDINO P, ALANIZ S. First report of Colletotrichum karstii causing Glomerella leaf spot on apple in Santa Catarina State, Brazil. Plant Disease, 2014, 98(1): 157.
[8]    王薇, 符丹丹, 张荣, 孙广宇. 苹果炭疽叶枯病病原学研究. 菌物学报, 2015, 34(1): 13-25.
WANG W, FU D D, ZHANG R, SUN G Y. Etiology of apple leaf spot caused by Colletotrichum spp. Mycosystema, 2015, 34(1): 13-25. (in Chinese)
[9]    KUBO Y, TAKANO Y. Dynamics of infection-related morphogenesis and pathogenesis in Colletotrichum orbiculare. Journal of General Plant Pathology, 2013, 79(4): 233-242.
[10]   CENTIS S, DUMAS B, FOURNIER J, MAROLDA M, ESQUERRE-TUGAYE M T. Isolation and sequence analysis of Clpg1, a gene coding for an endopolygalacturonase of the phytopathogenic fungus Colletotrichum lindemuthianum. Gene, 1996, 170(1): 125-129.
[11]   LI J, GOODWIN P H. Expression of cgmpg2, an endopolygalacturonase gene of Colletotrichum gloeosporioides f. sp. malvae, in culture and during infection of Malva pusilla. Journal of Phytopathology, 2002, 150(4/5): 213-219.
[12]   SHIH J, WEI Y, GOODWIN P H. A comparison of the pectate lyase genes, pel-1 and pel-2, of Colletotrichum gloeosporioides f. sp. malvae and the relationship between their expression in culture and during necrotrophic infection. Gene, 2000, 243(1/2): 139-150.
[13]   WEI Y D, SHIH J, LI J R, GOODWIN P H. Two pectin lyase genes, pnl-1 and pnl-2, from Colletotrichum gloeosporioides f. sp. malvae differ in a cellulose-binding domain and in their expression during infection of Malva pusilla. Microbiology, 2002, 148: 2149-2157.
[14]   YAKOBY N, BENO-MOUALEM D, KEEN N T, DINOOR A, PINES O, PRUSKY D. Colletotrichum gloeosporioides pelB is an important virulence factor in avocado fruit-fungus interaction. Molecular plant-microbe interactions, 2001, 14(8): 988-995.
[15]   ALKAN N, MENG X, FRIEDLANDER G, REUVENI E, SUKNO S, SHERMAN A, THON M, FLUHR R, PRUSKY D. Global aspects of pacC regulation of pathogenicity genes in Colletotrichum gloeosporioides as revealed by transcriptome analysis. Molecular plant-microbe interactions, 2013, 26(11): 1345-1358.
[16]   OHNO H. Clathrin-associated adaptor protein complexes. Journal of cell science, 2006, 119(18): 3719-3721.
[17]   OWEN D J, COLLINS B M, EVANS P R. Adaptors for clathrin coats: structure and function. Annual review of cell and developmental biology, 2004, 20: 153-191.
[18]   Boehm M, Bonifacino J S. Adaptins - The final recount. Molecular Biology of the Cell, 2001, 12(10): 2907-2920.
[19]   HIRST J, BARLOW L D, FRANCISCO G C, SAHLENDER D A, SEAMAN M N J, DACKS J B, ROBINSON M S. The fifth adaptor protein complex. PlosBiology, 2011, 9(10): e1001170.
[20]   ROBINSON M S, BONIFACINO J S. Adaptor-related proteins. Current Opinion in Cell Biology, 2001, 13(4): 444-453.
[21]   ROBINSON M S, SAHLENDER D A, FOSTER S D. Rapid inactivation of proteins by rapamycin-induced rerouting to mitochondria. Developmental Cell, 2010, 18(2): 324-331.
[22]   He Y Q. An improved protocol for fungal DNA preparation. Mycosystema, 2000, 19(3): 434.
[23]   ZHANG J X, WU X X, BI Y Q, WU Y X, LIN G H, HE Y Q, MAO Z C. First report of Fusarium proliferatum infecting carnation (Dianthus caryophyllus L.) in China. Journal of Phytopathology, 2013, 161(11/12): 850-854.
[24]   ZHANG J X, WU Y X, HO H H, ZHANG H, HE P F, HE Y Q. BZcon1, a SANT/Myb-type gene involved in the conidiation of Cochliobolus carbonum. G3-Genes Genomes Genetics 2014, 4(8): 1445-1453.
[25]   LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 2001, 25(4): 402-408.
[26]   LIU Y G, CHEN Y. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques, 2007, 43(5): 649-656.
[27]   CHOI J, CHEONG K, JUNG K, JEON J, LEE G W, KANG S, KIM S, LEE Y W, LEE Y H. CFGP 2.0: a versatile web-based platform for supporting comparative and evolutionary genomics of fungi and Oomycetes. Nucleic acids research, 2013, 41: D714-D719.
[28]   LI M X, GONG X Y, ZHENG J, JIANG D H, FU Y P, HOU M S. Transformation of Coniothyrium minitans, a parasite of Sclerotinia sclerotiorum, with Agrobacterium tumefaciens. FEMS microbiology letters, 2005, 243(2): 323-329.
[29]   LEE M H, BOSTOCK R M. Agrobacterium T-DNA-mediated integration and gene replacement in the brown rot pathogen Monilinia fructicola. Current Genetics, 2006, 49(5): 309-322.
[30]   WU J, JI Z, WANG N, CHI F, XU C, ZHOU Z, ZHANG J. Identification of conidiogenesis-associated genes in Colletotrichum gloeosporioides by Agrobacterium tumefaciens-mediated transformation. Current microbiology, 2016, 73(6): 802-810.
[31]   XU J R, URBAN M, SWEIGARD J A, HAMER J E. The CPKA gene of Magnaporthe grisea is essential for appressorial penetration. Molecular plant-microbe interactions, 1997, 10(2): 187-194.
[32]   HUNTER S, JONES P, MITCHELL A, APWEILER R, ATTWOOD T K, BATEMAN A, BERNARD T, BINNS D, BORK P, BURGE S, DE CASTRO E, COGGILL P, CORBETT M, DAS U, DAUGHERTY L, DUQUENNE L, FINN RD, FRASER M, GOUGH J, HAFT D, HULO N, KAHN D, KELLY E, LETUNIC I, LONSDALE D, LOPEZ R, MADERA M, MASLEN J, MCANULLA C, MCDOWALL J, MCMENAMIN C, MI H Y, MUTOWO-MUELLENET P, MULDER N, NATALE D, ORENGO C, PESSEAT S, PUNTA M, QUINN AF, RIVOIRE C, SANGRADOR-VEGAS A, SELENGUT JD, SIGRIST C J A, SCHEREMETJEW M, TATE J, THIMMAJANARTHANAN M, THOMAS P D, WU C H, YEATS C, YONG S Y. InterPro in 2011: new developments in the family and domain prediction database. Nucleic acids research, 2012, 40: D306-D312.
[33]   MITCHELL A, CHANG H Y, DAUGHERTY L, FRASER M, HUNTER S, LOPEZ R, MCANULLA C, MCMENAMIN C, NUKA G, PESSEAT S, SANGRADOR-VEGAS A, SCHEREMETJEW M, RATO C, YONG SY, BATEMAN A, PUNTA M, ATTWOOD TK, SIGRIST C J A, REDASCHI N, RIVOIRE C, XENARIOS I, KAHN D, GUYOT D, BORK P, LETUNIC I, GOUGH J, OATES M, HAFT D, HUANG H Z, NATALE DA, WU C H, ORENGO C, SILLITOE I, MI HY, THOMAS P D, FINN R D. The InterPro protein families database: the classification resource after 15 years. Nucleic acids research, 2015, 43: D213-D221.
[34]   PETERSEN T N, BRUNAK S, VON HEIJNE G, NIELSEN H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, 2011, 8(10): 785-786.
[35]   STEINBERG G. Hyphal growth: a tale of motors, lipids, and the Spitzenkorper. Eeukaryotic Cell, 2007, 6(3): 351-360.
[36]   ROBINSON M S, SAHLENDER D A, FOSTER S D. Rapid inactivation of proteins by rapamycin-induced rerouting to mitochondria. Developmental cell, 2010, 18(2): 324-331.
[37]   吴建圆, 冀志蕊, 李壮, 程存刚, 周宗山, 张俊祥. npt基因真菌表达载体的构建及在苹果炭疽叶枯病菌遗传转化中的应用. 基因组学与应用生物学, 2015, 34(10): 2156-2160.
WU J Y, JI Z R, LI Z, CHENG C G, ZHOU Z S, ZHANG J X. Construction of the fungus expression vector of nptⅡ gene and applying to the genetic transformation in Glomerella cingulata. Genomics and Applied Biology, 2015, 34(10): 2156-2160. (in Chinese)
[38]   RAMEZANI-RAD M. The role of adaptor protein Ste50-dependent regulation of the MAPKKK Ste11 in multiple signalling pathways of yeast. Current Genetics, 2003, 43(3): 161-170.
[39]   REIGNAULT P H, KUNZ C, DELAGE N, MOREAU E, VEDEL R, HAMADA W, BOMPEIX G, BOCCARA M. Host- and symptom- specific pectinase isozymes produced by Botrytis cinerea. Mycological Research, 2000, 104(4): 421-428.
[1] LIU RUI, ZHAO YuHan, FU ZhongJu, GU XinYi, WANG YanXia, JIN XueHui, YANG Ying, WU WeiHuai, ZHANG YaLing. Distribution and Variation of PWL Gene Family in Rice Magnaporthe oryzae from Heilongjiang Province and Hainan Province [J]. Scientia Agricultura Sinica, 2023, 56(2): 264-274.
[2] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[3] WANG WenJuan,SU Jing,CHEN Shen,YANG JianYuan,CHEN KaiLing,FENG AiQing,WANG CongYing,FENG JinQi,CHEN Bing,ZHU XiaoYuan. Pathogenicity and Avirulence Genes Variation of Magnaporthe oryzae from a Rice Variety Meixiangzhan 2 in Guangdong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1346-1358.
[4] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[5] LU Xiang, GAO Yuan, WANG Kun, SUN SiMiao, LI LianWen, LI HaiFei, LI QingShan, FENG JianRong, WANG DaJiang. Analysis of Aroma Characteristics in Different Cultivated Apple Strains [J]. Scientia Agricultura Sinica, 2022, 55(3): 543-557.
[6] TANG ZiYun,HU JianXin,CHEN Jin,LU YiXing,KONG LingLi,DIAO Lu,ZHANG FaFu,XIONG WenGuang,ZENG ZhenLing. Relationship Between Biofilm Formation and Molecular Typing of Staphylococcus aureus from Animal Origin [J]. Scientia Agricultura Sinica, 2022, 55(3): 602-612.
[7] GAO XiaoQin,NIE JiYun,CHEN QiuSheng,HAN LingXi,LIU Lu,CHENG Yang,LIU MingYu. Geographical Origin Tracing of Fuji Apple Based on Mineral Element Fingerprinting Technology [J]. Scientia Agricultura Sinica, 2022, 55(21): 4252-4264.
[8] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[9] XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency [J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612.
[10] SONG BoWen,YANG Long,PAN YunFei,LI HaiQiang,LI Hao,FENG HongZu,LU YanHui. Effects of Agricultural Landscape on the Population Dynamic of Grapholitha molesta Adults in Apple Orchards in Southern Xinjiang [J]. Scientia Agricultura Sinica, 2022, 55(1): 85-95.
[11] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[12] CHEN ChaoXi,LI YuHan,TAN Min,WANG Lu,HUANG ZhiHong. Biofilm-Forming Phenotype, Antibacterial Resistance Genes, Integrase Genes and Virulence Genes Detection of Escherichia coli Isolated from Yaks and Tibetan Pigs in Northwest Sichuan Plateau [J]. Scientia Agricultura Sinica, 2021, 54(23): 5144-5162.
[13] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[14] CAI Ni,YAN DuoZi,NONG XiangQun,WANG GuangJun,TU XiongBing,ZHANG ZeHua. Adhesin Gene mad2 Knockout and Functional Effects on Biological Characteristics and Inducing Plant Responses in Metarhizium anisopliae [J]. Scientia Agricultura Sinica, 2021, 54(22): 4800-4812.
[15] LI ZiTeng,CAO YuHan,LI Nan,MENG XiangLong,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Molecular Variation and Phylogenetic Relationship of Apple Scar Skin Viroid in Seven Cultivars of Apple [J]. Scientia Agricultura Sinica, 2021, 54(20): 4326-4336.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!