Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (14): 2758-2768.doi: 10.3864/j.issn.0578-1752.2017.14.012

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Yield Based Evaluation on Fertilizer Application and Analysis of Its Reduction Potential in Weibei Dryland Wheat Production

CAO HanBing1, WANG ZhaoHui1, ZHAO HuBing1, MA XiaoLong1, SHE Xu1, ZHANG Lu2, PU YueJian3, YANG ZhenZhen4, LÜ Hui5, SHI YuanChao6, DU MingYe7   

  1. 1College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and Agro-Environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi; 2Agricultural Technology Extension Centers of Pucheng, Pucheng 715500, Shaanxi; 3Agricultural Technology Extension Centers of Yaozhou, Yaozhou 727100, Shaanxi; 4Agricultural Technology Extension Centers of Binxian, Binxian 713500, Shaanxi; 5Agricultural Technology Extension Centers of Fengxiang, Fengxiang 721400, Shaanxi; 6Agricultural Technology Extension Centers of Yongshou, Yongshou 713400, Shaanxi; 7Agricultural Technology Extension Centers of Heyang, Heyang 715300, Shaanxi
  • Received:2016-11-30 Online:2017-07-16 Published:2017-07-16

Abstract: 【Objective】It is of great significance to clarify the farmers’ nutrient input situation for the realization of stable yield, high yield, and high nutrient use efficiency in dryland wheat production.【Method】A 5-yr long farm survey of 1 261 farmers was carried out to analyze and evaluate their fertilizer applications and the fertilizer reduction potential in Weibei dryland, based on the nutrient requirement determined by the corresponding wheat grain yields and sustainable development of dryland wheat production.【Result】Obtained results showed the farmers’ wheat yields ranged from 750 to 9 000 kg hm-2, with the average of 4 243 kg·hm-2, and they were allocated into five groups as: very low (<2 640 kg·hm-2), low (2 640-3 780 kg·hm-2), moderate (3 780-4 920 kg·hm-2), high (4 920-6 060 kg·hm-2) and very high (>6 060 kg·hm-2), respectively, accounting for 22.0%, 22.2%, 19.3%, 22.8% and 13.6% of the total. Farmers’ nitrogen (N) application rates ranged from 33 to 454 kg N·hm-2 with an average of 188 kg N·hm-2, phosphorus (P) ranged from 0 to 435 kg P2O5·hm-2 with an average of 125 kg P2O5·hm-2, and potassium ranged from 0 to 201 kg K2O·hm-2 with an average of 19 kg K2O·hm-2. However, farmers’ yields showed no significant correlations with the N, P, and K rates, respectively. With the increase of grain yield levels, the proportion of N over application farmers decreased from 97.8% in the very low yield group to 18.0% in very high group, but that of N deficient application farmers increased from 0.7% to 45.9%, correspondingly. Similar to N, the proportion of P over application farmers decreased from 99.3% in very low yield group to 70.9% in very high yield group, and this means P over application was practiced by more than 70.0% of farmers in each yield group. Different from N and P, K deficient application was practiced by more than 60.0% of farmers in each yield group. Therefore, for N, farmers in very low and low yield groups were recommended to reduce 24-144 kg N·hm-2, 28%-73% from their high or very high N application rates, and farmers in moderate, high and very high yield groups were recommended to reduce 50-181 kg N·hm-2, 26%-51% of their high or very high N rates and add 38-134 kg N·hm-2, 41%-345% more to the low or very low N rates. For P, farmers in different yield groups should reduce 7-31 kg P2O5·hm-2, 23%-33% from the high P rates, and reduce 85-118 kg P2O5·hm-2, 61%-85% from the very high P rates. For K, farmers with no or very low K input in different yield groups were suggested to use 13-50 kg K2O·hm-2, and add 7-18 kg K2O·hm-2, 35%-78% for those with low K rates. 【Conclusion】 Compared with the conventional method, which adopted an uniform fertilization rate as the criterion to evaluate the famers’ fertilizer application with variable yields, the present work proposed a yield based approach. This approach is proved to be suitable for the small scale household farming in China, and enable to objectively and accurately understand the arbitrary and over application of fertilizer, and to provide a scientific basis for the effective regulation of farmers’ fertilizer application.

Key words: farmer, winter wheat, grain yield, fertilizer application rate, fertilizer recommendation

[1]    金继运, 李家康, 李书田. 化肥与粮食安全. 植物营养与肥料学报, 2006, 12(5): 601-609.
Jin J Y, Li J K, Li S T. Chemical fertilizer and food security. Plant Nutrition and Fertilizer Science, 2006, 12(5): 601-609. (in Chinese)
[2]    Erisman J W, Sutton M A, Galloway J, Klimont Z, Winiwarter W. How a century of ammonia synthesis changed the world. Nature Geoscience, 2008, 1(10): 636-639.
[3]    Vitousek P M, Naylor R, Crews T, David M, Drinkwater L, Holland E, Johnes P, Katzenberger J, Martinelli L, Matson P. Nutrient imbalances in agricultural development. Science, 2009, 324(5934): 1519-1520.
[4]    Zhang X, Davidson E A, Mauzerall D L, Searchinger T D, Dumas P, Shen Y. Managing nitrogen for sustainable development. Nature, 2015, 528(7580): 51-59.
[5]    National Bureau of Statistics of China. China Statistic Yearbook (2016- 02-29) [2016-11-30]. http://www.stats.gov.cn/tjsj/ndsj/2015/indexeh.htm.
[6]    Sims J T, Ma L, Oenema O, Dou Z, Zhang F S. Advances and challenges for nutrient management in China in the 21st century. Journal of Environment Quality, 2013, 42(4): 947-950.
[7]    Chen X P, Cui Z L, Fan M S, Vitousek P, Zhao M, Ma W Q, Wang Z L, Zhang W J, Yan X Y, Yang J C, Deng X P, Gao Q, Zhang Q, Guo S W, Ren J, Li S Q, Ye Y L, Wang Z H, Huang J L, Tang Q Y, Sun Y X, Peng X L, Zhang J W, He M R, Zhu Y J, Xue J Q, Wang G L, Wu L, An N, Wu L Q, Ma L, Zhang W F, Zhang F S. Producing more grain with lower environmental costs. Nature, 2014, 514(7523): 486-489.
[8]    Zhang W F, Cao G X, Li X L, Zhang H Y, Wang C, Liu Q Q, Chen X P, Cui Z L, Shen J B, Jiang R F, Mi G H, Miao Y X, Zhang F S, Dou Z X. Closing yield gaps in China by empowering smallholder farmers. Nature, 2016, 537(7622): 671-674.
[9]    张卫峰, 马文奇, 王雁峰, 张福锁. 中国农户小麦施肥水平和效应的评价. 土壤通报, 2008, 39(5): 1049-1055.
Zhang W F, Ma W Q, Wang Y F, Zhang F S. Assessment on farmers' fertilization behavior for wheat production in China. Chinese Journal of Soil Science, 2008, 39(5): 1049-1055. (in Chinese)
[10]   马立珩. 江苏省水稻、小麦施肥现状的分析与评价[D]. 南京: 南京农业大学, 2011.
Ma L H. Analysis and evaluation of the current status of rice and wheat fertilization in jiangsu province[D]. Nanjing: Nanjing Agricultral University, 2011. (in Chinese)
[11]   牛新胜, 张宏彦. 华北平原冬小麦-夏玉米生产肥料管理现状分析. 耕作与栽培, 2010(5): 1-4.
Niu X S, Zhang H Y. Fertilizer management status analysis on winter wheat and summer maize in North Central China. Tillage and Cultivation, 2010(5): 1-4. (in Chinese)
[12]   赵护兵, 王朝辉, 高亚军, 张卫峰. 陕西省农户小麦施肥调研评价. 植物营养与肥料学报, 2016, 22(1): 245-253.
Zhao H B, Wang Z H, Gao Y J, Zhang W F. Investigation and evaluation of household wheat fertilizer application in Shaanxi province. Journal of Plant Nutrition and Fertilizer, 2016, 22(1): 245-253. (in Chinese)
[13]   Ju X T, Roelcke M. Nitrogen fertilization, soil nitrate accumulation, and policy recommendations in several agricultural regions of China. Ambio: A Journal of the Human Environment, 2004, 33(6): 300-305.
[14]   Zhao R F, Chen X P, Zhang F S, Zhang H L, Jackie S, Volker R. Fertilization and nitrogen balance in a wheat-maize rotation system in North China. Agronomy Journal, 2006, 98(4): 938-945.
[15]   刘芬, 王小英, 赵业婷, 同延安. 渭北旱塬土壤养分时空变异与养分平衡现状分析. 农业机械学报, 2015, 46(2): 110-119.
Liu F, Wang X Y, Zhao Y T, Tong Y A. Spatial and temporal variation of soil nutrient and nutrient balance status in Weibei Rainfed Highland. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2): 110-119. (in Chinese)
[16]   段敏. 陕西关中地区小麦玉米养分资源管理及其高产探索研究[D]. 杨凌: 西北农林科技大学, 2010.
Duan M. Study on nutrients management and high yield of wheat and maize in Guanzhong area of Shaanxi province[D]. Yangling: Northwest A&F University, 2010 (in Chinese)
[17]   Guo S L, Zhu H H, Dang T H, Wu J S, Liu W Z, Hao M D, Li Y, Syers J K. Winter wheat grain yield associated with precipitation distribution under long-term nitrogen fertilization in the semiarid Loess Plateau in China. Geoderma, 2012, 189-190(6): 442-450.
[18]   Fan T L, Stewart B A, Wand Y, Luo J J, Zhou G Y. Long-term fertilization effects on grain yield, water-use efficiency and soil fertility in the dryland of Loess Plateau in China. Agriculture, Ecosystems & Environment, 2005, 106(4): 313-329.
[19]   韩思明, 薛少平. 渭北高原降水资源机械化高效利用图文集. 西安: 陕西科学技术出版社, 2006.
Han S M, Xue S P. High Efficiency Rainfall Resource Use in Weibei Highlands by Mechanical Measures. Xi’an: Shaanxi Science and Technology Press, 2006. (in Chinese)
[20]   车升国, 袁亮, 李燕婷, 林治安, 沈兵, 胡树文, 赵秉强. 我国主要麦区小麦氮素吸收及其产量效应. 植物营养与肥料学报, 2016, 22(2): 287-295.
Che S G, Yuan L, Li Y T, Lin Z A, Shen B, Hu S W, Zhao B Q. N uptake and yield response of wheat in main wheat production regions of China. Journal of Plant Nutrition and Fertilizer, 2016, 22(2): 287-295. (in Chinese)
[21]   车升国, 袁亮, 李燕婷, 林治安, 李燕青, 赵秉强, 沈兵. 我国主要麦区小麦产量形成对磷素的需求. 植物营养与肥料学报, 2016, 22(4): 869-876.
Che S G, Yuan L, Li Y T, Lin Z A, Li Y Q, Zhao B Q, Shen B. Phosphorous requirement for yield formation of wheat in main wheat production regions of China. Journal of Plant Nutrition and Fertilizer, 2016, 22(4): 869-876. (in Chinese)
[22]   Chuan L M, He P, Jin J Y, Li S T, Grant C, Xu X P, Qiu S J, Zhao S C, Zhou W. Estimating nutrient uptake requirements for wheat in China. Field Crops Research, 2013, 146: 96-104.
[23]   曹寒冰. 渭北旱地冬小麦监控施肥技术的优化[D]. 杨凌: 西北农林科技大学, 2014.
Cao H B. Optimization of fertilizer recommendation tecnology based on soil test for winter wheat on Weibei Dayland[D]. Yangling: Northwest A&F University, 2014. (in Chinese)
[24]   Zhou J Y, Gu B J, Schlesinger W H, Ju X T. Significant accumulation of nitrate in Chinese semi-humid croplands. Scientific reports, doi: 10.1038/srep25088.
[25]   Li S X, Wang Z H, Malhi S, Li S Q, Gao Y J, Tian X H. Nutrient and water management effects on crop production, and nutrient and water use efficiency in dryland areas of China. Advances in Agronomy, 2009, 102(9): 223-265.
[26]   He P, Yang L P, Xu X P, Zhao S C, Chen F, Li S T, Tu S H, Jin J Y, Johnston A M. Temporal and spatial variation of soil available potassium in China (1990–2012). Field Crops Research, 2015, 173: 49-56.
[27]   Wang X Y, Tong Y A, Gao Y M, Gao P C, Liu F, Zhao Z P, Pang Y. Spatial and temporal variations of crop fertilization and soil fertility in the Loess Plateau in China from the 1970s to the 2000s. PloS One, 2014, 9(11): e112273.
[28]   侯现良, 孙敏, 王帅, 梁宇宁, 申鹏程. 2014年闻喜县旱地小麦肥料管理调查分析. 山西农业科学, 2015, 43(8): 959-961, 967.
Hou X L, Sun M, Wang S, Liang Y N, Shen P C. Investigation and analysis on fertilizer management of dryland wheat in Wenxi county in 2014. Journal of Shanxi Agriculture Sciences, 2015, 43(8): 959-961, 967. (in Chinese)
[29]   陈伟, 孙建好, 赵建华. 甘肃省小麦施肥现状分析与评价. 干旱地区农业研究, 2013, 31(2): 23-27.
Chen W, Sun J H, Zhao J H. Analysis and evaluation of fertilization situation for wheat in Gansu province. Agricultural Research in the Arid Areas, 2013, 31(2): 23-27. (in Chinese)
[30]   Ju X T, Christie P. Calculation of theoretical nitrogen rate for simple nitrogen recommendations in intensive cropping systems: A case study on the North China Plain. Field Crops Research, 2011, 124(3): 450-458.
[31]   Guo S L, Wu J S, Dang T H, Liu W Z, Li Y, Wei W X, Syers J K. Impacts of fertilizer practices on environmental risk of nitrate in semiarid farmlands in the Loess Plateau of China. Plant & Soil, 2010, 330(1): 1-13.
[32]   谭金芳. 作物施肥原理与技术. 北京: 中国农业大学出版社, 2011.
Tan J F. Crop Fertilization Theory and Technology. Beijing: China Agricultural University Press, 2011. (in Chinese)
[33]   李茹, 单燕, 李水利, 林文, 刘芬, 同延安. 陕西麦田土壤肥力与施肥现状评估. 麦类作物学报, 2015, 35(1): 105-110.
Li R, Shan Y, Li S L, Lin W, Liu F, Tong Y A. Analysis of soil fertility and fertilization of wheat field in Shaanxi. Journal of Triticeae Crops, 2015, 35(1): 105-110. (in Chinese)
[34]   Liu H, Wang Z, Yu R, Li F, Li K, Cao H, Yang N, Li M, Dai J, Zan Y, Li Q, Xue C, He G, Huang D, Huang M, Liu J, Qiu W, Zhao H, Mao H. Optimal nitrogen input for higher efficiency and lower environmental impacts of winter wheat production in China. Agriculture, Ecosystems & Environment, 2016, 224: 1-11.
[35]   章孜亮, 刘金山, 王朝辉, 赵护兵, 杨宁, 杨荣, 曹寒冰. 基于土壤氮素平衡的旱地冬小麦监控施氮. 植物营养与肥料学报, 2012, 18(6): 1388-1397.
Zhang Z L, Liu J S, Wang Z H, Zhao H B, Yang N, Yang R, Cao H B. Nitrogen recommendation for dryland winter wheat by monitoring nitrate in 1 m soil and based on nitrogen balance. Plant Nutrition and Fertilizer Science, 2012, 18(6): 1388-1397. (in Chinese)
[36]   巨晓棠. 理论施氮量的改进及验证兼论确定作物氮肥推荐量的方法. 土壤学报, 2015, 52(2): 249-261.
Ju X T. Improvement and validation of theoretical N rate (TNR)—Discussing the methods for N fertilizer recommendation. Acta Pedologica Sinica, 2015, 52(2): 249-261. (in Chinese)
[37]   Li H, Huang G, Meng Q, Ma L, Yuan L, Wang F, Zhang  W, Cui Z, Shen J, Chen X. Integrated soil and plant phosphorus management for crop and environment in China. A Review. Plant & Soil, 2011, 349(1/2): 157-167.
[38]   林葆, 林继雄, 李家康. 长期施肥的作物产量和土壤肥力变化. 植物营养与肥料学报, 1994, 1(1): 6-18.
Lin B, Lin J X, Li J K. The changes of yield and soil fertility with long-term fertilizer application. Plant Nutrition and Fertilizer Science, 1994, 1(1): 6-18. (in Chinese)
[39]   Ma J C, He P, Xu X P, He W T, Liu Y X, Yang F Q, Chen F, Li S T, Tu S H, Jin J Y. Temporal and spatial changes in soil available phosphorus in China (1990–2012). Field Crops Research, 2016, 192: 13-20.
[40]   叶优良, 韩燕来, 王文亮, 黄玉芳. 高产小麦氮肥施用研究进展. 中国农学通报, 2006, 22(9): 264-267.
Ye Y L, Han Y L, Wang W L, Huang Y F. Advance on nitrogen fertilizer application in winter wheat with high yield. Chinese Agricultural Science Bulletin, 2006, 22(9): 264-267. (in Chinese)
[41]   Ju X T, Gu B J, Wu Y, Galloway J N. Reducing China’s fertilizer use by increasing farm size. Global Environmental Change, 2016, 41: 26-32.
[1] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[2] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[3] LIU Feng,JIANG JiaLi,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,ZHONG YingXin,DAI TingBo,CAO WeiXing,JIANG Dong. Analysis of American Soft Wheat Grain Quality and Its Suitability Evaluation According to Chinese Weak Gluten Wheat Standard [J]. Scientia Agricultura Sinica, 2022, 55(19): 3723-3737.
[4] HAN ShouWei,SI JiSheng,YU WeiBao,KONG LingAn,ZHANG Bin,WANG FaHong,ZHANG HaiLin,ZHAO Xin,LI HuaWei,MENG Yu. Mechanisms Analysis on Yield Gap and Nitrogen Use Efficiency Gap of Winter Wheat in Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(16): 3110-3122.
[5] GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
[6] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[7] WEI Lei,MI XiaoTian,SUN LiQian,LI ZhaoMin,SHI Mei,HE Gang,WANG ZhaoHui. Current Status of Chemical Fertilizers, Pesticides, and Irrigation Water and Their Reducing Potentials in Wheat Production of Northern China [J]. Scientia Agricultura Sinica, 2022, 55(13): 2584-2597.
[8] LU Peng,LI WenHai,NIU JinCan,BATBAYAR Javkhlan,ZHANG ShuLan,YANG XueYun. Phosphorus Availability and Transformation of Inorganic Phosphorus Forms Under Different Organic Carbon Levels in a Tier Soil [J]. Scientia Agricultura Sinica, 2022, 55(1): 111-122.
[9] GAO ZhiYuan,XU JiLi,LIU Shuo,TIAN Hui,WANG ZhaoHui. Variations of Winter Wheat Nitrogen Harvest Index in Field Wheat Population [J]. Scientia Agricultura Sinica, 2021, 54(3): 583-595.
[10] MAO AnRan,ZHAO HuBing,YANG HuiMin,WANG Tao,CHEN XiuWen,LIANG WenJuan. Effects of Different Mulching Periods and Mulching Practices on Economic Return and Environment [J]. Scientia Agricultura Sinica, 2021, 54(3): 608-618.
[11] XIANG XiaoLing,CHEN SongHe,YANG HongKun,YANG YongHeng,FAN GaoQiong. Effects of Straw Mulching and Phosphorus Application on Wheat Yield, Phosphorus Absorption and Utilization in Hilly Dryland [J]. Scientia Agricultura Sinica, 2021, 54(24): 5194-5205.
[12] HUANG Ming,WU JinZhi,LI YouJun,FU GuoZhan,ZHAO KaiNan,ZHANG ZhenWang,YANG ZhongShuai,HOU YuanQuan. Effects of Tillage Practices and Nitrogen Fertilizer Application Rates on Grain Yield, Protein Content in Winter Wheat and Soil Nitrate Residue in Dryland [J]. Scientia Agricultura Sinica, 2021, 54(24): 5206-5219.
[13] GAO XingXiang,ZHANG YueLi,AN ChuanXin,LI Mei,LI Jian,FANG Feng,ZHANG ShuangYing. Investigation and Analysis of Weed Community Succession in Winter Wheat Field of Shandong Province [J]. Scientia Agricultura Sinica, 2021, 54(24): 5230-5239.
[14] ZONG YuZheng,ZHANG HanQing,LI Ping,ZHANG DongSheng,LIN Wen,XUE JianFu,GAO ZhiQiang,HAO XingYu. Effects of Elevated Atmospheric CO2 Concentration and Temperature on Photosynthetic Characteristics, Carbon and Nitrogen Metabolism in Flag Leaves and Yield of Winter Wheat in North China [J]. Scientia Agricultura Sinica, 2021, 54(23): 4984-4995.
[15] WANG JinFeng,WANG ZhuangZhuang,GU FengXu,MOU HaiMeng,WANG Yu,DUAN JianZhao,FENG Wei,WANG YongHua,GUO TianCai. Effects of Nitrogen Fertilizer and Plant Density on Carbon Metabolism, Nitrogen Metabolism and Grain Yield of Two Winter Wheat Varieties [J]. Scientia Agricultura Sinica, 2021, 54(19): 4070-4083.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!