Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (2): 250-259.doi: 10.3864/j.issn.0578-1752.2017.02.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & ECOLOGY • Previous Articles     Next Articles

Effects of Alkaline Stress on Metabonomic Responses of Wheat (Triticum aestivum Linn) Leaves

GUO Rui1,2, ZHOU Ji3, YANG Fan4, LI Feng1   

  1. 1Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081; 2Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing 100081; 3Land Consolidation and Rehabilitation Centre, The Ministry of Land and Resources, Beijing 100034; 4Jilin Provincial Academy of Forestry Science, Changchun 130033
  • Received:2016-06-01 Online:2017-01-16 Published:2017-01-16

Abstract: 【Objective】 A pot experiment was conducted to investigate the alkaline stress in ion balance and metabolic profiles of wheat, to determine the physiological adaptive mechanisms of wheat in tolerance to alkali stress. 【Method】 In a pot experiment with control and alkaline stress (NaHCO3﹕Na2CO3=1﹕1), the growth and photosynthetic characters, ion and 73 key metabolites of wheat were studied. 【Result】The results showed that when alkaline stress intensity exceeded the capacity of wheat adjustment, Na+ accumulation in cells in a high-pH environment resulted in damage of the photosynthetic system, reduced photosynthetic pigments, inhibited the activity of photosystem II, and reduced high stomatal conductance and net photosynthetic rate. Alkaline stress caused massive influx of Na+, a decrease of inorganic negative charge and pH value homeostasis, thus resulting ionic unbalance and leading to a series of strain metabolic response. In addition, 73 metabolites were detected in different alkaline stress treatments according to GC-MS analysis, and these metabolites were sugars/polyols, organic acids, amino acids and others. Compared with the control sample, the response of 25 and 48 metabolites in moderate and severe alkaline stress treatments remarkably changed, respectively, in leaves of wheat seedlings. The results of one-way ANOVA analysis indicated that the changes of metabolites were more significant under high alkaline stress than that under moderate alkaline stress. The results revealed that alkaline stress caused an significant decrease in levels of 5 and 6 metabolites, which are involved in TCA cycle and glycolysis; it also caused amino acids (glutamate, alanine, γ-aminobutyric acid, aspartic acid) and sugars/ploys (fructose, sucrose, talose, myo-inositol) decreased dramatically. Meanwhile, alkaline stress induced organic acids accumulation in wheat, and it maybe a passive adaptive response to alkaline stress, and organic acids kept ionic balance and pH homeostasis. 【Conclusion】 The results suggested that alkaline stress caused systems alterations in metabolic networks including TCA cycle, glycolysis, calvin cycle, shikimic path way, metabolism of plasma membrane,GS/GOGAT cycle and GABA path way, implying alkaline stress not only had side effect on synthesis of sugars, amino acids, fats and proteins, but also inhibited the translation between C and N, thus resulted in nutrients deficiency and caused decrease of plant growth and development.

Key words: wheat (Triticum aestivum Linn), alkali stress, leaves, growth characters, photosynthetic characters, metabonomic

[1]    FAO. FAO land and plant nutrition management service. FAO, Rome. http://wwwfaoorg/ag/agl/agll/spush. 2009.
[2]    FAO. Global network on integrated soil management for sustainable use of salt affected soil. FAO, Rome. http://www.fao.org/ag/agl/agll/ spush.2005.
[3]    李彬, 王志春, 孙志高, 陈渊, 杨福. 中国盐碱地资源与可持续利用研究. 干旱地区农业研究, 2005, 23(2): 152-158.
LI B, WANG Z C, SUN Z G, CHEN Y, YANG F. Resources and sustainable resource exploitation of salinized land in China. Agricultural Research in the Arid Areas, 2005, 23(2): 152-158. (in Chinese)
[4]    俞仁培. 我国盐渍土资源及其开发利用. 土壤通报, 1999, 30(4): l58-159.
YU R P. Saline soil resources in China and their exploitation. Chinese Journal of Soil Science, 1999, 30(4): l58-159. (in Chinese)
[5]    SHI D C, WANG D. Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin.). Plant Soil, 2005, 271: 15-26.
[6]    YANG C, SHI D, WANG D. Comparative effects of salt stress and alkali stress on growth, osmotic adjustment and ionic balance of an alkali resistant halophyte Suaeda glauca (Bge.). Plant Growth Regulation, 2008, 56: 179-190.
[7]    贾娜尔·阿汗, 杨春武, 石德成, 王德利. 盐生植物碱地肤对盐碱胁迫的生理响应特点. 西北植物学报, 2007, 27: 79-84.
JIANAER·A h, YANG C W, SHI D C, WANG D L. Physiological response of an alkali resistant Halophyte Kochia sieversiana to salt and alkali stresses. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27: 79-84. (in Chinese)
[8]    赵楠, 芦艳, 左进城, 鲁周民. 碱胁迫对碱蓬种子萌发的影响. 北方园艺, 2012, 1: 45-47.
ZHAO N, LU Y, ZUO J C, LU Z M. Effect of alkali stress on seed germination of Suaeda glauca Bunge. Northern Horticulture, 2012, 1: 45-47. (in Chinese)
[9]    KINGSBURY R W, EPSTEIN E, PEARY R W. Physiological responses to salinity in selected lines of wheat. Plant Physiology, 1984, 74: 417-423.
[10]   GENTY B, BRIANTAIS J M, BAKER N R. The relationship between the quantum yield of photosynthetic electrontransport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta, 1989, 990: 87-92.
[11]   ARNON D I. Copper enzymes in isolated chloroplasts phenoloxidases in Beta vulgaris. Plant Physiology, 1949, 24: 1-15.
[12]   LISEC J, SCHAUER N, KOPKA J, WILLMITZER L, FERNIE A R. Gas chromatography mass spectrometry-based metabolite profiling in plants. Nature Protocols, 2006, 1: 387-396.
[13]   石德成, 李玉明, 杨国会, 李毅丹, 赵可夫. 盐碱混合生态条件的人工模拟及其对羊草胁迫作用因素分析. 生态学报, 2002, 22(8): 1317-1326.
SHI D C, LI Y M, YANG G H, LI Y D, ZHAO K F. A simulation of salt and alkali stress mixed ecological conditions and analysis of their stress factors in the seedlings of Aneurolepidium Chinense. Acta ecological sinica, 2002, 22(8): 1317-1326. (in Chinese)
[14]   SHI D C, ZHAO K F. Effects of NaCl and Na2CO3 on growth of Puccinellia tenuiflora and on present state of mineral elements in nutrient solution. Acta prataculturae Sinica, 1997, 6: 51-61.
[15]   MUNNS R, TESTER M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59: 651-681.
[16]   PARIDA A K, DAS A B. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 2005, 60: 324-349.
[17]   ZHU J K. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 2003, 6: 441-445.
[18]   杨春武, 李长有, 张美丽, 刘杰, 鞠淼, 石德成. 盐、碱胁迫下小冰麦体内的pH及离子平衡. 应用生态学报, 2008, 19(5): 1000-1005.
YANG C W, LI C Y, ZHANG M L, LIU J, JU M, SHI D C. pH and ion balance in wheat-wheatgrass under salt-or alkali stress. Chinese Journal of Applied Ecology, 2008, 19(5): 1000-1005. (in Chinese)
[19]   WANG X P, GENG S J, RI Y J, CAO D H, LIU J, SHI D C, YANG C W. Physiological responses and adaptive strategies of tomato plants to salt and alkali stresses. Scientia Horticulturae, 2011, 130: 248-255.
[20]   郭瑞, 李峰, 周际, 李昊儒, 夏旭, 刘琪. 亚麻响应盐、碱胁迫的生理特征. 植物生态学报, 2016, 40(1): 69-79.
GUO R, LI F, ZHOU J, LI H R, XIA X, LIU Q. Eco-physiological responses of linseed (Linum usitatissimum) to salt and alkali   stresses. Chinese Journal of Plant Ecology, 2016, 40(1): 69-79. (in Chinese)
[21]   CUI Q, LEWIS I A, HEGE A D, ANDERSON M E, LI J, SCHULTE C F, WESTLER W M, EGHBALNIA H R, SUSSMAN M R, MARKLEY J L. Metabolite identification via the Madison mrtabolomics consortium database. Nature Biotechnology, 2008, 26: 162-164.
[22]   DAI H, XIAO C, LIU H, TANG H. Combined NMR and LC-MS analysis reveals the metabonomic changes in Salvia miltiorrhiza Bunge induced by water depletion. Journal of proteome research, 2010, 9: 1460-1475.
[23]   郭伟, 于立河. 盐碱胁迫对小麦幼苗根系活力和苯丙氨酸解氨酶活性的影响. 作物杂志, 2012, 1: 31-34.
GUO W, YU L H. Effects of salinity-alkalinity stress on root activity and phenylalanine ammonia-lyase activity of wheat seedlings. Crops, 2012, 1: 31-34. (in Chinese)
[24]   胡海燕, 贺杰, 赵俊杰, 茹振刚. 碱性pH条件下小麦幼苗保护酶活性的变化动态. 河南科技学院学报(自然科学版), 2013, 41: 1-5.
Hu H Y, He J, Zhao J J, Ru Z G. Dynamic change of cell defense enzyme activity in wheat seedling under different alkaline pH conditions. Journal of Henan Institute of Science and Technology (Natural science), 2013, 41: 1-5. (in Chinese)
[25]   YANG C W, WAND P, LI C Y, SHI D C, WANG D L. Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat. Photosynthetica, 2008, 46(1): 107-114.
[26]   BOUCHE N, FROMM H. GABA in plants: just a metabolites? Trends in plant sciences, 2004, 9: 110-115.
[27]   SHELP B J, BOWN A W, FAURE D. Extracellular gamma- Aminobutyrate mediates communication between plants and other organisms. Plant Physiology, 2006, 142: 1350-1352.
[28]   王镜岩, 朱圣庚, 徐长法. 生物化学(第三版). 北京: 高等教育出版社, 2002.
WANG J Y, ZHU S G, XU C F. Biochemistry (3rd). Beijing: Higher Education Press, 2002. (in Chinese)
[29]   ROOSENS N H, WILLEM R, LI Y, VERBRUGGEN I, BIESEMANS M, JACOBS M. Proline metabolism in the wild-type and in a salt-tolerant mutant of Nicotiana plumbaginifolia studied by 13C- nuclear magnetic resonane imaging. Plant Physiology, 1999, 121: 1281-1290.
[30]   邓若磊, 徐海荣, 曹云飞, 肖凯. 植物吸收铵态氮的分子生物学基础. 植物营养与肥料学报, 2007, 13(3): 512-519.
DENG R L, XU H R, CAO Y F, XIAO K. The molecular basis of ammonium transporters in plants. Plant Nutrition and Fertilizer Science, 2007, 13(3): 512-519. (in Chinese)
[31]   骆媛嫒, 柳参奎. 植物中铵转运蛋白的研究进展. 基因组学与应用生物学, 2009, 28(2): 373-379.
LUO Y Y, LIU S K. Research progress of ammonium transporter in plants. Genomics and Applied Biology, 2009, 28(2): 373-379. (in Chinese)
[1] LÜ ZhiWei,DU Kang,ZHOU ZhiGuo,ZHAO WenQing,HU Wei,ZHAO JianMing,ZHU SuQin,WANG YouHua. Research on Senescence Process and Suitable Indicators of Maize Ear Leaves [J]. Scientia Agricultura Sinica, 2022, 55(12): 2311-2323.
[2] CuiQing WU,JingXin SUN,PingYi GUO,HongFu WANG,XinHui WU. Effects of Agronomic Managements on Yield and Lodging Resistance of Millet [J]. Scientia Agricultura Sinica, 2021, 54(6): 1127-1142.
[3] ZHAO Shan,ZHONG LingLi,QIN Lin,HUANG ShiQun,LI Xi,ZHENG XingGuo,LEI XinYu,LEI ShaoRong,GUO LingAn,FENG JunYan. Effects of Different Drying Methods on Functional Components and Antioxidant Activity in Sweet Potato Leaves [J]. Scientia Agricultura Sinica, 2021, 54(21): 4650-4663.
[4] WANG ShiYa,ZHENG DianFeng,XIANG HongTao,FENG NaiJie,LIU Ya,LIU MeiLing,JIN Dan,MOU BaoMin. Damage of AsA-GSH Cycle of Soybean Leaves Under Waterlogging Stress at Initial Flowing Stage and the Mitigation Effect of Uniconazole [J]. Scientia Agricultura Sinica, 2021, 54(2): 271-285.
[5] LIU Kai,HE ShanShan,ZHANG CaiXia,ZHANG LiYi,BIAN ShuXun,YUAN GaoPeng,LI WuXing,KANG LiQun,CONG PeiHua,HAN XiaoLei. Identification and Analysis of Differentially Expressed Genes in Adventitious Shoot Regeneration in Leaves of Apple [J]. Scientia Agricultura Sinica, 2021, 54(16): 3488-3501.
[6] ZHAO WenHua,WANG GuiYing,XUN Wen,YU YuanRui,GE ChangRong,LIAO GuoZhou. Selection of Water-Soluble Compounds by Characteristic Flavor in Chahua Chicken Muscles Based on Metabolomics [J]. Scientia Agricultura Sinica, 2020, 53(8): 1627-1642.
[7] SUN YongBo,WANG Ya,SA RENNA,ZHANG HongFu. Effects of Chronic Ammonia Stress on Serum Metabolites of Broilers Based on GC-MS [J]. Scientia Agricultura Sinica, 2020, 53(8): 1688-1698.
[8] YOU FangNing,DENG HuiLi,HU Juan,YAO ZhiLing,WU ShuaiQiang,QIN YiJia,TANG TongHua,SUN Yun. Effects of LED Light Withering at Different Temperatures on Expression of Key Genes in the Upstream of MEP and Formation of Volatiles in Tieguanyin Tea [J]. Scientia Agricultura Sinica, 2020, 53(2): 346-356.
[9] LI ShuaiLan,SHEN Xiao,ZOU ZhengRong. Effect of Petroleum Ether Extract from Solidago canadensis on Liver of Pomacea canaliculata [J]. Scientia Agricultura Sinica, 2019, 52(15): 2624-2635.
[10] WU Yang, GAO HuiChun, ZHANG BiXian, ZHANG HaiLing, WANG QuanWei, LIU XinLei, LUAN XiaoYan, MA YanSong. Effects of 24-Brassinolide on the Fertility, Physiological Characteristics and Cell Ultra-Structure of Soybean Under Saline-Alkali Stress [J]. Scientia Agricultura Sinica, 2017, 50(5): 811-821.
[11] XU Rui, HU BaiShi, TIAN YanLi, HUANG YanNing, XIE Jin, CAO Liang, PENG SiWen, ZHU XiaoQi. Development of Padlock Probe Combined with Dot-Blot Hybridization Based Methods for Detection of Bacterial Spot of Melon Leaves [J]. Scientia Agricultura Sinica, 2017, 50(4): 679-688.
[12] LI Ya-juan, WANG Dong-sheng, ZHANG Shi-dong, YAN Zuo-ting, YANG Zhi-qiang, DU Yu-lan, DONG Shu-wei, HE Bao-xiang. Plasma Metabolic Profiling Analysis of Dairy Cows with Laminitis Based on GC-MS [J]. Scientia Agricultura Sinica, 2016, 49(21): 4255-4264.
[13] GE Hong-juan, LONG Gui-you, DAI Su-ming, LI Da-zhi, LI Na, DENG Zi-niu. The Influence of ‘Bingtang’ Sweet Orange or Citron C-05 on the Growth Characteristics of Xanthomonas axonopodis pv. citri [J]. Scientia Agricultura Sinica, 2015, 48(7): 1383-1391.
[14] LU Kun, ZHANG Lin, QU Cun-ming, LIANG Ying, TANG Zhang-lin, LI Jia-na. Identification of Drought Stress-Responsive Genes in Leaves of Brassica napus by RNA Sequencing [J]. Scientia Agricultura Sinica, 2015, 48(4): 630-645.
[15] LI Ying, XU Chuang, XIA Cheng, ZHANG Hong-you, SUN Ling-wei, XU Chu-chu. 1H NMR-Based Plasma Metabolic Profiling of Dairy Cows with Type I and Type II Ketosis [J]. Scientia Agricultura Sinica, 2015, 48(12): 2449-2459.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!