Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (18): 3494-3505.doi: 10.3864/j.issn.0578-1752.2017.18.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Morphological and Physiological Mechanism of Salt Tolerance in Gossypium barbadense to Salt Stress at Seedling Stage

ZHAO HaiYan1,2, WANG JianShe1, LIU LinQiang1, CHEN YongQuan1, LI MengFei1LU QuanWei1, LIU Fang2, PENG RenHai1   

  1. 1School of Biotechnology and Food Science, Anyang Institute of Technology, Anyang 455000, Henan; 2Institute of Cotton Research, Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang 455000, Henan
  • Received:2017-01-09 Online:2017-09-16 Published:2017-09-16

Abstract: 【Objective】The changes of cell structures and physiological characteristics in leaves and stems of two Gossypium barbadense varieties, Yuehai 9 (salt tolerance) and PS-7 (salt sensitive), were investigated under different salt stress conditions. Morphological and physiological mechanism of salt tolerance in Gossypium barbadense to salt stress at seedling stage was studied to offer a theoretical basis and technical reference for selecting salt-tolerant genes in cotton cultivars. 【Method】In a water culture experiment, three-leaf cotton seedlings were treated with NaCl at 300 mmol·L-1 NaCl for different times. This study involved observation of morphological features and comparison of physiological indexes of two Gossypium barbadense, Yuehai 9 (salt tolerance) and PS-7 (salt sensitive) under different salt stress treatments by means of optical microscopy and measurement of physiological indices.【Result】There was a difference in effect on two cotton cultivars by salt stress. At 300 mmol·L-1 of NaCl, with the prolongation of treatment period, the transections of the leaves and stems of Yuehai 9 and PS-7 were both significantly smaller compared with the control groups, decreased, respectively, by 14.10%, 54.69% and 45.30%, 87.90% at 300 mmol·L-1 of NaCl after 24 h, and the variation range of PS-7 was larger than that of Yuehai 9. The xylem of the vascular bundle of PS-7 was severely damaged while the xylem of the vascular bundle of Yuehai 9 showed no significant change in 300 mmol·L-1 of NaCl treatment for 12 h. The long cylindrical palisade tissue cell of PS-7 became smaller and ovoid in 300 mmol·L-1 of NaCl treatment after 24 h while the shape of the palisade tissue cell of Yuehai 9 showed no change. The chlorophyll contents, superoxide dismutase and peroxidase activities in leaves of Yuehai 9 were significantly higher than those of PS-7, while its malondialdehyde contents was lower than that of PS-7. Yuehai 9 and PS-7 were different in chlorophyll contents, malondialdehyde contents, superoxide dismutase and peroxidase activities, and the differences reached a significant level at 300 mmol·L-1 of NaCl after 8 h. 【Conclusion】 The most sensitive plant part to salt stress may be the palisade tissues of leaves and xylem in the stem. The chlorophyll, malondialdehyde, superoxide dismutase and peroxidase can be used as the physiological indexes for evaluating and selecting salt tolerance cotton materials.

Key words: Gossypium barbadense L., seedling, salt stress, morphological index, physiological index

[1]    周忠丽, 蔡小彦, 王春英, 张健, 刘方, 李卫平, 王玉红, 王星星, 王坤波. 半野生棉耐盐碱筛选初报. 中国棉花, 2015, 42(1): 15-18.
ZHOU Z L, CAI X Y, WANG C Y, ZHANG J, LIU F, LI W P, WANG Y H, WANG X X, WANG K B. Primary report of the tolerance identification to saline on Gossypium hirsutum races. China Cotton, 2015, 42(1): 15-18. (in Chinese)
[2]    叶武威, 阴祖军, 王俊娟, 王德龙. 旱地盐碱地的利用是我国棉花生产发展的必由出路//中国棉花学会2013年年会论文集. 中国棉花学会, 2013: 3.
YE W W, YING Z J, WANG J J, WANG D L. The but approach to enhance the cotton production and development is the utilization of saline draught land//Proceedings of the 2013 annual meeting of the cotton society of China. Chinese Cotton Society, 2013: 3. (in Chinese)
[3]    李文昊, 王振华, 郑旭荣, 张金珠. 新疆绿洲盐碱滴灌区域荒地土壤盐分变化. 排灌机械工程学报, 2016, 34(8): 722-729.
LI W H, WANG Z H, ZHENG X R, ZHANG J Z. Variation of soil salinity in wasteland of oasis saline drip irrigation area in Xinjiang. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(8): 722-729. (in Chinese)
[4]    IBRAHIM W, AHMED I M, CHEN X H, CAO F B, ZHU S J, WU F B. Genotypic differences in photosynthetic performance, antioxidant capacity, ultrastructure and nutrients in response to combined stress of salinity and Cd in cotton. Biometals, 2015, 28(6): 1063-1078.
[5]    ZHANG L, MA H J, CHEN T T, PEN J, YU S X, ZHAO X H. Morphological and physiological responses of cotton (Gossypium hirsutum L.) plants to salinity. PLoS ONE, 2014, 9(11): e112807.
[6]    CHEN J, WAN S B, LIU H H, FAN S L, ZHANG Y J, WANG W, XIA M X, YUAN R, DENG F N, SHEN F F. Overexpression of an Apocynum venetum DEAD-box helicase gene (AvDH1) in cotton confers salinity tolerance and increases yield in a saline field. Frontiers in Plant Science, 2016. doi:10.3389/fpls.2016.01041.
[7]    CHEN T T, ZHANG L, SHANG H H, LIU S D, PENG J, GONG W K, SHI Y Z, ZHANG S P, LI J W, GONG J W, GE Q, LIU A Y, MA H J, ZHAO X H, YUAN Y L. iTRAQ-based quantitative proteomic analysis of cotton roots and leaves reveals pathways associated with salt stress. PLoS ONE, 2016, 11(2): e0148487.
[8]    WANG B H, ZHANG M, FU R, QIAN X W, RONG P, ZHANG Y, JIANG P, WANG J J, LU X K, WANG D L, YE W W, ZHU X Y. Epigenetic mechanisms of salt tolerance and heterosis in upland cotton (Gossypium hirsutum L.) revealed by methylation-sensitive amplified polymorphism analysis. Euphytica, 2016, 208(3): 477-491.
[9]    WANG X G, LU X K, WANG J J, WANG D L, YIN Z J, FAN W L, WANG S, YE W W. Mining and analysis of SNP in response to salinity stress in upland cotton (Gossypium hirsutum L.). PLoS ONE, 2016, 11(6): e0158142.
[10]   ZHAO Y L, WANG H M, SHAO B X, CHEN W, GUO Z J, GONG H Y, SANG X H, WANG J J, YE W W. SSR-based association mapping of salt tolerance in cotton (Gossypium hirsutum L.). Genetics and Molecular Research, 2016. doi: 10.4238/gmr.15027370.
[11]   杨淑萍, 危常州, 梁永超. 海岛棉不同基因型幼苗对盐胁迫的生理响应. 石河子大学学报(自然科学版), 2010, 28(6): 668-673.
YANG S P, WEI C Z, LIANG Y C. Physiological response to NaCl stress of different sea island cotton genotypes in seedlings. Journal of shihezi University (Natural Science), 2010, 28(6): 668-673. (in Chinese)
[12]   刘国强, 鲁黎明, 刘金定. 棉花品种资源耐盐性鉴定研究. 作物品种资源, 1993(2): 21-22.
LIU G Q, LU L M, LIU J D. The appraisal research of salt resistance of cotton variety resources. Crop Variety Resources, 1993(2): 21-22. (in Chinese)
[13]   王俊娟, 叶武威, 周大云, 吕有军, 樊保香, 宋丽艳. 盐胁迫下不同耐盐类型棉花的萌发特性. 棉花学报, 2007,19(4): 315-317.
WANG J J, YE W W, ZHOU D Y, LÜ Y J, FAN B X, SONG L Y. Studies on germination characteristics of different salinity-resistant cotton under salt stress. Cotton Science, 2007, 19(4): 315-317. (in Chinese)
[14]   邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2007: 173-174.
ZOU Q. Plant Physiology Experiment Guidance. Beijing: China Agriculture Press, 2007: 173-174. (in Chinese)
[15]   王金胜. 农业生物化学技术. 太原: 山西科学技术出版社, 1997: 191-194.
WANG J S. Agriculture Biological Chemical Technology. Taiyuan: Shanxi Science and Technology Press, 1997: 191-194. (in Chinese)
[16]   KHAN M A, UNGAR I A, SHOWALTER A M. Effects of salinity on growth, water relations and ion accumulation of the subtropical perennial halophyte, atriplex griffithii var. stocksii. Annals of Botany, 2000, 85(2): 225-232.
[17]   王勋陵, 王静. 植物的形态结构与环境. 兰州: 兰州大学出版社, 1989: 105-138.
WANG X L, WANG J. The Morphological Structure and the Environment of Plants. Lanzhou: Lanzhou University Press, 1989: 105-138. (in Chinese)
[18]   田晨霞, 张咏梅, 王凯, 张万. 紫花苜蓿组织解剖结构对NaHCO3盐碱胁迫的响应. 草业学报, 2014, 23(5): 133-142.
TIAN C X, ZHANG Y M, WANG K, ZHANG W. The anatomical structure response in alfalfa to salinity-alkalinity stress of NaHCO3. Acta Prataculturae Sinica, 2014, 23(5): 133-142. (in Chinese)
[19]   李学孚, 倪智敏, 吴月燕, 李美芹, 刘蓉, 饶慧云. 盐胁迫对‘鄞红’葡萄光合特性及叶片细胞结构的影响. 生态学报, 2015, 35(13): 4436-4444.
LI X F, NI Z M, WU Y Y, LI M Q, LIU R, RAO H Y. Effects of salt stress on photosynthetic characteristics and leaf cell structure of ‘Yinhong’ grape seedlings. Acta Ecologica Sinica, 2015, 35(13): 4436-4444. (in Chinese)
[20]   王秀丽, 韩维栋. 盐胁迫处理对银叶树幼苗叶片光合及解剖特征影响. 泉州师范学院学报, 2015, 33(6): 8-11, 23.
WANG X L, HAN W D. The salt stress on photosynthetic characteristics and anatomy of the leaves of Heritiera littoralis seedlings. Journal of Quanzhou Normal University, 2015, 33(6): 8-11, 23. (in Chinese)
[21]   曹享云, 刘武定, 皮美美. 硼对棉花叶片解剖结构的影响. 华中农业大学学报,1988, 7(3): 251-254.
CAO X Y, LIU W D, PI M M. The effects of Boron on the anatomical structures of cotton leaves. Journal of Huazhong Agricultural University, 1988, 7(3): 251-254. (in Chinese)
[22]   王秀荣, 严小龙, 卢仁骏. 磷素营养对菜豆叶片解剖结构的影响. 华南农业大学学报, 1999, 20(1): 57-62.
WANG X R, YAN X L, LU R J. Effects of P nutrition on the leaf anatomic structure of common beans. Journal of South China Agricultural University, 1999, 20(1): 57-62. (in Chinese)
[23]   李瑞梅, 周广奇, 符少萍, 胡新文, 郭建春. 盐胁迫下海马齿叶片结构变化. 西北植物学报, 2010, 30(2): 287-292.
LI R M, ZHOU G Q, FU S P, HU X W, GUO J C. Leaf anatomical structure of Sesuvium portulacastrum L. under salt stress. Acta Botanica Boreali Occidentalia Sinica, 2010, 30(2): 287-292. (in Chinese)
[24]   李斌, 郭世荣, 李鹤, 何立中, 杜南山. 外源亚精胺对盐胁迫下黄瓜叶片、茎和根显微结构的影响//蔬菜优质安全生产技术研讨会论文摘要集. 中国园艺学会设施园艺分会, 2013.
LI B, GUO S R, LI H, HE L Z, DU N S. The effects of spermidine on the microscopic of leaves, stems and roots of cucumber under NaCl stress//Abstracts of the symposium on high quality and safe production technology. Chinese Horticultural Society Facilities Branch Academic Annual Conference, 2013. (in Chinese)
[25]   AKRAM M, AKHTAR S, JAVED I U H, WAHID A, RASUL E. Anatomical attributes of different wheat (Triticum aestivum) accessions/varieties to NaCl salinity. International Journal of Agriculture and Biology, 2002, 4: 166-168.
[26]   张咏梅, 田晨霞. 黄花草木樨耐NaHCO3盐碱胁迫的解剖学解释. 草业学报, 2016, 25(9): 83-95.
ZHANG Y M, TIAN C X. Anatomical mechanism of Melilotus of ficinalis tolerance to NaHCO3 aline-alkaline stress. Acta Prataculturae Sinica, 2016, 25(9): 83-95. (in Chinese)
[27]   GUO Q, WANG P, MA Q, ZHANG L L, BAO A K, WANG S M. Selective transport capacity for K+ over Na+ is linked to the expression levels of PtSOSl in halophyte Puccinellia tenuiflora. Functional Plant Biology, 2012, 39(12): 1047-1057.
[28]   张其德. 盐胁迫对植物及其光合作用的影响(中). 植物杂志, 2000(1): 28-29.
ZHANG Q D. The effects of NaCl stress on the plant and its photosynthesis (middle). Plants, 2000(1): 28-29. (in Chinese)
[29]   MATOH T, MURATA S. Sodium stimulates growth of panicum coloratum through enhanced photosynthesis. Plant Physiology, 1990, 92(4): 1169-1173.
[30]   陈贵, 胡文玉, 谢甫绨, 张立军. 提取植物体内MDA的溶剂及MDA作为衰老指标的探讨. 植物生理学通讯, 1991, 27(1): 44-46.
CHEN G, HU W Y, XIE F T, ZHANG L J. Solvent for extracting malonaldehyde in plant as an index of senescence. Plant Physiology Communication, 1991, 27(1): 44-46. (in Chinese)
[31]   费伟, 陈火英, 曹忠, 刘杨. 盐胁迫对番茄幼苗生理特性的影响. 上海交通大学学报(农业科学版), 2005, 23(1): 5-9, 30.
FEI W, CHEN H Y, CAO Z, LIU Y. Effects of salininty stress on physiological characteristics of tomato seedling. Journal of Shanghai Jiaotong University (Agricultural Science), 2005, 23(1) : 5-9, 30. (in Chinese)
[32]   汪保华, 王亚峰, 王长彪, 朱新宇, 赵洁, 高佳文, 鲍颖佼. 中棉所35及中棉所12盐胁迫下的丙二醛含量变化及其SSR指纹图谱构建. 中国棉花, 2011, 38(11): 20-31.
WANG B H, WANG Y F, WANG C B, ZHU X Y, ZHAO J, GAO J W, BAO Y J. Effect of salt stress on malondialdehyde content variation and SSR fingerprint construction for CCRI 35 and CCRI 12. China Cotton, 2011, 38(11): 20-31. (in Chinese)
[33]   LIANG Y C, CHEN Q, LIU Q, ZHANG W H, DING R X. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). Journal of Plant Physiology, 2003, 160(10): 1157-1164.
[34]   GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology Biochemistry, 2010, 48(12): 909-930.
[35]   JIANG L, YANG H. Prometryne-induced oxidative stress and impact on antioxidant enzymes in wheat. Ecotoxicology and Environmental Safety, 2009, 72(6): 1687-1693.
[36]   杨淑萍, 危常州, 梁永超. 盐胁迫对海岛棉不同基因型幼苗生长及生理生态特征的影响. 生态学报, 2010, 30(9): 2322-2331.
YANG S P, WEI C Z, LIANG Y C. Effects of NaCl stress on growth and ecology physiological characteristics of different in sea island cotton genotypes in seedlings. Acta Ecologica Sinica, 2010, 30(9): 2322-2331. (in Chinese)
[37]   史华平, 胡晓丽, 王计平. NaCl胁迫对棉花幼苗根系抗氧化系统的影响. 中国农学通报, 2016, 32(18): 53-59.
SHI H P, HU X L, WANG J P. Effects of NaCl stress on antioxidative system of cotton seedling roots. Chinese Agricultural Science Bulletin, 2016, 32 (18): 53-59. (in Chinese)
[38]   晏石娟, 马晖玲, 曹致中. 紫花苜蓿抗旱耐盐碱转基因抗性苗耐盐性研究. 甘肃农业大学学报, 2006, 41(5): 91-94.
YAN S J, MA H L, CAO Z Z. Study on the salt tolerance of transgenic plants of alfalfa. Journal of GanSu Agricultural University, 2006, 41(5): 91-94. (in Chinese)
[39]   Parida A K, das A B. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 2005, 60(3): 324-349.
[1] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[2] WANG YaLiang,ZHU DeFeng,CHEN RuoXia,FANG WenYing,WANG JingQing,XIANG Jing,CHEN HuiZhe,ZHANG YuPing,CHEN JiangHua. Beneficial Effects of Precision Drill Sowing with Low Seeding Rates in Machine Transplanting for Hybrid Rice to Improve Population Uniformity and Yield [J]. Scientia Agricultura Sinica, 2022, 55(4): 666-679.
[3] ZHANG JianJun, DANG Yi, ZHAO Gang, WANG Lei, FAN TingLu, LI ShangZhong. Influences of Mulching Periods and Nitrogen Application Rates on Maize Yield as well as Water and Nitrogen Use Efficiencies in Loess Plateau of Eastern Gansu Province [J]. Scientia Agricultura Sinica, 2022, 55(3): 479-490.
[4] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[5] SHEN Qian,ZHANG SiPing,LIU RuiHua,LIU ShaoDong,CHEN Jing,GE ChangWei,MA HuiJuan,ZHAO XinHua,YANG GuoZheng,SONG MeiZhen,PANG ChaoYou. Construction of A Comprehensive Evaluation System and Screening of Cold Tolerance Indicators for Cold Tolerance of Cotton at Seedling Emergence Stage [J]. Scientia Agricultura Sinica, 2022, 55(22): 4342-4355.
[6] HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
[7] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[8] GONG XiaoYa,SHI JiBo,FANG Ling,FANG YaPeng,WU FengZhi. Effects of Flooding on Soil Chemical Properties and Microbial Community Composition on Farmland of Continuous Cropped Pepper [J]. Scientia Agricultura Sinica, 2022, 55(12): 2472-2484.
[9] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[10] JIANG WeiQin,HU Qun,YU Hang,MA HuiZhen,REN GaoLei,MA ZhongTao,ZHU Ying,WEI HaiYan,ZHANG HongCheng,LIU GuoDong,HU YaJie,GUO BaoWei. Effect of One-Time Basal Application of the Mixed Controlled-Release Nitrogen Fertilizer in Japonica Rice with Good Taste Quality [J]. Scientia Agricultura Sinica, 2021, 54(7): 1382-1396.
[11] LÜ TengFei,SHEN Jie,MA Peng,DAI Zou,YANG ZhiYuan,XU Hui,ZHENG ChuanGang,MA Jun. Effects of Combined Application of Slow Release Nitrogen Fertilizer and Urea on the Nitrogen Utilization Characteristics in Machine- Transplanted Hybrid Rice [J]. Scientia Agricultura Sinica, 2021, 54(7): 1410-1423.
[12] HUANG Xiu,YE Chang,YAN JinXiang,LI FuMing,CHU Guang,XU ChunMei,CHEN Song,ZHANG XiuFu,WANG DanYing. Analysis of Ammonium Uptake and Growth Differences of Rice Varieties with Different Nitrogen Recovery Efficiency at Seedling Stage [J]. Scientia Agricultura Sinica, 2021, 54(7): 1455-1468.
[13] ZHANG GuiYun,ZHU JingWen,SUN MingFa,YAN GuoHong,LIU Kai,WAN BaiJie,DAI JinYing,ZHU GuoYong. Analysis of Differential Metabolites in Grains of Rice Cultivar Changbai 10 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(4): 675-683.
[14] MENG Rui,LIU Ye,ZHAO Shuang,FANG WeiMin,JIANG JiaFu,CHEN SuMei,CHEN FaDi,GUAN ZhiYong. Effects of Rootstock and Scion Interaction on Salt Tolerance of Grafted Chrysanthemum Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(3): 629-642.
[15] TAO YouFeng,PU ShiLin,ZHOU Wei,DENG Fei,ZHONG XiaoYuan,QIN Qin,REN WanJun. Canopy Population Quality Characteristics of Mechanical Transplanting Hybrid Indica Rice with “Reducing Hills and Stabilizing Basic-Seedlings” in Low-Light Region of Southwest China [J]. Scientia Agricultura Sinica, 2021, 54(23): 4969-4983.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!