Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (2): 320-331.doi: 10.3864/j.issn.0578-1752.2017.02.011

• HORTICULTURE • Previous Articles     Next Articles

Genetic and Phylogenetic Relationships Among Citrus and Its Close and Distant Relatives Based on COS Marker

WANG Jiong, GONG GuiZhi, PENG ZhuChun, LI YiBing, WANG YanJie, HONG QiBin   

  1. Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712
  • Received:2016-05-06 Online:2017-01-16 Published:2017-01-16

Abstract: 【Objective】To reveal genetic diversity and phylogenetic relationships of Citrus and its close and distant relatives with newly developed conserved ortholog sequence (COS) Marker.【Method】According to the published C. sinensis and C. clementina genomic sequencing information, COS Markers were developed and screened. Polymorphic markers were used to amplify and detect Citrus and its close and distant relatives. Structure, Power Marker and GenAlEx were used to analyze the relevant data.【Result】A total of 60 COS primers were designed, and 25 primer pairs distributed in different linkage groups were selected based on clear and good DNA polymorphic bands. In 45 samples from Citrus and its relatives, 25 COS markers produced 584 bands, with an average of about 23.36 bands per marker, and genetic diversity ranged from 0.26 to 0.88, with an average of 0.49; PIC value was between 0.26 and 0.87, with an average of 0.48. When K = 9, a clear genetic structure relationship of citrus and its relatives were revealed. They were divided into C. reticulata group, C. grandis group, C. medica group, Papeda group, Fortunella group, P. trifoliate and Eremocitrus and M. australis group, Z. bungeanum group, Clausena lansium and Atalantia buxifolia and Murraya paniculata group as well as C. indica and C. mangshanensis hybrid groups. This result was globally consistent with that in the UPGMA clustering analysis. UPGMA clustering analysis revealed that COS Marker could effectively distinguish Citrus from its close and distant germplasm resources. At higher taxonomy level, Citrus was first separated from P. trifoliate, Eremocitrus, M. australis, Z. bungeanum, Clausena lansium, Atalantia buxifolia and Murraya paniculata; In Citrus, C. medica and Papeda group were first clustered, and then they were clustered with C. reticulata and C. grandis and other plants of Citrus. In C. reticulata group, Daoxian yeju and Cenxi suanju and other half wild C. reticulata were clearly distinguished from ponkan and the rest cultivated C. reticulata, but C. mangshanensis and C. indica were not in the group.【Conclusion】COS primers based on Citrus genomic information could get effective amplification and distinguish Citrus from its close and distant relatives effectively. The genetic makeup of C. mangshanensis and C. indica were heterozygous and different from C. reticulata, so they may not be the most primitive types of C. reticulata.

Key words: Citrus, COS marker, phylogenetic relationship, germplasm, genetics and evolution

[1]    Swingle W T, Reece P C. The botany of citrus and its wild relatives//Reuther W, Webber H J, BATCHELOR L D. The Citrus Industry. Vol. 1. 2nd ed. Berkley: University of California Press. 1967: 190-422.
[2]    Barrett H C, Rhodes A M. A numerical taxonomic study of affinity relationships in cultivated citrus and its close relatives. Systematic Botany, 1976, 1: 105-136.
[3]    谢让金, 周志钦, 邓烈. 真正柑橘果树类植物基于 AFLP 分子标记的分类与进化研究. 植物分类学报, 2008, 46(5): 682-691.
XIE R J, ZHOU Z Q, DENG L. Taxonomic and phylogenetic relationships among the genera of the true citrus fruit trees group (Aurantioideae, Rutaceae) based on AFLP markers. Journal of Systematics and Evolution (formerly Acta Phytotaxonomica Sinica), 2008, 46(5): 682-691. (in Chinese)
[4]    PANG X M, HU C G, DEND X X. Phylogenetic relationships within citrus and its related genera as inferred from AFLP markers. Genetic Resources and Crop Evolution, 2007, 54: 429-436.
[5]    龚桂芝, 洪棋斌, 彭祝春, 江东, 向素琼. 枳属种质遗传多样性及其近缘属植物亲缘关系的SSR和cpSSR分析. 园艺学报, 2008, 38(12): 1742-1750.
GONG G Z, HONG Q B, PENG Z C, JIANG D, XIANG S Q. Genetic diversity of poncirus and its phylogenetic relationships with relatives as revealed by nuclear and chloroplast SSR. Acta Horticulturae Sinica, 2008, 38(12): 1742-1750. (in Chinese)
[6]    雷天刚, 何永睿, 彭爱红, 许兰珍, 邹修平, 姚利晓, 李金强, 陈善春. 贵州部分柑橘地方品种遗传背景的 SSR 分析. 西南大学学报(自然科学版), 2015, 37(11): 31-35.
LEI T G, HE Y R, PENG A H, XU L Z, ZOU X P, YAO L X, LI J Q, CHEN S C. Genetic background analysis of several Guizhou local citrus varieties based on SSR markers. Journal of Southwest University (Natural Science Edition), 2015, 37(11): 31-35. (in Chinese)
[7]    廖芳蕾, 陈民管, 桑丹, 陈文荣, 郭卫东. 佛手种质资源遗传多样性的ISSR分析. 园艺学报, 2013, 40(11): 2222-2228.
LIAO F L, CHEN M G, SANG D, CHEN W R, GUO W D. Genetic diversity analysis of fingered citron germplasm by ISSR. Acta Horticulturae Sinica, 2013, 40(11): 2222-2228. (in Chinese)
[8]    刘通, 邓崇岭, 程玉芳, 李秋景, 陈传武, 刘冰浩, 伊华林. 利用SSR和SRAP技术分析广西柑橘种质遗传多样性. 华中农业大学学报, 2016, 35(2): 23-29.
LIU T, DENG C L, CHENG Y F, LI Q J, CHEN C W, LIU B H, YI H L. Analyzing genetic diversity of citrus germplasm in Guangxi province with SSR and SRAP markers. Journal of Huazhong Agricultural University, 2016, 35(2): 23-29. (in Chinese)
[9]    PENJOR T, ANAI T, NAGANO Y, MATSUMOTO R, YAMAMOTO M. Phylogenetic relationships of citrus and its relatives based on rbcL gene sequences. Tree Genet Genomes, 2010, 6: 931-939.
[10]   BARKLEY N A, ROOSE M L, KRUEGER R R, FEDRICI C T. Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theoretical and Applied Genetics, 2006, 112: 1519-1531.
[11]   FULTON T M, HOEVENR V, EANNETTAN T, TANKSLEY S D. Identifiation, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell, 2002, 14: 1457-1467.
[12]   KRUTOVSKY K V, TROGGIO M, BROWN G R, JERMSTAD K D, NEALE D B. Comparative mapping in the Pinaceae. Genetics, 2004, 168(1): 447-461.
[13]   LIEWLAKSANEEYANAWIN C, ZHUNG J, TANG M, FARZANEH N, LUENG G, CULLIS C, FINDLAY S, RITLAND C E, BOHLMANN J, RITLAND K. Identification of COS markers in the Pinaceae. Tree Genetics & Genomes, 2008, 5(1): 247-255.
[14]   CHAPMAN M A, CHANG J, WEISMAN D, KESSELIR V, BURKE J M. Universal markers for comparative mapping and phylogenetic analysis in the Asteraceae (Compositae). Theoretical and Applied Genetics, 2007, 115: 747-755.
[15]   QURAISHI U M, ABROUK M, BOLOT S, PONT C, THROUDE M, GUILHOT N, CONFOLENT C, BORTOLINI F, PRAUD S, MURIGEUX A, CHARMET G, SALSE J. Genomics in cereals:from genome-wide conserved orthologous set (COS) sequences to candidate genes for trait dissection. Functional & Integrative Genomics, 2009, 9: 473-484.
[16]   WU F N, NANCY T E, XU Y M, PLIESKE J, GANAL M, POZZI C, BAKAHER N, TANKSLEY S D. COSII genetic maps of two diploid nicotiana species provide a detailed picture of synteny with tomato and insights into chromosome evolution in tetraploid N. tabacum. Theoretical and Applied Genetics, 2010, 120: 809-827.
[17]   BUSHAKRA J M, SARGENT D J. CABRERA A, CROWHURST R, GIRONA E L, VELASCO R, SYMONDS V V, KNAAP E, TROGGIO M, GARDINER S E. CHAGNE D. Rosaceae conserved orthologous set (RosCOS) markers as a tool to assess genome synteny between Malus and Fragaria. Tree Genetics & Genomes, 2011, 8: 643-658.
[18]   JEONG Y M, CHUNG W H, CHUNG H, NAMSHIN K, PARK B S, LIM K B, YU H J, MUN J H. Comparative analysis of the radish genome based on a conserved ortholog set (COS) of Brassica. Theoretical and Applied Genetics, 2014, 127: 1975-1989.
[19]   EVANNO G, REGNAUT S, GOUDET J. Detecting the number of clusters of individuals using the software STRUCTURE:a simulation study. Molecular Ecology, 2005, 14(8): 2611-2620.
[20]   强海平, 余国辉, 刘海泉, 高洪文, 刘贵波, 赵海明, 王赞. 基于SSR标记的中美紫花苜蓿品种遗传多样性研究. 中国农业科学, 2014, 47(14): 2853-2862.
QIANG H P, YU G H, LIU H Q, GAO H W, LIU G B, ZHAO H M, WANG Z. Genetic diversity and population structure of Chinese and American Alfalfa (Medicago Sativa. L) germplasm assessed by SSR markers. Scientia Agricultura Sinica, 2014, 47(14): 2853-2862.(in Chinese)
[21]   刘志斋, 吴迅, 刘海利, 李永祥, 李清超, 王凤格, 石云素, 宋燕春, 宋伟彬, 赵久然, 赖锦盛, 黎裕,王天宇. 基于40个核心SSR标记揭示的820份中国玉米重要自交系的遗传多样性与群体结构. 中国农业科学, 2012, 45(11): 2107-2138.
LIU Z Z, WU X, LIU H L, LI Y X, LI Q C, WANG F G, SHI Y S, SONG Y C, SONG W B, ZHAO J R, LAI J S, LI Y, WANG T Y. Genetic diversity and population structure of important Chinese maize inbred lines revealed by 40 core simple sequence repeats (SSRs). Scientia Agricultura Sinica, 2012, 45(11): 2107-2138. (in Chinese)
[22]   GARCIA A L, LURO F, OLLITRAULT P, NAVARRO L. Genetic diversity and population structure analysis of mandarin germplasm by nuclear, chloroplastic and mitochondrial markers. Tree Genetics & Genomes, 2015, 11: 123-137.
[23]   梁国鲁. 部分柑桔属及其近缘属Giemsa C-带带型研究. 遗传学报, 1988, 15(6): 409-415.
LIANG G L. Study on the Giemsa C-banding Patterns of Some Citrus and Its Related Genera. Acta Genetica Sinica, 1988, 15(6): 409-415. (in Chinese)
[24]   熊光明. 应用AFLP分子标记对柑橘属(Cirtus)植物进行鉴别与系统分类研究[D]. 重庆: 西南农业大学, 2002.
Xiong G M. Study on citrus Identification and Taxonomy by using AFLP markers [D]. Chongqing: Southwest Agricultural University, 2002. (in Chinese)
[25]   XU Q, CHEN L L, RUAN X A, CHEN D J, ZHU A D, CHEN C L, BERTRAND D, JIAO W B, HAO B H, MATTHEW P L, CHEN J J, GAO S, XING F, LAN H, CHANG J W, GE X H, LEI Y, HU Q, MIAO Y, WANG L, XIAO S X, BISWAS M K, ZENG W F, GUO F, CAO H B, YANG X M, XU X W, CHENG Y J, XU J, LIU J H, OSCAR, LUO J H, TANG Z H, GUO W W, KUANG H H, ZHANG H Y, MIKEAL L R, NIRANJAN N, DENG X X, RUAN Y J. The draft genome of sweet orange (Citrus sinensis). Nature Genetics, 2013, 45: 59-66.
[26]   DONOGHUE P C J, BENTON M J. Rocks and clocks: Calibrating the tree of life using fossils and molecules. Trends in Ecology & Evolution, 2007, 22: 424-431 .
[27]   FEDERICI C T, FANG D Q, SCORA R W, ROOSE M L. Phylogenetic relationships within the genus Citrus (Rutaceae)and related genera as revealed by RFLP and RAPD analysis. Theoretical and Applied Genetics, 1998, 96: 812-822.
[28]   吴征镒, 陈心启. 中国植物志. 北京: 科学出版社, 1997, 43(2): 1.
WU Z Y, CHEN X Q. Flora Republicae Popularis Sinicae. Beijing: Science Press, 1997, 43(2): 1. (in Chinese)
[29]   MALIK S K, CHAUDHURY R, DHARIWAL O P, RAJWANT K K. Collection and characterization of Citrus indica Tanaka and C. macroptera Montr: wild endangered species of northeastern India. Genetic Resources and Crop Evolution, 2006, 53: 1485-1493.
[30]   TANAKA T. Citrologia semi centennial commemoration papers on citrus studies. Osaka: Citrologia Supporting Foundation, 1961: 114.
[31]   廖振坤, 张秋明, 刘卫国, 丁伟平, 张玲. 南岭山脉宽皮柑橘近缘野生种亲缘关系鉴定. 湖南农业大学学报(自然科学版), 2006, 32(4): 385-388.
LIAO Z K, ZHANG Q M, LIU W G, DING W P, ZHANG L. Identification of relative relationships of wild relatives of eucitrus originated from Nanling mountains by AFLP analysis. Journal of Hunan Agricultural University (Natural Sciences Edition), 2006, 32(4): 385-388. (in Chinese)
[32]   JOSE C C, ROBERTO A, VICTORIA I, JAVIER T, MANUEL T, JOAQUIN D. A phylogenetic analysis of 34 chloroplast genomes elucidates the relationships between wild and domestic species within the genus citrus. Molecular Biology and Evolution, 2015, 32(8): 2015-2035.
[33]   王福生, 江东. 应用cpSSR和EST-SSR标记进行柑橘特异种质资源遗传背景研究. 园艺学报, 2010, 37(3): 465-474.
WANG F S, JIANG D. Studies on genetic background of important germplasm resources among citrus based on cpSSR and EST-    SSR marker. Acta Horticulturae Sinica, 2010, 37(3): 465-474. (in Chinese)
[34]   刘勇, 孙中海, 刘德春, 吴波, 陶建军. 柚类种质资源AFLP与SSR遗传多样性分析. 中国农业科学, 2005, 38(11): 2308-2315.
LIU Y, SUN Z H, LIU D C, WU B, TAO J J. Assessment of the genetic diversity of pummelo germplasms using AFLP and SSR markers. Scientia Agricultura Sinica, 2005, 38(11): 2308-2315. (in Chinese)
[35]   LASKAR M A, HYNNIEWTA M, RAO C S. In vitro propagation of citrus indica Tanaka—An endangered progenitor species. Indian Journal of Biotechnology, 2009, 8: 311-316.
[36]   NICOLOSI E, DENG Z N, GENTILE A, MALFA S L, CONTINELLA G, TRIBULATO E. Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theoretical and Applied Genetics, 2000, 100: 1155-1166.
[1] LI FeiFei, LIAN XueFei, YIN Tao, CHANG YuanYuan, JIN Yan, MA XiaoChuan, CHEN YueWen, YE Li, LI YunSong, LU XiaoPeng. The Relationship Between Mastication and Development of Segment Membranes in Citrus Fruits [J]. Scientia Agricultura Sinica, 2023, 56(2): 333-344.
[2] SONG SongQuan,LIU Jun,TANG CuiFang,CHENG HongYan,WANG WeiQing,ZHANG Qi,ZHANG WenHu,GAO JiaDong. Research Progress on the Physiology and Its Molecular Mechanism of Seed Desiccation Tolerance [J]. Scientia Agricultura Sinica, 2022, 55(6): 1047-1063.
[3] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[4] HUANG JiaQuan,LI Li,WU FengNian,ZHENG Zheng,DENG XiaoLing. Proliferation of Two Types Prophage of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and their Pathogenicity [J]. Scientia Agricultura Sinica, 2022, 55(4): 719-728.
[5] JIANG QiQi,XU JianJian,SU Yue,ZHANG Qi,CAO Peng,SONG ChenHu,LI ZhongAn,SONG Zhen. Construction and Application of Infectious Clone of Citrus Yellow Mosaic Virus [J]. Scientia Agricultura Sinica, 2022, 55(24): 4840-4850.
[6] ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407.
[7] ZHU YanSong,ZHANG YaFei,CHENG Li,YANG ShengNan,ZHAO WanTong,JIANG Dong. Identification of 60 Citrus Accessions Using Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2022, 55(22): 4458-4472.
[8] DUAN CanXing,CAO YanYong,DONG HuaiYu,XIA YuSheng,LI Hong,HU QingYu,YANG ZhiHuan,WANG XiaoMing. Precise Characterization of Maize Germplasm for Resistance to Pythium Stalk Rot and Gibberella Stalk Rot [J]. Scientia Agricultura Sinica, 2022, 55(2): 265-279.
[9] XIAO GuiHua,WEN Kang,HAN Jian,HAO ChenXing,YE RongChun,ZHU YiChi,XIAO ShunYuan,DENG ZiNiu,MA XianFeng. Effects of Calcium on Growth and Development of Poncirus trifoliata and Resistance to Citrus Canker [J]. Scientia Agricultura Sinica, 2022, 55(19): 3767-3778.
[10] ZiHan FAN,YaYin LUO,HuaYe XIONG,YuWen ZHANG,FuRong KANG,YuHeng WANG,Jie WANG,XiaoJun SHI,YueQiang ZHANG. Effect of Nitrification on Ammonium Toxicity to Citrus in Acidic Soil [J]. Scientia Agricultura Sinica, 2022, 55(18): 3600-3612.
[11] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[12] CHEN XueSen,WANG Nan,ZHANG ZongYing,MAO ZhiQuan,YIN ChengMiao. Understanding and Thinking About Some Problems of Fruit Tree Germplasm Resources and Genetic Breeding [J]. Scientia Agricultura Sinica, 2022, 55(17): 3395-3410.
[13] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[14] SHEN ZhiJun, TIAN Yu, CAI ZhiXiang, XU ZiYuan, YAN Juan, SUN Meng, MA RuiJuan, YU MingLiang. Evaluation of Brown Rot Resistance in Peach Based on Genetic Resources Conserved in National Germplasm Repository of Peach in Nanjing [J]. Scientia Agricultura Sinica, 2022, 55(15): 3018-3028.
[15] LU Qi,JIA XuChao,DENG Mei,ZHANG RuiFen,DONG LiHong,HUANG Fei,CHI JianWei,LIU Lei,ZHANG MingWei. Effects of Different Drying Methods on Bioactive Components of Shatianyou (Citrus grandis L. Osbeck) Pomace Powder [J]. Scientia Agricultura Sinica, 2022, 55(14): 2825-2836.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!