Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (6): 1156-1166.doi: 10.3864/j.issn.0578-1752.2018.06.014

;

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Change in Cultivated Land Use Pattern in Oceania Based on GlobeLand30

CAO JunJun1,2 , WU WenBin1, LIU YiZhu1, HU Qiong1, CHEN Di1, XIANG MingTao1, ZHOU QingBo1   

  1. 1Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture, Beijing 100081; 2 Key Laboratory for Geographical Process Analysis and Simulation of Hubei Province, Central China Normal University, Wuhan 430079
  • Received:2017-04-24 Online:2018-03-16 Published:2018-03-16

Abstract: 【Objective】The cultivated land change are more intense due to the latitudes of Oceania North and South have significant differences in climate and various types of food production in response to climate change is extremely sensitive. This paper analyzes the spatial and temporal changes of the cultivated land use pattern in Oceania, and scientifically grasps its characteristics and laws, which provides useful reference for the utilization of cultivated land and the development of grain policy.【Method】To do that, GlobeLand30, the two global 30 meters land cover remote sensing data product with 2000 and 2010 data, is newly constructed to establish three index sets, such as cultivated land quantity index, cultivated land use pattern index and cultivated land conversion index. The characteristics of cultivated land use in Oceania from 2000 to 2010 were analyzed from multiple angles: the national scale, 10 km×10 km grid scale and 30 m pixel scale.【Result】From the perspective of the change of cultivated land area, the cultivated area of Oceania increased by 3.79% from 2000 to 2010, and the largest increase in cultivated land area was Australia, with an increase of 5.39%. The largest additions of the area were mainly concentrated in the upper reaches of the Murray-Darling River Basin, east of the Oita Mountains in Australia. The area of reduced cultivated land was mainly in the northern islands of New Zealand, the east coast of Australia, and the eastern island of Papua New Guinea. The average per capita cultivated land in the major countries decreased by 21.47% and the largest decrease in farmland per capita was New Caledonia. From the perspective of the change of cultivated land use intensity, the average cropping index of major countries increased by 20.63%, and the average fragmentation of cultivated land decreased by 22.88%. The coordination degree of the cultivated area - compound index is more elastic. There are obvious differences in the driving mechanism of cultivated land fragmentation between Australia and New Zealand. In terms of the conversion characteristics of cultivated land types, Australia was the country with the largest change of cultivated land area in 2000 and 2010. In 2000, the change area transferred out of the total cultivated land was 630.25×104 hm2, and conversion to grassland accounted for 74.77% of all other outbound areas. In 2010, the total cultivated area transferred from the grassland was 544.95×104 hm2, accounting for 59.72% of the total transferred land area. In the whole continent, the conversion area between cultivated land and grassland was the largest, but the net increase in cultivated land was the largest contribution to the shrub land, a net increase of 165.03×104 hm2.【Conclusion】In general, the change of cultivated land area in Oceania is more intense, the intensity of cultivated land use is overall improved, the conversion of cultivated land and grassland is the most frequent.

Key words: cultivated land, pattern change, GlobeLand30, Oceania

[1]    吴大放, 刘艳艳, 董玉祥, 陈梅英, 王朝晖. 我国耕地数量、质量与空间变化研究综述. 热带地理, 2010, 30(2): 108-113.
WU D F, LIU Y Y, DONG Y X, CHEM M Y, WANG Z H. Review on the research of quantity, quality and spatial change of cultivated land in china. Tropical Geogaraphy, 2010, 30(2): 108-113. (in Chinese)
[2]    唐华俊, 吴文斌, 余强毅, 夏天, 杨鹏, 李正国. 农业土地系统研究及其关键科学问题. 中国农业科学, 2015, 48(5): 900-910.
TANG H J, WU W B, YU Q Y, XIA T, YANG P, LI Z G. Key research priorities for agricultural land system studies. Scientia Agricultura Sinica, 2015, 48(5): 900-910. (in Chinese)
[3]    HUANG J K, WANG Y J, WANG J X. Farmers' adaptation to extreme weather events through farm management and its impacts on the mean and risk of rice yield in China. American Journal of Agricultural Economics, 2015, 97(2): 602-617.
[4]    ANTHONY S K. Drought and water policy in Australia: Challenges for the future illustrated by the issues associated with water trading and climate change adaptation in the Murray–Darling Basin. Global Environmental Change, 2013, 23(6): 1615-1626.
[5]    WU W B, TANG H J, YANG P, YOU L Z, ZHOU Q B, CHEN Z X, SHIBASAKI R. Scenario-based assessment of future food security. Journal of Geographical Sciences, 2011, 21(1): 3-17.
[6]    强毅, 吴文斌, 唐华俊, 陈佑启, 杨鹏. 基于粮食生产能力的APEC 地区粮食安全评价. 中国农业科学, 2011, 44(13): 2838-2848.
YU Q Y, WU W B, TANG H J, CHEN Y Q, YANG P. A food security assessment in APEC based on grain productivity. Scientia Agricultura Sinica, 2011, 44(13):2838-2848. (in Chinese)
[7]    赵文武. 世界主要国家耕地动态变化及其影响因素. 生态学报, 2012, 32(20): 6452-6462.
ZHAO W W. Arable land change dynamics and their driving forces for the major countries of the world. Acta Ecologica Sinica, 2012, 32(20) : 6452-6462. (in Chinese)
[8]    LEPERS E, LAMBIN E F, JANETOS A C, DeFRIES R, ACHARD  F, RAMANKUTTY N, SCHOLES R J. A synthesis of information on rapid land-cover change for the period 1981-2000. BioScience, 2005, 55(2): 115-124.
[9]    YAO Z Y, ZHANG L J, TANG S H, LI X X, HAO T T. The basic characteristics and spatial patterns of global cultivated land change since the 1980s. Journal of Geographical Sciences, 2017, 27(7): 771-785.
[10]   HOOVER J D, LEISZ S J, LAITURI M E. Comparing and combining landsat satellite imagery and participatory data to assess land-use and land-cover changes in a Coastal village in Papua New Guinea. Human Ecology, 2017, 45(2): 251-264.
[11]   CHEN J, BAN Y F, LI S N. China: Open access to earth land-cover map. Nature, 2014, 514(7523): 434.
[12]   HAN G, CHEN J, HE C Y, LI S N, WU H, LIAO A P, PENG S. A web-based system for supporting global land cover data production. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103(5): 66-80.
[13]   ZHAI L, SANG H Y, GAO Y, AN F, ZHANG Y, WEI S L. A new approach for mapping regional land cover and the application of this approach in Australia. Remote Sensing Letters, 2015, 6(4): 267-275.
[14]   刘吉羽, 彭舒, 陈军, 廖安平, 张宇硕. 基于知识的Globeland30 耕地数据质量检查方法与工程实践. 测绘通报, 2015, 61(4): 42-48.
LIU J Y, PENG S, CHEN J, LIAO A P, ZHANG Y S. Knowledge based quality checking method and engineering practice of globeLand30 cropland data. Bulletin of Surveying and Mapping, 2015, 61(4): 42-48. (in Chinese)
[15]   陆苗, 吴文斌, 张莉, 廖安平, 彭舒, 唐华俊. 不同耕地数据集在中国区域的对比研究. 中国科学:地球科学, 2016, 46(11): 1459-1471.
LU M, WU W B, ZHANG L, LIAO A P, PENG S, TANG H J. A comparative analysis of five global cropland datasets in China. Science China Earth Sciences, 2016, 59: 2307-2317.
[16]   杨洋, 麻馨月, 何春阳. 基于GlobeLand 30的耕地资源损失过程研究—以环渤海地区为例. 中国土地科学, 2016, 30(7): 72-79, 97.
YANG Y, MA X Y, HE C Y. The loss process of cultivated land based on GlobeLand 30: a case study of Bohai Rim. China Land Sciences, 2016, 30(7): 72-79, 97. (in Chinese)
[17]   陈百明. 澳大利亚的农业资源与区域布局. 中国农业资源与区划, 2006, 27(4): 55-58.
CHEN B. Agriculture resource and their regional distribution in australia. Chinese Journal of Agricultural Resources and Regional Planning, 2006, 27(4): 55-58. (in Chinese)
[18]   GERGIS J, KAROLY D J, ALLAN R J. A climate reconstruction of Sydney Cove, New South Wales, using weather journal and documentary data, 1788–1791. Australian Meteorological and Oceanographic Journal,2009, 58: 83-98.
[19]   HOWDEN M, SERENA S, STEVEN C, IVAN H. The changing roles of science in managing Australian droughts: An agricultural perspective. Weather and Climate Extremes, 2014, 3: 80-89.
[20]   陈军, 陈晋, 廖安平, 曹鑫, 陈利军, 陈学泓, 彭舒, 韩刚, 张宏伟, 何超英, 武昊, 陆苗. 全球30m地表覆盖遥感制图的总体技术. 测绘学报, 2014, 43(6): 551-557.
CHEN J, CHEN J, LIAO A P, CAO X, CHEN L J, CHEN X H, PENG S, HAN G, ZHANG H W, HE C Y, WU H, LU M. Concepts and key techniques for 30m global land cover mapping. Acta Geodaetica et Cartographica Sinica, 2014, 43(6): 551-557. (in Chinese)
[21]   CHEN J, CHEN J, LIAO A, CAO X, CHEN L, CHEN X, HE C, HAN G, PENG S, LU M, ZHANG W, TONG X, MILLS J. Global land cover mapping at 30m resolution: A POK-based operational approach. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103: 7-27.
[22]   冉有华, 李新. 全球第一个综合高分辨率土地覆盖图——中国30m分辨率全球土地覆盖图评述. 中国科学: 地球科学, 2015, 45(8): 1243-1244.
RAN Y H, LI X. First comprehensive fine-resolution global land cover map in the world from China—Comments on global land cover map at 30-m resolution. Science China: Earth Sciences, 2015, 58: 1677-1678.
[23]   曹鑫, 陈学泓, 张委伟, 廖安平, 陈利军, 陈志刚, 陈晋. 全球30m空间分辨率耕地遥感制图研究. 中国科学: 地球科学, 2016, 46(11): 1426-1435.
CAO X, CHEN X H, ZHANG W W, LIAO A P, CHEN L J, CHEN Z G, CHEN J. Global cultivated land mapping at 30 m spatial resolution. Science China Earth Sciences, 2016, 59: 2275-2284.
[24]   胡琼, 吴文斌, 项铭涛, 陈迪, 龙禹桥, 宋茜, 刘逸竹, 陆苗, 余强毅. 全球耕地利用格局时空变化分析. 中国农业科学,2017, 50(22): 1091-1105.
HU Q, WU W B, XIANG M T, CHEN D, LONG Y Q, SONG Q, LIU Y Z, LU M, YU Q Y. Spatio-temporal changes in global cultivated land over 2000-2010. Scientia Agricultura Sinica, 2017, 50(22): 1091-1105. (in Chinese)
[25]   石淑芹, 曹玉青, 吴文斌, 杨鹏, 蔡为民, 陈佑启. 耕地集约化评价指标体系与评价方法研究进展. 中国农业科学, 2017, 50(7): 1210-1222.
SHI S Q, CAO Y Q, WU W B, YANG P, CAI W M, CHEN Y Q. Progresses in research of evaluation index System and its method on arable land intensification: a review. Scientia Agricultura Sinica, 2017, 50(7): 1210-1222. (in Chinese)
[26]   XIE H L, LIU G Y. Spatiotemporal differences and influencing factors of multiple cropping index in China during 1998–2012. Journal of Geographical Sciences, 2015, 25(11): 1283-1297.
[27]   陈帷胜, 冯秀丽, 马仁锋, 洪巧娜. 耕地破碎度评价方法与实证研究——以浙江省宁波市为例. 中国土地科学, 2016, 30(5): 80-87.
CHEN W S, FENG X L, MA R F, HONG Q N. Method of cultivated land fragmentation evaluation and empirical research: a case of Ningbo city in Zhejiang province. China Land Sciences, 2016, 30(5): 80-87. (in Chinese)
[28]   李鑫, 欧名豪, 马贤磊. 基于景观指数的细碎化对耕地利用效率影响研究——以扬州市里下河区域为例. 自然资源学报, 2011, 26(10): 1758-1767.
LI X,OU M H,MA X L. Analysis on impact of fragmentation based on landscape index to cultivated land use efficiency—a case on Lixiahe district in Yangzhou city. Journal of Natural Resource, 2011, 26(10): 1758-1767. (in Chinese)
[29]   陈溪, 王子彦, 匡文慧. 土地利用对气候变化影响研究进展与图谱分析. 地理科学进展, 2011, 30(7): 930-937.
CHEN X,WANG Z Y, KUANG W H. Research progress and TUPU analysis on the impacts of land use on climate change. Progress in Geography, 2011, 30(7): 930-937. (in Chinese)
[30]   DANG Y P, MOODY P W, BELL M J, SEYMOUR N P, DALAL R C, FREEBAIRN D M. Strategic tillage in no-till farming systems in Australia’s northern grains-growing regions: II. Implications for agronomy, soil and environment. Soil and Tillage Research, 2015, 152: 115-123.
[31]   GRUNDY M J, BRETT A B, MARTIN N, MICHAEL B, STEVE H, JEFFERY D C, BRIAN A K. Scenarios for Australian agricultural production and land use to 2050. Agricultural Systems, 2016, 142: 70-83.
[32]   MAC K, ROSALIND B, JEFF C, EJAZ Q, SCOTT K. Sustainable irrigation: How did irrigated agriculture in Australia's Murray–Darling Basin adapt in the Millennium Drought? Agricultural Water Management, 2014, 145: 154-162.
[33]   ABDULLAH A, SIMON B, ALI H. Effects of partial root-zone drying irrigation and water quality on soil physical and chemical properties. Agricultural Water Management, 2017, 182: 117-125.
[34]   刘建国, Vanessa Hull, Mateus Batistella, Ruth DeFries, Thomas  Dietz, 付峰, Thomas W. Hertel, R.Cesar Izaurralde, Eric F. Lambin, 李舒心, Luiz A.Martinelli, William J. McConnell, Emilio F. Moran, Rosamond Naylor, 欧阳志云, Karen R. Polenske, Anette Reenberg, Gilberto de Miranda Rocha, Cynthia S. Simmons, Peter H. Verburg, Peter M. Vitousek, 张福锁, 朱春全. 远程耦合世界的可持续性框架. 生态学报, 2016, 36(23): 7870-7885.
LIU J G, Hull V, Batistella M, DeFries R, Dietz T, FU F, Hertel T W, Izaurralde R C, Lambin E F, LI S X, Martinelli L A, McConnell W J, Moran E F, Naylor R, OUYANG Z Y, Polenske K R, Reenberg A, Rocha G M, Simmons C S, Verburg P H, Vitousek P M, ZHANG F S, ZHU C Q. Acta Ecologica Sinica, 2016, 36(23): 7870-7885. (in Chinese)
[1] LI DongChu,HUANG Jing,MA ChangBao,XUE YanDong,GAO JuSheng,WANG BoRen,ZHANG YangZhu,LIU KaiLou,HAN TianFu,ZHANG HuiMin. Spatio-Temporal Variations of Soil Organic Matter in Paddy Soil and Its Driving Factors in China [J]. Scientia Agricultura Sinica, 2020, 53(12): 2410-2422.
[2] WANG MingLei,SHI WenJiao. Spatial-Temporal Changes of Newly Cultivated Land in Northern China and Its Zoning Based on Driving Factors [J]. Scientia Agricultura Sinica, 2020, 53(12): 2435-2449.
[3] YanHua CHEN,Le WANG,ShuXiang ZHANG,Ning GUO,ChangBao MA,ChunHua LI,MingGang XU,GuoYuan ZOU. Quality Change of Cinnamon Soil Cultivated Land and Its Effect on Soil Productivity [J]. Scientia Agricultura Sinica, 2019, 52(24): 4540-4554.
[4] HU Qiong, WU WenBin, XIANG MingTao, CHEN Di, LONG YuQiao, SONG Qian, LIU YiZhu, LU Miao, YU QiangYi. Spatio-Temporal Changes in Global Cultivated Land over 2000-2010 [J]. Scientia Agricultura Sinica, 2018, 51(6): 1091-1105.
[5] CHEN Di, WU WenBin, ZHOU QingBo, HU Qiong, XIANG MingTao, LU Miao, YU QiangYi. Changes of Cultivated Land Utilization Pattern in Asia from 2000 to 2010 [J]. Scientia Agricultura Sinica, 2018, 51(6): 1106-1120.
[6] XIANG MingTao, WU WenBin, HU Qiong, CHEN Di, LU Miao, YU QiangYi . Spatial-Temporal Changes in Cultivated Lands in Europe over 2000-2010 [J]. Scientia Agricultura Sinica, 2018, 51(6): 1121-1133.
[7] LONG YuQiao, WU WenBin, HU Qiong, CHEN Di, XIANG MingTao, LU Miao, YU QiangYi. Spatio-Temporal Changes in America’s Cropland over 2000-2010 [J]. Scientia Agricultura Sinica, 2018, 51(6): 1134-1143.
[8] ZHANG Li, WU WenBin, SONG Qian, ZONG ZhaoWei, HU Qiong, XIANG MingTao, LU Miao. Changes in Africa’s Cultivated Land Use and Its Eco-Environmental Factors Over 2000-2010 [J]. Scientia Agricultura Sinica, 2018, 51(6): 1144-1155.
[9] CHEN Yin-jun, YI Xiao-yan, FANG Lin-na, YANG Rui-zhen. Analysis of Cultivated Land and Grain Production Potential in China [J]. Scientia Agricultura Sinica, 2016, 49(6): 1117-1131.
[10] ZHANG Guang-hong, CUI Xu-feng. Driving Mechanism and Regional Differentiation of Cultivated Land Non-Agricultural-Transformation [J]. Scientia Agricultura Sinica, 2015, 48(8): 1632-1640.
[11] REN Ping, WU Tao, ZHOU Jie-Ming. Study on Value Loss Evaluation Model and Compensation Mechanism of Cultivated Land Conversion [J]. Scientia Agricultura Sinica, 2014, 47(4): 786-795.
[12] HUANG Qing, TANG Hua-Jun, WU Wen-Bin, LI Dan-Dan, LIU Jia. Remote Sensing Based Dynamic Changes Analysis of Crop Distribution Pattern —Taking Northeast China as an Example [J]. Scientia Agricultura Sinica, 2013, 46(13): 2668-2676.
[13] CHEN Yin-Jun, XIAO Bi-Lin, FANG Lin-Na, MA Hong-Ling, YANG Rui-Zhen, YI Xiao-Yan, LI Qian-Qian. The Quality Analysis of Cultivated Land in China [J]. Scientia Agricultura Sinica, 2011, 44(17): 3557-3564.
[14] . Research on Chinese Future Grain Security Based on the Method of EMD
[J]. Scientia Agricultura Sinica, 2009, 42(1): 180-188 .
[15] ,,,. The Research on the Comparison between the Grain Potential Productivity and the Grain Yield of Cultivated Lands in Recent Years [J]. Scientia Agricultura Sinica, 2006, 39(11): 2278-2285 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!