Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (4): 630-645.doi: 10.3864/j.issn.0578-1752.2015.04.02

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification of Drought Stress-Responsive Genes in Leaves of Brassica napus by RNA Sequencing

LU Kun, ZHANG Lin, QU Cun-ming, LIANG Ying, TANG Zhang-lin, LI Jia-na   

  1. College of Agronomy and Biotechnology, Southwest University, Chongqing 400715
  • Received:2014-08-26 Online:2015-02-16 Published:2015-02-16

Abstract: 【Objective】 To identify the candidate genes involved in drought stress response in leaves of Brassica napus thereby exploring the molecular mechanism of drought stress adaptation of it, the transcriptomes of B. napus seedlings leaves under two different conditions were compared using RNA sequencing (RNA-Seq). 【Method】 Total RNA were extracted from leaves of B. napus cultivar ZY821 at six-leaf stage under normal (ZY) and natural water loss (ZY8D) conditions, and then were used for RNA-Seq analysis on the Illumina Hiseq 2000 platform. Ambiguous reads and low-quality reads were filtered using NGSQCTookit v2.3.3. The TopHat2-Cufflinks-Cuffmerge-Cuffdiff standard pipeline was applied to identify the differentially expressed genes (DEGs), taking the B. rapa chromosome v1.5 and B. oleracea Scaffold v1.0 as reference. In order to perform GO term and KEGG enrichment analyses, the up- and down-regulated DEGs were further analyzed using the BiNGO plugin in Cytoscape v3.1.0 and KOBAS2.0, respectively. Subsequently, the qRT-PCR assays were implemented to verify the expression patterns of three representatives of the up- and down-regulated DEGs, respectively. 【Result】 After filtration, a total of 26192312 and 28378899 high-quality reads were acquired in ZY and ZY8D for screening DEGs, 86.6% and 85.8% of the filtered reads derived from ZY and ZY8D could be accurately mapped to the reference sequence, demonstrating the high confidence of the RNA-Seq and the reference. Of the 3 657 DEGs, 1 431 and 2 226 genes were detected to be up- and down-regulated, respectively. GO enrichment analysis indicated that the up-regulated genes were mainly enriched in response to abiotic stress and chemical stimulus, and 127 and 141 out of these DEGs were involved in response to water deprivation and ABA stimulus, respectively. However, down-regulated DEGs were mainly overrepresented in defense response to plant pathogen, protein kinase activity and response to SA stimulus. KEGG enrichment analysis showed that up-regulated genes were significantly associated with phenylpropanoid and carotenoid biosynthesis pathways, and starch and sucrose metabolism, while the down-regulated DEGs mainly enriched in plant-pathogen interaction and signal transduction pathways of ABA, SA and jasmonic acid (JA). The results of qRT-PCR analysis of six DEGs were consistent with those of RNA-Seq data, further confirming the reliability of RNA-Seq results. 【Conclusion】 In total, 3 657 drought stress-responsive genes were identified using RNA-Seq. GO and KEGG pathway analyses identified the overrepresented molecular function categories and pathways of DEGs.

[1]    张家团, 屈艳萍. 近30年来中国干旱灾害演变规律及抗旱减灾对策探讨. 中国防汛抗旱, 2008, 5: 47-52.
Zhang J T, Qu Y P. Investigation on evolvement rule of drought disaster and disaster mitigation countermeasures in China during the last 30 years. Chinese Flood & Drought Management, 2008, 5: 47-52. (in Chinese)
[2]    Hu H, Xiong L. Genetic engineering and breeding of drought-resistant crops. Annual Review of Plant Biology, 2014, 65: 715-741.
[3]    Yoshida T, Mogami J, Yamaguchi-Shinozaki K. ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Current Opinion in Plant Biology, 2014, 21: 133-139.
[4]    Manavalan L P, Nguyen H T. Drought tolerance in crops: Physiology to genomics//Shabala S, editor. Plant Stress Physiology. Cambridge, MA: CAB International, 2012: 1-23.
[5]    Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, Eliby S, Shirley N, Langridge P, Lopato S. Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnology Journal, 2011, 9(2): 230-249.
[6]    刘露露, 陈雷, 张春艳, 石瑞杰, 任江萍, 孟凡荣, 尹钧, 李永春. 两个小麦LEA基因的特征及其对非生物胁迫的响应. 中国农业科学, 2014, 47(19): 3736-3745.
Liu L L, Chen L, Zhang C Y, Shi R J, Ren J P, Meng F R, Yin J, Li Y C. Characterization of two LEA genes and their response to abiotic stresses in wheat. Scientia Agricultura Sinica, 2014, 47(19): 3736-3745. (in Chinese)
[7]    Yang M, Yang Q, Fu T, Zhou Y. Overexpression of the Brassica napus BnLAS gene in Arabidopsis affects plant development and increases drought tolerance. Plant Cell Reports, 2011, 30(3): 373-388.
[8]    Dalal M, Tayal D, Chinnusamy V, Bansal K C. Abiotic stress and ABA-inducible Group 4 LEA from Brassica napus plays a key role in salt and drought tolerance. Journal of Biotechnology, 2009, 139(2): 137-145.
[9]    Georges F, Das S, Ray H, Bock C, Nokhrina K, Kolla V A, Keller W. Over-expression of Brassica napus phosphatidylinositol-phospholipase C2 in canola induces significant changes in gene expression and phytohormone distribution patterns, enhances drought tolerance and promotes early flowering and maturation. Plant, Cell & Environment, 2009, 32(12): 1664-1681.
[10]   Wang Y, Beaith M, Chalifoux M, Ying J, Uchacz T, Sarvas C, Griffiths R, Kuzma M, Wan J, Huang Y. Shoot-specific down-regulation of protein farnesyltransferase (alpha-subunit) for yield protection against drought in canola. Molecular Plant, 2009, 2(1): 191-200.
[11]   Wang Y, Ying J, Kuzma M, Chalifoux M, Sample A, McArthur C, Uchacz T, Sarvas C, Wan J, Dennis D T, McCourt P, Huang Y. Molecular tailoring of farnesylation for plant drought tolerance and yield protection. The Plant Journal, 2005, 43(3): 413-424.
[12]   Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D'Angelo C, Bornberg-Bauer E, Kudla J, Harter K. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. The Plant Journal, 2007, 50(2): 347-363.
[13]   Zeller G, Henz S R, Widmer C K, Sachsenberg T, Rätsch G, Weigel D, Laubinger S. Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays. The Plant Journal, 2009, 58(6): 1068-1082.
[14]   Jo K, Kwon H B, Kim S. Time-series RNA-seq analysis package (TRAP) and its application to the analysis of rice, Oryza sativa L. ssp. Japonica, upon drought stress. Methods, 2014, 67(3): 364-372.
[15]   Kakumanu A, Ambavaram M M R, Klumas C, Krishnan A, Batlang U, Myers E, Grene R, Pereira A. Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-Seq. Plant Physiology, 2012, 160(2): 846-867.
[16]   Wang H, Tong W, Feng L, Jiao Q, Long L, Fang R, Zhao W. De novo transcriptome analysis of mulberry (Morus L.) under drought stress using RNA-Seq technology. Russian Journal of Bioorganic Chemistry, 2014, 40(4): 423-432.
[17]   Vidal R O, do Nascimento L C, Mondego J M C, Pereira G A G, Carazzolle M F. Identification of SNPs in RNA-seq data of two cultivars of Glycine max (soybean) differing in drought resistance. Genetics and Molecular Biology, 2012, 35(1): 331-334.
[18]   Patel R K, Jain M. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE, 2012, 7(2): e30619.
[19]   Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J H, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Pires J C, Paterson A H, Chalhoub B, Wang B, Hayward A, Sharpe A G, Park B S, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King G J, Bonnema G, Tang H, Wang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Wang H, Jin H, Parkin I A, Batley J, Kim J S, Just J, Li J, Xu J, Deng J, Kim J A, Li J, Yu J, Meng J, Wang J, Min J, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links M G, Zhao M, Jin M, Ramchiary N, Drou N, Berkman P J, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Zhang S, Huang S, Sato S, Sun S, Kwon S J, Choi S R, Lee T H, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, Du Y, Liao Y, Lim Y, Narusaka Y, Wang Y, Wang Z, Li Z, Wang Z, Xiong Z, Zhang Z. The genome of the mesopolyploid crop species Brassica rapa. Nature Genetics, 2011, 43(10): 1035-1039.
[20]   Parkin I A P, Koh C, Tang H, Robinson S J, Kagale S, Clarke W     E, Town C D, Nixon J, Krishnakumar V, Bidwell S L. Transcriptome and methylome profiling reveals relics of genome dominance in    the mesopolyploid Brassica oleracea. Genome Biology, 2014, 15(6): R77.
[21]   Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin I A, Zhao M, Ma J, Yu J, Huang S, Wang X, Wang J, Lu K, Fang Z, Bancroft I, Yang T J, Hu Q, Wang X, Yue Z, Li H, Yang L, Wu J, Zhou Q, Wang W, King G J, Pires J C, Lu C, Wu Z, Sampath P, Wang Z, Guo H, Pan S, Yang L, Min J, Zhang D, Jin D, Li W, Belcram H, Tu J, Guan M, Qi C, Du D, Li J, Jiang L, Batley J, Sharpe A G, Park B S, Ruperao P, Cheng F, Waminal N E, Huang Y, Dong C, Wang L, Li J, Hu Z, Zhuang M, Huang Y, Huang J, Shi J, Mei D, Liu J, Lee T H, Wang J, Jin H, Li Z, Li X, Zhang J, Xiao L, Zhou Y, Liu Z, Liu X, Qin R, Tang X, Liu W, Wang Y, Zhang Y, Lee J, Kim H H, Denoeud F, Xu X, Liang X, Hua W, Wang X, Wang J, Chalhoub B, Paterson A H. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nature Communications, 2014, 5: 3930.
[22]   Cheng F, Liu S, Wu J, Fang L, Sun S, Liu B, Li P, Hua W, Wang X. BRAD, the genetics and genomics database for Brassica plants. BMC Plant Biology, 2011, 11(1): 136.
[23]   Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg S L. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 2013, 14(4): R36.
[24]   Trapnell C, Hendrickson D G, Sauvageau M, Goff L, Rinn J L, Pachter L. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nature Biotechnology, 2013, 31(1): 46-53.
[25]   Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley D R, Pimentel H, Salzberg S L, Rinn J L, Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 2012, 7(3): 562-578.
[26]   Altschul S F, Madden T L, Schäffer A A, Zhang J, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 1997, 25(17): 3389-3402.
[27]   Maere S, Heymans K, Kuiper M. BiNGO: A Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics, 2005, 21(16): 3448-3449.
[28]   Smoot M E, Ono K, Ruscheinski J, Wang P L, Ideker T. Cytoscape 2.8: New features for data integration and network visualization. Bioinformatics, 2011, 27(3): 431-432.
[29]   Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L. WEGO: A web tool for plotting GO annotations. Nucleic Acids Research, 2006, 34(Suppl. 2): W293-W297.
[30]   Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li C Y, Wei L. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Research, 2011, 39(Suppl. 2): W316-W322.
[31]   朱斌, 陆俊杏, 彭茜, 翁昌梅, 王淑文, 余浩, 李加纳, 卢坤, 梁颖. 甘蓝型油菜MAPK7基因家族及其启动子的克隆与表达分析. 作物学报, 2013, 39(5): 789-805.
Zhu B, Lu J X, Peng Q, Weng C M, Wang S W, Yu H, Li J N, Lu K, Liang Y. Cloning and analysis of MAPK7 gene family and their promoters from Brassica napus. Acta Agronomica Sinica, 2013, 39(5): 789-805. (in Chinese)
[32]   Bustin S A, Benes V, Garson J A, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl M W, Shipley G L. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 2009, 55(4): 611-622.
[33]   Asai T, Tena G, Plotnikova J, Willmann M R, Chiu W L, Gomez- Gomez L, Boller T, Ausubel F M, Sheen J. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 2002, 415(6875): 977-983.
[34]   Kagale S, Robinson S J, Nixon J, Xiao R, Huebert T, Condie J, Kessler D, Clarke W E, Edger P P, Links M G. Polyploid evolution of the Brassicaceae during the Cenozoic Era. The Plant Cell, 2014, 26(7) 2777-2791.
[35]   Raman H, Dalton-Morgan J, Diffey S, Raman R, Alamery S, Edwards D, Batley J. SNP markers‐based map construction and genome-wide linkage analysis in Brassica napus. Plant Biotechnology Journal, 2014, 12(7): 851-860.
[36]   Harper A L, Trick M, Higgins J, Fraser F, Clissold L, Wells R, Hattori C, Werner P, Bancroft I. Associative transcriptomics of traits in the polyploid crop species Brassica napus. Nature Biotechnology, 2012, 30(8): 798-802.
[37]   Zhang X, Lu G, Long W, Zou X, Li F, Nishio T. Recent progress in drought and salt tolerance studies in Brassica crops. Breeding Science, 2014, 64(1): 60-73.
[38]   Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 2007, 58(2): 221-227.
[39]   Kang H G, Kim J, Kim B, Jeong H, Choi S H, Kim E K, Lee H Y, Lim P O. Overexpression of FTL1/DDF1, an AP2 transcription factor, enhances tolerance to cold, drought, and heat stresses in Arabidopsis thaliana. Plant Science, 2011, 180(4): 634-641.
[40]   Atkinson N J, Urwin P E. The interaction of plant biotic and abiotic stresses: From genes to the field. Journal of Experimental Botany, 2012, 63(10): 3523-3543.
[41]   Smeets K, Opdenakker K, Remans T, Forzani C, Hirt H, Vangronsveld J, Cuypers A. The role of the kinase OXI1 in cadmium‐and copper- induced molecular responses in Arabidopsis thaliana. Plant, Cell & Environment, 2013, 36(6): 1228-1238.
[42]   Cao F Y, Yoshioka K, Desveaux D. The roles of ABA in plant– pathogen interactions. Journal of Plant Research, 2011, 124(4): 489-499.
[43]   Yasuda M, Ishikawa A, Jikumaru Y, Umezawa T, Asami T, Maruyama-Nakashita A, Kudo T, Shinozaki K, Yoshida S, Nakashita H. Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress responses in Arabidopsis. The Plant Cell,2008, 20: 1678-1692.
[44]   Hauser F, Waadt R, Schroeder J I. Evolution of abscisic acid  synthesis and signaling mechanisms. Current Biology, 2011, 21(9): R346-R355.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!