Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (10): 1830-1841.doi: 10.3864/j.issn.0578-1752.2018.10.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Rice Overexpression of Millet SiANT1 Gene Increases Salt Tolerance

Lei NING1(), ShuGuang WANG1, PengJu JU1, XingXuan BAI1, LinHao GE2, Xin QI2, QiYan JIANG2, XianJun SUN2, Ming CHEN2(), DaiZhen SUN1()   

  1. 1College of Agronomy, Shanxi Agricultural University, Taigu 030800, Shanxi
    2Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2017-12-01 Accepted:2018-02-02 Online:2018-05-16 Published:2018-05-16

Abstract:

【Objective】 High salt stress is one of the main factors affecting crop yield. Setaria italica L. is characterized by its strong tolerance to stress. Therefore, screening salt tolerant related genes from millet is important for salt stress tolerant improvement of crops through genetic transformation.【Method】 The expression profile of AP2/ERF like gene SiANT1 were analyzed in Yugu 1 at seedling stage under high salt, low nitrogen and PEG simulated drought conditions. Millet gene SiANT1 was transformed into rice Kitaake by agrobacterium-mediated transformation method. overexpressing SiANT1 rice seeds and wild type Kitaake were digested with 0.9% saline and tap water, respectively. The phenotypes of germinating stage and germination rate were observed. Rice seedlings were treated with 0.9% NaCl in Hogland nutrient solution for 10 days and then dried at 65℃ for 48 hours dry weights of all the rice overexpressing SiANT1 and wild type (WT) plants were analyzed. At the same time, phenotype of all plants was analyzed in the field and all plants were irrigated once with 0.9% saline before rice pregnancy. Under the similar salt treatment condition, single seed grain weigh plant height and tiller number per plant of the overexpressing SiANT1 rice lines and wild type were also analyzed. The real time-PCR method was used to verify the expression of SiANT1 and its possible downstream genes in transgenic rice lines.【Result】 Setaria italica L. SiANT1 protein (XP004985124.1, SiANT1) belongs to the AP2 subfamily and has a close genetic relationship with sorghum (XP021318293.1, SbANT1) and maize (XP008658933.1, ZmAP2).The gene of SiANT1 was induced by high salt stress (100 mmol·L-1 NaCl) in Yugu 1. The SiANT1 was ligated to LP047 1118-Bar-ubi-EDLL vector, Agrobacterium transformation method was used to transfer SiANT1 into rice genome, positive T0 plants were screened, then breeded two generations and got T3 seeds. Under water immersion, the germination rate of SiANT1 overexpression rice was similar to that of wild type. Germination rate was more than 90%. Under 0.9% saline immersion, the overexpression of SiANT1 was significantly inhibited. Compared with the wild type, over-expression of SiANT1 rice seeds dew white was delayed, but finally(treatmented for 120h) germination rate was more than 80% .After treatment with 0.9% NaCl at seedling stage in greenhouse, the dry weight of single plant overexpressing SiANT1 increased 14.11%-37.42% more than that of WT, which had significant difference at the 1% level. The grain weight of transgenic rice overexpression SiANT1 in field increased 56.12%-76.58% higher than that of WT, which had significant difference at the 5% level, the number of tillers per plant and plant height increased, but there was no significant difference with the wild-type. Semi-quantitative RT-PCR analysis showed that all three rice lines overexpressing SiANT1 expressed SiANT1 at the RNA level. Real time-PCR results showed that the relative expression level of SiANT1 in three rice lines overexpressing SiANT1 was different but significantly increased compared with that of the recipient, and the relative expression levels of endogenous salt-tolerance-related genes OsSOS1 and OsZFP182 were 1.1-1.7 fold and 1.6-2.3 fold respectively higher than that of the recipient.【Conclusion】 It has been confirmed that OsSOS1 and OsZFP182 are salt tolerance related genes. SiANT1 gene has certain salt tolerance. Overexpression of SiANT1 in rice may increase salt tolerance by increasing the expression of downstream genes OsSOS1 and OsZFP182.

Key words: millet (Setaria italica L.), SiANT1 gene, AP2 / ERF transcription factor, salt tolerance, salt tolerant related genes

Fig. 1

Phylogenetic tree constructed using part of the plant AP2/ERF like transcription factor"

Fig. 2

The expression profile of SiANT1 gene in Yugu 1 under various stresses conditions including 100 mmol·L-1 NaCl, 0.2 μmol·L-1 LN, 10% PEG6000"

Fig. 3

T-DNA segment of LP047 1118-Bar-ubi-EDLL vector"

Table 1

Data of indoor post-salt treatment of SiANT1 overexpressing rice lines and recipient Kitaake during seedling period"

材料
Material
地上部干重
Shoot and leaves dry weight (g/5 strains)
根干重
Root dry weight (g/5 strains)
单株干重
Dry weight per plant (g)
Kitaake 0.0617±0.0010B 0.0198±0.0011C 0.0163±0.0010C
M30103-13 0.0747±0.0007A 0.0372±0.0011A 0.0224±0.0009A
M30103-14 0.0708±0.0011A 0.0397±0.0013A 0.0221±0.0012A
M30103-15 0.0620±0.0009B 0.0311±0.0010B 0.0186±0.0009B

Table 2

field survey of agronomic traits during the whole growth period"

材料
Material
土样离子浓度
Soil sample ion concentration (μs·cm-1)
单株分蘖数
Number of tillers per plant
株高
Plant height (cm)
单株籽粒重
Grain weight per plant (g)
Kitaake 882±28.58a 20±1.63b 60±1.41a 10.46±1.13b
M30103-13 903±8.98a 25±4.97ab 64.6±4.71a 18.47±2.56a
M30103-14 889±13.88a 25±2.16a 63±5.37a 17.00±2.34a
M30103-15 885±29.39a 19±2.05ab 62±2.28a 16.33±1.41a

Fig. 4

Phenotypes and germination rates of over-expressing SiANT1 rice seeds and wild Kitaake seeds treated with 0.9% NaCl and tap water, respectively"

Fig. 5

Positive detection of overexpression of SiANT1 in rice and its receptor Kitaake"

Fig. 6

Semi-quantitative(A) and quantitative PCR(B) of SiANT1 in transgenic rice lines and its receptor Kitaake"

Fig. 7

The relative expression of downstream genes in transgenic rice"

[1] MO J B, LI D Y, ZHANG H J, SONG F M.Roles of ERF Transcription factors in biotic and abiotic stress response in plants.Plant Physiology Journal, 2011, 47(12): 1145-1154.
doi: 10.1631/jzus.B1000278
[2] 黄锁. 谷子耐盐相关基因SiNF-YA5和SiATG4的功能分析及调控途径解析[D]. 北京: 中国农业科学院, 2016.
HUANG S.Functional analysis and regulatory pathway analysis of salt-tolerance related genes SiNF-YA5 and SiATG4 in millet[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese)
[3] OHME-TAKAGI M, SHINSHI H.Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element.The Plant Cell, 1995, 7: 173-182.
doi: 10.2307/3869993 pmid: 7756828
[4] SAKUMA Y, LIU Q, DUBOUZET J G, ABE H, SHINOZAKI K, YAMAGUCHI S K.DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs transcription factors involved in dehydration-and cold-inducible gene expression. Biochemical & Biophysical Research Communications, 2002, 290(3): 998-1009.
doi: 10.1006/bbrc.2001.6299 pmid: 11798174
[5] 张计育, 王庆菊, 郭忠仁. 植物AP2/ERF类转录因子研究进展. 遗传, 2012, 34(7): 835-847.
doi: 10.3724/SP.J.1005.2012.00835
ZHANG J Y, WANG Q J, GUO Z R.Research progress on plant AP2 /ERF transcription factors.Genetics, 2012, 34(7): 835-847. (in Chinese)
doi: 10.3724/SP.J.1005.2012.00835
[6] OHTO M A, FISCHER R L, GOLDBERG R B, NAKAMURA K, HARADA J J.Control of seed mass by APETALA2. Proceedings of the National Academy of Sciences of the USA, 2005, 102(8): 3123-3128.
[7] KLUCHER K M, CHOW H, REISER L, FISCHER R L.The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. The Plant Cell, 1996, 8(2): 137-153.
[8] ELLIOTT R, BETZNER A, HUTTNER E, OAKES M, TUCKER W, GERENTES D, PEREZ P, SMYTH D. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. The Plant Cell, 1996, 8: 155-168.
[9] KRIZEK B.Ectopic expression of AINTEGUMENTA in Arabidopsis plants results in increased growth of floral organs. Developmental Genetics, 1999, 25: 224-236.
doi: 10.1002/(SICI)1520-6408(1999)25:3<224::AID-DVG5>3.0.CO;2-Y pmid: 10528263
[10] MIZUKAMI Y, FISCHER R.Plant organ size control:AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97: 942-947.
doi: 10.1073/pnas.97.2.942 pmid: 10639184
[11] NOLEWILSON S, KRIZEK B.AINTEGUMENTA contributes to organ polarity and regulates growth of lateral organs in combination with YABBY genes. Plant Physiology, 2006, 141: 977-987.
doi: 10.1104/pp.106.076604 pmid: 16714408
[12] KRIZEK B. AINTEGUMENTA and AINTEGUMENTA-LIKE6 act redundantly to regulate Arabidopsis floral growth and patterning. Plant Physiology, 2009, 150: 1916-1929.
[13] KAGAYA Y, OHMIYA K, HATTORI T.RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants.Nucleic Acids Research, 1999, 27(2): 470-478.
doi: 10.1093/nar/27.2.470 pmid: 9862967
[14] SOHN K H, LEE S C, JUNG H W, HONG J K, HWANG B K.Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance.Plant Molecular Biology, 2006, 61(6): 897-915.
doi: 10.1007/s11103-006-0057-0 pmid: 16927203
[15] YAMAGUCHISHINOZAKI K, SHINOZAKI K.A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. The Plant Cell, 1994, 6(2): 251-264.
doi: 10.1105/tpc.6.2.251 pmid: 8148648
[16] THOMASHOW M F.PLANT COLD ACCLIMATION: Freezing tolerance genes and regulatory mechanisms.Annual Review of Plant Biology, 1999, 50: 571-599.
doi: 10.1146/annurev.arplant.50.1.571 pmid: 15012220
[17] ZHANG X X, TANG Y J, MA Q B, YANG C Y, MU Y H, SUO H C, LUO L H, NIAN H.OsDREB2A, a rice transcription factor, significantly affects salt tolerance in transgenic soybean.PLoS ONE, 2013, 8(12): e83011.
doi: 10.1371/journal.pone.0083011 pmid: 24376625
[18] HAO D Y, OHME-TAKAGI M, SARAI A.Unique mode of GCC box recognition by the DNA-binding domain of ethylene responsive element-binding factor (ERF domain) in plants.Journal of Biological Chemistry, 1998, 273(41): 26857-26861.
doi: 10.1074/jbc.273.41.26857 pmid: 9756931
[19] TANG Y H,QINS S, GUO Y L, CHEN Y B, WU P Z, CHEN Y P, LI M R, JIANG H W, WU G J.Genome-wide analysis of the AP2/ERF gene family in physic nut and overexpression of the JcERF011 gene in rice increased its sensitivity to salinity stress. PLoS ONE, 2016, 11(3): e0150879.
doi: 10.1371/journal.pone.0150879 pmid: 26943337
[20] LIU D F, CHEN X J, LIU J Q, YE J C, GUO Z J.The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. Journal of Experimental Botany, 2012, 63(10): 3899-3911.
[21] LI C, YUE J, WU X W, XU C, YU J J.An ABA-responsive DRE-binding protein gene from Setaria italica,SiARDP, the target gene of SiAREB, plays a critical role under drought stress. Journal of Experimental Botany, 2014, 65(18): 5415-5427.
doi: 10.1093/jxb/eru302 pmid: 4157718
[22] 窦祎凝, 秦玉海, 闵东红, 张小红, 王二辉, 刁现民, 贾冠清, 徐兆师, 李连城, 马有志, 陈明. 谷子转录因子SiNAC18 通过ABA 信号途径正向调控干旱条件下的种子萌发. 中国农业科学, 2017, 50(16): 3071-3081.
doi: 10.3864/j.issn.0578-1752.2017.16.002
DOU Y N, QIN Y H, MIN D H, ZHANG X H, WANG E H, DIAO X M, JIA G Q, XU Z S, LI L C, MA Y Z, CHEN M.Transcription factor SiNAC18 positively regulates seed germination under drought stress through ABA signaling pathway in foxtail millet(Setaria italic L.). Scientia Agricultura Sinica, 2017, 50(16): 3071-3081. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.16.002
[23] 王智兰, 杜晓芬, 王军, 杨慧卿, 王兴春, 郭二虎, 王玉文, 袁峰
田岗, 刘鑫, 王秋兰, 李会霞, 张林义, 彭书忠. 谷子SiARGOS1的克隆、表达分析和功能标记开发. 中国农业科学, 2017, 50(22): 4266-4276.
24 WANG Z L, DU X F, WANG J, YANG H Q, WANG X C, GUO E H,WANG Y W, YUAN F, TIAN G, LIU X, WANG Q L, LI H X, ZHANG L Y, PENG S Z.Molecular cloning, expression analysis and development of functional markers forSiARGOS1 gene in foxtail millet. Scientia Agricultura Sinica, 2017, 50(22): 4266-4276. (in Chinese)
[24] 杨霞. 两个水稻金属离子转运体基因和两个水稻锌指蛋白基因的克隆与功能研究[D]. 南京: 南京农业大学, 2007.
YANG X.Cloning and functional analysis of two rice metal ion transporter genes and two rice zinc finger protein genes[D]. Nanjing: Nanjing Agricultural University, 2007. (in Chinese)
[25] KIM B R, NAM H Y, KIM S U, KIM S I, CHANG Y J.Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice.Biotechnology Letters, 2003, 25: 1869-1872.
[26] MARTÍNEZ-ATIENZA J, JIANG X, GARCIADEBLAS B, MENDOZA I, ZHU J K, PARDO J M, QUINTERO F J. Conservation of the salt overly sensitive pathway in rice.Plant Physiology, 2007, 143(2): 1001-1012.
[27] SCHMIDT R, MIEULET D, HUBBERTEN H M, OBATA T, HOEFGEN R, FERNIE A R, FISAHN J, SAN-SEGUNDO B, GUIDERDONI E, SCHIPPERS J H, MUELLER-ROEBER B.SALT-RESPONSIVE ERF1 regulates reactive oxygen species- dependent signaling during the initial response to salt stress in rice.The Plant Cell, 2013, 25(6): 2115-2131.
[28] HUANG J, YANG X, WANG M M, TANG H J, DING L Y, SHEN Y, ZHANG H S.A novel rice C2H2-type zinc finger protein lacking DLN-box/EAR-motif plays a role in salt tolerance.Biochimica ET Biophysica Acta Gene Structure & Expression, 2007, 1769(4): 220-227.
doi: 10.1016/j.bbaexp.2007.02.006 pmid: 17434609
[29] 沈义国, 陈受宜. 植物盐胁迫应答的分子机制. 遗传, 2001, 23(4): 365-369.
SHEN Y G, CHEN S Y.Molecular mechanism of salt stress response in plants.Genetics, 2001, 23(4): 365-369. (in Chinese)
[30] BOHNERT H J, SHEN B.Transformation and compatible solutes.Scientia Horticulturae, 1999, 78: 237-260.
[31] HASEGAWA P M, BRESSAN R A, ZHU J K, BOHNERT H J.Plant cellular and molecular responses to high salinity.Annual Review of Plant Physiology & Plant Molecular Biology, 2000, 51: 463-499.
[32] 张宏. 水稻C2H2型锌指蛋白ZFP182和ZFP36在ABA诱导的抗氧化防护中的功能分析[D]. 南京: 南京农业大学, 2012.
ZHANG H.Functional analysis of rice C2H2 zinc finger proteins ZFP182 and ZFP36 in anti-oxidative protection induced by ABA[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese)
[33] CALKHOVEN C F, GEERT A B.Multiple steps in the regulation of transcription-factor level and activity. Biochemical Journal, 1996, 317(2): 329-342.
doi: 10.1107/S0108768101004141 pmid: 8713055
[34] RANDALL R S, SORNAY E, DEWITTE W, MURRAY J A H.AINTEGUMENTA and the D-type cyclin CYCD3;1 independently contribute to petal size control in Arabidopsis: evidence for organ size compensation being an emergent rather than a determined property.. Journal of Experimental Botany, 2015, 66: 3991-4000.
[35] DONGHA O, SANGYEOL L, BRESSAN R A, YUN D J, BOHNERT H J.Intracellular consequences of SOS1 deficiency during salt stress.Journal of Experimental Botany, 2010, 61(4): 1205-1213.
doi: 10.1093/jxb/erp391 pmid: 2826659
[36] SHI H, QUINTERO F J, PARDO J M, ZHU J K.The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants.The Plant Cell, 2002, 14: 465-477.
[37] QIU Q S, GUO Y, DIETRICH M A, SCHUMAKER K S, ZHU J K.Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences of the USA, 2002, 99(12): 8436-8441.
[38] PARDO J M, CUBERO B, LEIDI E O, QUINTERO F J.Alkali cation exchangers: Roles in cellular homeostasis and stress tolerance.Journal of Experimental Botany, 2006, 57(5): 1181-1199.
doi: 10.1093/jxb/erj114 pmid: 16513813
[1] SHI XiaoLong, GUO Pei, REN JingYao, ZHANG He, DONG QiQi, ZHAO XinHua, ZHOU YuFei, ZHANG Zheng, WAN ShuBo, YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[2] BIAN LanXing,LIANG LiKun,YAN Kun,SU HongYan,LI LiXia,DONG XiaoYan,MEI HuiMin. Effects of Trichoderma on Root and Leaf Ionic Homeostasis and Photosystem II in Chinese Wolfberry Under Salt Stress [J]. Scientia Agricultura Sinica, 2022, 55(12): 2413-2424.
[3] MENG Rui,LIU Ye,ZHAO Shuang,FANG WeiMin,JIANG JiaFu,CHEN SuMei,CHEN FaDi,GUAN ZhiYong. Effects of Rootstock and Scion Interaction on Salt Tolerance of Grafted Chrysanthemum Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(3): 629-642.
[4] GUO MeiJun,BAI YaQing,GAO Peng,SHEN Jie,DONG ShuQi,YUAN XiangYang,GUO PingYi. Effect of MCPA on Leaf Senescence and Endogenous Hormones Content in Leaves of Foxtail Millet Seedlings [J]. Scientia Agricultura Sinica, 2020, 53(3): 513-526.
[5] QIN Ling, ZHANG YanTing, CHEN ErYing, YANG YanBing, LI FeiFei, GUAN YanAn. Screening for Germplasms Tolerant to Salt at Germination Stage and Response of Protective Enzymes to Salt Stress in Foxtail Millet [J]. Scientia Agricultura Sinica, 2019, 52(22): 4027-4038.
[6] ZHANG Fei,WANG YanQiu,ZHU Kai,ZHANG ZhiPeng,ZHU ZhenXing,LU Feng,ZOU JianQiu. Comparative Transcriptome Analysis of Different Salt Tolerance Sorghum (Sorghum bicolor L. Moench) Under Salt Stress [J]. Scientia Agricultura Sinica, 2019, 52(22): 4002-4015.
[7] LI XiaoBo,LI Zhen,DAI ShaoJun,PAN JiaoWen,WANG QingGuo,GUAN YanAn,DING GuoHua,LIU Wei. Response of Receptor-Like Protein Kinase Gene SiRLK35 of Foxtail Millet to Salt in Heterologous Transgenic Rice [J]. Scientia Agricultura Sinica, 2019, 52(22): 3976-3986.
[8] YUAN YuHao, YANG QingHua, DANG Ke, YANG Pu, GAO JinFeng, GAO XiaoLi, WANG PengKe, LU Ping, LIU MinXuan, FENG BaiLi. Salt-Tolerance Evaluation and Physiological Response of Salt Stress of Broomcorn Millet (Panicum miliaceum L.) [J]. Scientia Agricultura Sinica, 2019, 52(22): 4066-4078.
[9] ZHANG HuiYuan,LIU YongWei,YANG JunFeng,ZHANG ShuangXi,YU TaiFei,CHEN Jun,CHEN Ming,ZHOU YongBin,MA YouZhi,XU ZhaoShi,FU JinDong. Identification and Analysis of Salt Tolerance of Wheat Transcription Factor TaWRKY33 Protein [J]. Scientia Agricultura Sinica, 2018, 51(24): 4591-4602.
[10] ZHANG YuJuan, YOU Jun, LIU AiLi, LI DongHua, YU JingYin, WANG YanYan, ZHOU Rong, GONG HuiHui, ZHANG XiuRong. Screening Method for Salt Tolerance in Sesame (Sesamum indicum L.) and Identification of Candidate Salt-tolerant Genes [J]. Scientia Agricultura Sinica, 2018, 51(12): 2235-2247.
[11] HE YaJun, WU DaoMing, YOU JingCan, QIAN Wei. Genome-Wide Association Analysis of Salt Tolerance Related Traits in Brassica napus and Candidate Gene Prediction [J]. Scientia Agricultura Sinica, 2017, 50(7): 1189-1201.
[12] ZHAO LeiLin, FAN Xin, NIE Xing, LIANG ChengZhen, ZHANG Rui, SUN GuoQing, MENG ZhiGang, LIN Min, WANG Yuan, GUO SanDui. Salt and Drought Tolerance in Heterologous-Expression of irrE Transgenic Tobacco [J]. Scientia Agricultura Sinica, 2017, 50(20): 3860-3870.
[13] ZHANG Rui, DENG WenYa, YANG Liu, WANG YaPing, XIAO FangZhi, HE Jian, LU Kun. Genome-Wide Association Study of Root Length and Hypocotyl Length at Germination Stage Under Saline Conditions in Brassica napus [J]. Scientia Agricultura Sinica, 2017, 50(1): 15-27.
[14] WANG Hui-fei, SUN Yan-xiang, FENG Xue, ZHANG Yi-ming, YANG Jiang-tao, MA Mei-fang, CHEN Guang. Cloning and Expression Analysis of Argininosuccinate Synthetase Gene GhASS1 from Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2016, 49(7): 1242-1253.
[15] LIU Zi-cheng, MIAO Li-li, WANG Jing-yi, YANG De-long, MAO Xin-guo, JING Rui-lian. Cloning and Characterization of Transcription Factor TaWRKY35 in Wheat (Triticum aestivum) [J]. Scientia Agricultura Sinica, 2016, 49(12): 2245-2254.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!