Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (8): 1627-1642.doi: 10.3864/j.issn.0578-1752.2020.08.012

• SPECIAL FOCUS: MEAT QUALITY • Previous Articles     Next Articles

Selection of Water-Soluble Compounds by Characteristic Flavor in Chahua Chicken Muscles Based on Metabolomics

ZHAO WenHua1,2,WANG GuiYing1,2,XUN Wen1,2,YU YuanRui1,2,GE ChangRong2(),LIAO GuoZhou2()   

  1. 1 College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201
    2 Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201
  • Received:2019-10-17 Accepted:2020-02-01 Online:2020-04-16 Published:2020-04-29
  • Contact: ChangRong GE,GuoZhou LIAO E-mail:gcrzal@126.com;liaoguozhou@ynau.edu.cn

Abstract:

【Objective】 The biomarkers in the chest and thigh muscles of Chahua Chicken before and after heat treatment were screened by using metabolomics combined with multivariate statistical methods, the aim of this study was to screen and characterize water-soluble compounds in different parts of Chahua Chicken, so as to provide scientific and theoretical basis for establishing evaluation standards of high-quality local chicken.【Method】Using liquid chromatography-quadrupole electrostatic field orbitrap mass spectrometry (LC-Q-Exactive-MS) and 300-day-old Yunnan native Chahua Chicken, the water-soluble compounds in the chest and thigh muscles before and after heat treatment were tested. Also, the spectrum was identified based on the network database Metlin, the relative content of each substance were calculated by the concentration of DL-o-Chlorophenylalanine, and the multivariate statistical analysis was used to detect substances. The relationship model between metabolite expression and sample groups was established by using orthogonal partial least squares discrimination analysis (OPLS-DA) to predict the sample category. The representative biomarkers was screened by S-plot to determine whether the model had over-fitting by observing the slope of the line of the 200 test plots of the permutations, and to discriminate the influence intensity and interpretation ability of each metabolite expression pattern on the classification and discrimination of each group of samples by the variable important of the projection (VIP). Therefore, the study achieved the purpose of screening markers: combining the calculation for Taste Activity Value (TAV) by relative content results with sensory evaluation results evaluate the characteristic flavor of Chahua Chicken muscles.【Result】The results showed that 106 species and 43 metabolites were detected in the chest and thigh muscles of Chahua Chicken before and after heat treatment in the positive ion mode and the negative ion mode, including amino acids, vitamins, nucleotides, organic acids, and fatty acids. Among them, creatine, carnosine, amino acid, and nucleotide were water-soluble compounds which had differences between before and after heat treatment of Chahua Chicken muscles, which could be used as a biomarker for the characteristics of the tribute. The TAV value results showed that the largest TAV value in the chest muscles was gamma-aminobutyric acid (TAV=23.00), and the followed by Histidine (TAV=1.14). The highest TAV value in the thigh muscles was gamma-aminobutyric acid (TAV=37.50), and the followed by Betaine (TAV=2.00). Through sensory evaluation, it was found that the overall taste of the chest muscles and thigh muscles was mainly sweet and umami.【Conclusion】After metabolomics analysis, the characteristic taste substances were obtained, and through the taste theory and sensory evaluation values, the study determined that the taste of the breast and leg muscles of Chahua chicken was mainly sweet and fresh meat, and the leg muscles were superior to the chest muscles.

Key words: Chahua Chicken, muscles, liquid chromatography-quadrupole electrostatic field orbitrap-mass spectrometry (LC- Q-Exactive-MS), Metabonomics, water-soluble compound

Table 1

The gradient of mobile phase"

时间
Time (min)
流速
Flow rate (mL∙min-1)
A (%) B (%)
0 0.3 100 0
0 0.3 100 0
1.5 0.3 80 20
9.5 0.3 0 100
14.5 0.3 0 100
14.6 0.3 100 0
18 0.3 100 0

Fig. 1

A Total ion chromatogram of the muscles samples of Chahua chicken"

Table 2

Metabolites of muscles samples in positive ion mode"

编号
No.
代谢物
Metabolite
编号
No.
代谢物
Metabolite
编号
No.
代谢物
Metabolite
1 肌酸 Creatine 501 氨基丁酸 gamma-Aminobutyric acid 1156 黄嘌呤 Xanthine
3 L-鹅肌肽 L-Anserine 517 泛酸 Pantothenic Acid 1213 α-亚麻酸 α-Linolenic Acid
11 肌酐 Creatinine 525 L-异亮氨酸 L-Isoleucine 1236 高香草基酸Homovanillic acid
13 左旋肉碱 L-Carnitine 546 磷酸胆碱Phosphocholine 1259 鸟嘌呤 Guanine
15 甜菜碱 Betaine 553 5'-甲基硫腺苷 5'-Methylthioadenosine 1296 聚氧乙烯辛烷基苯酚醚 9-OxoODE
37 乙酰肉碱 Acetylcarnitine 557 鞘氨醇 Sphingosine 1308 烟酰胺 Niacinamide
44 N-[4-(乙酰基氨基)苯基]-3-氧代丁酰胺
Hydrouracil
561 叔亮氨酸
Butyrylcarnitine
1363 二氢鞘氨醇
Sphinganine
65 亚油酸肉碱 Linoleylcarnitine 563 甘油磷酸胆碱 Glycerophosphocholine 1403 1-肉豆蔻酰-2-羟基-sn-甘油-3-磷酸胆碱LysoPC(14:0)
88 1-甲基组氨酸 1-Methylhistidine 579 L-精氨酸 L-Arginine 1431 丙氨酰 - 脯氨酸 Alanyl-Proline
108 次黄嘌呤
Hypoxanthine
591 1-十六烷酰-sn-甘油-3-磷酸乙醇胺
LysoPE (0:0/16:0)
1446 鸟嘌呤核苷
Guanosine
124 L-氯化棕榈酰肉碱 L-Palmitoylcarnitine 617 二十四碳六烯酸 tetracosahexaenoic acid 1458 苯乙酸 Phenylacetic acid
146 L-苯丙氨酸 L-Phenylalanine 618 L-丝氨酸 L-Serine 1472 硬脂酸酰胺 Stearamide
148 1-十五烷氧基-2-羟基-sn-甘油-3-磷酸胆碱
LysoPC(15:0)
625 N-十四碳酰-L-丝氨酸
Decanoylcarnitine
1513 腺苷酸
Adenosine monophosphate
219 异亮脯氨酸 Isoleucylproline 641 牛磺胆酸 Taurocholic acid 1518 油酸 Oleic Acid
228 L-组氨酸 L-Histidine 676 高肌肽 Homocarnosine 1558 N6-乙酰-L-赖氨酸 N6-Acetyl-L-lysine
233 乙酰胆碱 Acetylcholine 692 植物鞘氨醇 Phytosphingosine 1594 α-维生素E α-Tocopherol
237 N-乙酰-L-组氨酸 N-Acetyl-L-Histidine 694 DL-2-氨基正辛酸 DL-2-Aminooctanoic acid 1607 亚油酸 Linoleic acid
242 肌苷 Inosine 712 苯丙酮酸 Phenylpyruvic acid 1608 维生素 ARetinol
247 胆碱 Choline 733 L-脯氨酰基-L-苯丙氨酸L-prolyl-L-phenylalanine 1611 腺嘌呤Adenine
255 3-(硬脂酰氧基)-4-(三甲基铵基)丁酸酯
DL-Stearoylcarnitine
753 顺-13-二十二烯酰胺
13Z-Docosenamide
1633 油酸酰胺
Oleamide
282 L-谷氨酰胺 L-Glutamine 809 腺苷 Adenosine 1717 1-磷酸鞘氨醇 Sphingosine 1-phosphate
283 1-苯乙胺 1-Phenylethylamine 829 2-苯基乙酰胺 2-Phenylacetamide 1861 尿嘧啶 Uracil
288 谷胱甘肽 Glutathione 835 花生酸 Arachidonic Acid 1877 谷酰氨基-色氨酸 Glutaminyl-Tryptophan
302 十四左旋肉碱 Tetradecanoylcarnitine 897 L-谷氨酸 L-Glutamate 1929 烟酸 Niacin
303 L-色氨酸 L-Tryptophan 922 二十二酰胺 Docosanamide 1944 十八酰胺乙醇 Stearoylethanolamide
332 1-棕榈酰-2-羟基-sn-甘油-3-磷酸胆碱
LysoPC(16:0)
927 组织胺
Histamine
1991 脱氧胞苷
Deoxycytidine
357 β-丙氨酸 β-Alanine 936 肌苷酸 IMP 1994 苹果酸 Malic acid
386 磺熊去氧胆酸
Tauroursodeoxycholic acid
959 L-2-氨乙基丝氨酸磷酸酯
L-2-Aminoethyl seryl phosphate
2099 脱氧腺嘌呤核苷
Deoxyadenosine
414 辛酰基肉碱 L-Octanoylcarnitine 1005 L-苏氨酸 L-Threonine 2103 甘氨酰-L-亮氨酸 Glycyl-L-leucine
427 焦谷氨酸 Pyroglutamic acid 1017 吡哆胺 Pyridoxamine 2104 尿刊酸 Urocanic acid
446 L-酪氨酸 L-Tyrosine 1056 2-哌啶甲酸 DL-pipecolic acid 2138 脯氨酸甜菜碱 Prolinebetaine
459 牛磺酸 Taurine 1067 乙酰双氢硫辛酸酰胺 S-Acetyldihydrolipoamide 2143 尿酸 Uric acid
465 棕榈酸酰胺 Palmitic amide 1078 邻苯二甲酸二丁酯 Alpha-CEHC 2203 亚油酰胺 Linoleamide
467 L-脯氨酸 L-Proline 1092 3Α-羟基-7-氧代-5Β-胆烷酸 Nutriacholic acid 2291 维生素A酸 Retinoic acid
476 磷酸羟基丙酮酸Phosphohydroxypyruvic acid 1114 蛋氨酸亚矾 Methionine sulfoxide 2296 苯甲酸 Benzoic acid
2036 5-L-谷氨酰-L-半胱氨酸 γ-Glu-Cys

Table 3

Metabolites of muscles samples in negative ion mode"

编号 No. 代谢物 Metabolite 编号 No. 代谢物 Metabolite
356 尿苷 Uridine 1102 L-谷氨酰基5-磷酸 L-Glutamyl 5-phosphate
499 十一烷二酸 Undecanedioic acid 1083 吲哚乳酸 Indolelactic acid
1762 血栓素 B3TXB3 1793 谷氨酰二肽 Glutamylphenylalanine
258 苏糖酸 Threonic acid 1019 谷氨酰丙氨酸 Glutamylalanine
1454 四氢皮质醇 Tetrahydrocortisol 318 γ-谷氨酰谷氨酸 Gamma Glutamylglutamic acid
533 四氢皮质甾酮 Tetrahydrocorticosterone 1778 二十烷二酸 Eicosanedioic acid
1323 硬脂肪酸 Stearic acid 1343 脱氧尿苷一磷酸 dUMP
875 鞘氨醇1-磷酸 Sphingosine 1-phosphate 1814 十二烷二酸 Dodecanedioic acid
139 景天庚酮糖 Sedoheptulose 198 D-葡萄糖-6-磷酸二钠 D-Glucose 6-phosphate
276 脯氨酰羟脯氨酸 Prolylhydroxyproline 482 脱氧胆酸 Deoxycholic acid
1658 苯乙酮酸 Phenylglyoxylic acid 1609 D-生物素 D-Biotin
1756 苯丁酰谷氨酰胺 Phenylbutyrylglutamine 1811 皮质醇 Cortisol
721 第三类前列腺素 PGE3 1514 顺-11-二十碳烯酸 cis-gondoic acid
1495 前列腺素 PGE2 1366 顺式-11-二十碳烯酸 cis-9-palmitoleic acid
1435 前列腺素 E1PGE1 454 胆酸 Cholic acid
1661 棕榈酸 Palmitic acid 1758 肾上腺酸 Adrenic Acid
1375 十八烷二酸 Octadecanedioic acid 769 (5Z,7E,11Z,14Z)-9-羟基-5,7,11,14-二十碳四烯酸 9-HETE
1705 肉豆蔻油酸 Myristoleic acid 534 (8R)-8-氢过氧基亚油酸 8R-HpODE
1821 1-羟基-2-肉豆蔻酰-sn-甘油-3-磷酸乙醇胺 LysoPE(0:0/14:0) 680 L-4-羟基色氨酸 4-Hydroxy-L-threonine
1109 L-脯氨酰-L-苯丙氨酸 L-prolyl-L-phenylalanine 1859 3-吲哚丙酸3-Indolepropionic acid
467 1-(1Z十六碳烯酰基)-sn-甘油-3-磷酸 LPA(P-16:0e/0:0) 1177 3-吲哚丁酸 3-Indolebutyric acid
1106 2棕榈酰甘油-3-磷酸 LPA(0:0/16:0)

Fig. 2

Positive ion (A) and negative ion (B) modes sample groups of PCA-X scores YX: Raw meat chest muscle; YT: Raw meat thigh muscle; SX: Cooked meat chest muscles; ST: Cooked meat thigh muscles. The same as below"

Fig. 3

Muscles OPLS-DA score plots (A and D), S-plot plots (B and E), and Permutations plots (C and F) A, B, and C: Chahua chicken breast muscle; D, E, and F: Chahua chicken thigh muscle. The contents of numbers in the figure same as table 4"

Table 4

VIP score table in positive ion mode (VIP>1)"

编号
No.
胸肌Breast muscle 编号
No.
腿肌Thigh muscle
Var ID (Primary) VIP pred Var ID (Primary) VIP pred
1 肌酸 Creatine 7.01967 1 肌酸 Creatine 6.56079
2 L-鹅肌肽 L-Anserine 4.57094 2 肌酐 Creatinine 3.23688
3 甜菜碱 Betaine 2.84563 3 左旋肉碱 L-Carnitine 3.22422
4 1-甲基组氨酸1-Methylhistidine 1.83296 4 甜菜碱 Betaine 3.20225
5 N-[4-(乙酰基氨基)苯基]-3-氧代丁酰胺Hydrouracil 1.64535 5 L-鹅肌肽 L-Anserine 3.00584
6 1-棕榈酰-2-羟基-sn-甘油-3-磷酸胆碱 LysoPC(16:0) 1.48292 6 3-(硬脂酰氧基)-4-(三甲基铵基)丁酸酯DL-Stearoylcarnitine 1.81764
7 肌苷 Inosine 1.39204 7 L-谷氨酰胺 L-Glutamine 1.63342
8 L-色氨酸 L-Tryptophan 1.37077 8 次黄嘌呤 Hypoxanthine 1.52174
9 5'-甲基硫腺苷5'-Methylthioadenosine 1.23907 9 N-乙酰-L-组氨酸N-Acetyl-L-Histidine 1.44579
10 N-乙酰-L-组氨酸N-Acetyl-L-Histidine 1.22247 10 L-组氨酸 L-Histidine 1.31488
11 异亮脯氨酸 Isoleucylproline 1.20120 11 乙酰肉碱Acetylcarnitine 1.22599
12 肌酐 Creatinine 1.11686 12 1-棕榈酰-2-羟基-sn-甘油-3-磷酸胆碱LysoPC(16:0) 1.14697

Fig. 4

Muscles OPLS-DA score plots (A and D), S-plot plots (B and E), and Permutations plots (C and F) A, B, and C: Chahua chicken breast muscle; D, E, and F: Chahua chicken thigh muscle. The contents of numbers in the figure same as table 5"

Table 5

VIP score table in negative ion mode (VIP>1)"

编号
No.
胸肌Breast muscle 编号
No.
腿肌Thigh muscle
Var ID (Primary) VIP pred Var ID (Primary) VIP pred
1 苏糖酸 Threonic acid 2.77134 1 L-4-羟基色氨酸4-Hydroxy-L-threonine 2.76987
2 景天庚酮糖 Sedoheptulose 2.69728 2 L-谷氨酰5-磷酸酯 L-Glutamyl 5-phosphate 2.14000
3 L-4-羟基色氨酸4-Hydroxy-L-threonine 2.38874 3 景天庚酮糖 Sedoheptulose 2.04383
4 尿苷 Uridine 2.21336 4 苏糖酸 Threonic acid 1.94052
5 D-葡萄糖-6-磷酸二钠D-Glucose 6-phosphate 1.51438 5 3-吲哚丁酸 3-Indolebutyric acid 1.58979
6 γ-谷氨酰谷氨酸 Gamma Glutamylglutamic acid 1.31314 6 D-葡萄糖 6-磷酸二钠D-Glucose 6-phosphate 1.57744
7 1-(1Z十六碳烯酰基)-sn-甘油-3-磷酸LPA(P-16:0e/0:0) 1.30657 7 前列腺素 PGE2 1.3055
8 吲哚乳酸 Indolelactic acid 1.12537 8 脯氨酰羟脯氨酸Prolylhydroxyproline 1.27561
9 脯氨酰羟脯氨酸Prolylhydroxyproline 1.08437 9 γ-谷氨酰谷氨酸 Gamma Glutamylglutamic acid 1.19071
10 十一烷二酸 Undecanedioic acid 1.01416 10 1-(1Z十六碳烯酰基)-sn-甘油-3-磷酸LPA(P-16:0e/0:0) 1.01964
11 谷氨酰丙氨酸 Glutamylalanine 1.00139

Table 6

Taste substance and TAV value in muscles of Chahua chicken"

呈味
Taste
名称
Name
阈值[19,20,21]
Threshold
(mmoL∙L-1)
原料胸肉
Raw breast muscle
熟胸肉
Cooked breast muscle
原料腿肉
Raw thigh muscle
熟腿肉
Cooked thigh muscle
含量
(mmoL∙L-1)
TAV 含量
(mmoL∙L-1)
TAV 含量
(mmoL∙L-1)
TAV 含量
(mmoL∙L-1)
TAV
酸涩味Sour 苹果酸Malic acid 3.70 0.03±0.00a 0.01 0.02±0.00b 0.01 0.02±0.00b 0.01 0.02±0.00b 0.01
酸涩味Sour γ-氨基丁酸
γ-Aminobutyric acid
0.02 0.24±0.05c 12.00 0.46±0.06b 23.00 0.70±0.10a 35.00 0.75±0.13a 37.50
其他氨基酸OAA 0.27±0.05c 0.48±0.07b 0.72±0.10a 0.77±0.13a
苦味Bitter 色氨酸 L-Tryptophan 5.00 1.50±0.30a 0.30 1.18±0.19a 0.24 1.17±0.15a 0.23 0.32±0.03b 0.06
苦味Bitter 次黄嘌呤Hypoxanthine 9.00 1.21±0.14b 0.13 5.91±2.08a 0.66 2.47±0.02b 0.27 2.45±0.62b 0.27
苦味Bitter 异亮氨酸L-Isoleucine 11.00 0.52±0.15b 0.05 0.56±0.13b 0.05 0.80±0.22a 0.07 0.24±0.02c 0.02
苦味Bitter 酪氨酸L-Tyrosine 5.00 0.89±0.05 0.18 0.69±0.10 0.14 0.71±0.10 0.14 0.94±0.27 0.19
苦味Bitter 精氨酸L-Arginine 2.87 0.38±0.11a 0.13 0.21±0.03b 0.07 0.43±0.06a 0.15 0.39±0.11a 0.14
苦味Bitter 组氨酸L-Histidine 3.22 3.03±0.02ab 0.94 3.69±0.86a 1.14 2.46±0.62bc 0.76 1.82±0.54c 0.56
苦味Bitter 苯丙氨酸L-Phenylalanine 3.03 0.32±0.07a 0.11 0.43±0.08a 0.14 0.36±0.10a 0.12 0.11±0.06b 0.04
苦味氨基酸BFA 7.89±0.43b 12.14±2.00a 8.77±0.88b 6.27±1.25b
甜味Sweet 脯氨酸L-Proline 26.00 0.67±0.18b 0.03 0.82±0.12b 0.03 0.81±0.11b 0.03 1.54±0.50a 0.06
甜味Sweet 丝氨酸L-Serine 30.00 0.08±0.01b 0.00 0.02±0.00c 0.00 0.66±0.06a 0.02 0.08±0.02b 0.00
甜味Sweet 苏氨酸L-Threonine 40.00 0.12±0.03 0.00 0.11±0.03 0.00 0.11±0.01 0.00 0.12±0.05 0.00
甜味Sweet D-葡萄糖6-磷酸
D-Glucose 6-phosphate
48.00 9.21±2.29a 0.19 9.42±1.96a 0.20 1.65±0.19b 0.03 1.59±0.52b 0.03
甜味Sweet 甜菜碱Betaine 20.01 4.58±1.02c 0.23 5.90±0.89c 0.29 14.03±3.66b 0.70 39.98±6.38a 2.00
甜味氨基酸SFA 14.74±2.1b 16.36±1.37b 17.34±3.81b 43.30±7.22a
鲜味Umami 腺甘酸
Adenosine monophosphate
4.00 0.01±0.00 0.00 0.01±0.00 0.00 0.01±0.00 0.00 0.01±0.00 0.00
鲜味Umami 谷氨酸盐L-Glutamate 3.40 0.03±0.01b 0.01 0.07±0.01a 0.02 0.08±0.02a 0.02 0.04±0.02b 0.01
鲜味Umami 肌苷酸IMP 0.68 0.11±0.02ab 0.16 0.07±0.02b 0.10 0.12±0.03a 0.18 0.08±0.03ab 0.12
鲜味氨基酸UFA 0.14±0.02b 0.15±0.02b 0.22±0.05a 0.13±0.05b

Fig. 5

Sensory evaluation radar of chest and thigh muscles"

[1] 赵文华, 王桂瑛, 王雪峰, 程志斌, 谷大海, 徐志强, 范江平, 普岳红, 葛长荣, 廖国周 . 鸡肉中挥发性风味物质及其影响因素的研究进展. 食品工业科技, 2019,40(21):337-343, 351.
ZHAO W H, WANG G Y, WANG X F, CHENG Z B, GU D H, XU Z Q, FAN J P, PU Y H, GE C R, LIAO G Z . Research progress on volatile flavor substances and their influencing factors of chicken. Science and Technology of Food Industry, 2019,40(21):337-343, 351. (in Chinese )
[2] 公敬欣, 曹长春, 侯莉, 都荣强, 张玲, 谢建春, 孙宝国 . 热反应肉味香精制备体系半胱氨酸产生肉香味的初始MAILLARD反应途径. 中国食品学报, 2016,16(2):68-75.
GONG J X, CAO C C, HOU L, DU R Q, ZHANG L, XIE J C, SUN B G . The initial-maillard pathway to meat flavor during the preparation of thermal reaction meat flavorings. Journal of Chinese Institute of Food Science and Technology. 2016,16(2):68-75. (in Chinese )
[3] HORNSTEIN I, CROWE P F . Meat flavor chemistry, flavor studies on beef and pork. Journal of Agricultural & Food Chemistry, 1960,8(6):494-498.
[4] JAYASENA D D, KIM S H, LEE H J, JUNG S, LEE J H, PARK H B, JO C . Comparison of the amounts of taste-related compounds in raw and cooked meats from broilers and Korean native chickens. Poultry Science, 2014,93(12):3163-3170.
[5] CORTINAS L, VILLAVERDE C, GALOBART J, BAUCELLS M D, CODONY R, BARROETA A C . Fatty acid content in chicken thigh and breast as affected by dietary polyunsaturation level. Poultry Science, 2004,83(7):1155-1164.
[6] TREMBECKÁ L HAŠČÍK P ČUBOŇ J BOBKO M PAVELKOVÁ A . Fatty acids profile of breast and thigh muscles of broiler chickens fed diets with propolis and probiotics. Journal of Central European Agriculture, 2016,17(4):1179-1193.
[7] STARČEVIĆ K, MAŠEK T, BROZIĆ D, FILIPOVIĆ N, STOJEVIĆ Z . Growth performance, serum lipids and fatty acid profile of different tissues in chicken broilers fed a diet supplemented with linseed oil during a prolonged fattening period. Veterinarski Arhiv, 2014,84(1):75-84.
[8] 黎志强, 胡陈明, 杨朝武, 杨礼, 蒋小松, 杜华锐, 李晴云, 余春林, 彭涵, 邱莫寒, 张增荣, 熊霞, 宋小燕, 夏波, 刘益平 . 单色光对大恒肉鸡屠宰性能、肉质性能及肌肉中氨基酸含量的影响. 四川农业大学学报, 2019,37(1):101-105, 145.
LI Z Q, HU C M, YANG C W, YANG L, JIANG X S, DU H R, LI Q Y, YU C L, PENG H, QIU M H, ZHANG Z R, XIONG X, SONG X Y, XIA B, LIU Y P . Effect of monochromatic light on slaughter performance, meat quality and amino acid content in the muscle of daheng broiler chickens. Journal of Sichuan Agricultural University, 2019,37(1):101-105,145. (in Chinese )
[9] 巨晓军, 束婧婷, 章明, 刘一帆, 屠云洁, 姬改革, 单艳菊, 邹剑敏 . 不同品种、饲养周期肉鸡肉品质和风味的比较分析. 动物营养学报, 2018,30(6):408-417.
JU X J, SHU J T, ZHANG M, LIU Y F, TU Y J, JI G G, SHAN Y J, ZOU J M . Comparison analysis of meat quality and flavor of different breeds and feeding periods of broilers. Chinese Journal of Animal Nutrition, 2018,30(6):2421-2430. (in Chinese )
[10] LIU Y, XU X L, ZHOU G H . Changes in taste compounds of duck during processing. Food Chemistry, 2007,102(1):22-26.
[11] JAYASENA D D, AHN D U, NAM K C, JO C . Flavour chemistry of chicken meat: a review. Asian-Australasian Journal of Animal Sciences, 2013,26(5):732-742.
[12] 闫世雄, 豆腾飞, 汪善荣, 刘永, 佟荟全, 刘丽仙, 李琦华, 葛长荣, 贾俊静 . 茶花鸡肌肉营养成分测定分析. 黑龙江畜牧兽医, 2018,544(4):55-56, 61.
YAN S X, DOU T F, WANG S R, LIU Y, TONG H Q, LIU L X, LI Q H, GE C R, JIA J J . Analysis of the nutritional contents of muscles in Chahua chicken. Heilongjiang Animal Science and Veterinary Medicine, 2018,544(4):55-56, 61. (in Chinese )
[13] 张珈榕, 刘丽仙, 荣华, 佟荟全, 豆腾飞, 贾俊静, 李琦华, 杨向东, 李继能, 葛长荣 . 云南茶花鸡肉品质物理特性的研究. 中国家禽, 2015,37(23):50-52.
ZHANG J R, LIU L X, RONG H, TONG H Q, DOU T F, JIA J J, LI Q H, YANG X D, LI J N, GE C R . Study on the physical characteristics of Yunnan Chahua chicken. China Poultry, 2015,37(23):50-52. (in Chinese )
[14] 李正田, 刘丽仙, 佟荟全, 荣华, 豆腾飞, 李琦华, 葛长荣, 贾俊静, 谷大海 . 茶花鸡体尺性状和屠宰性能的测定及相关性分析. 中国家禽, 2016,38(2):47-49.
LI Z T, LIU L X, TONG H Q, RONG H, DOU T F, LI Q H, GE C R, JIA J J, GU D H . Determination and correlation analysis of body size and slaughter performance of Chahua chicken. China Poultry. 2016,38(2):47-49. (in Chinese )
[15] 原小雅, 刘立波, 郑麦青, 刘冉冉, 李庆贺, 王巧, 崔焕先, 文杰, 陈国宏, 赵桂苹 . 利用MHC B-L基因外显子2分析部分中国地方鸡种的遗传多态性. 浙江农业学报, 2016,28(7):1121-1127.
YUAN X Y, LIU L B, ZHENG M Q, LIU R R, LI Q H, WANG Q, CUI H X, WEN J, CHEN G H, ZHAO G P . Analysis of genetic diversity of indigenous chicken breeds using exon 2 of MHC B-L gene. Acta Agriculturae Zhejiangensis, 2016,28(7):1121-1127. (in Chinese )
[16] 温斯颖 . 不同种类动物肌肉蛋白质消化产物比较研究[D]. 南京: 南京农业大学, 2015.
WEN S Y . Discrimination of digestion products of proteins from different kinds of meat[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese )
[17] JUN Q, WANG H H, ZHOU G H, XU X L, LI X, BAI Y, YU X B . Evaluation of the taste-active and volatile compounds in stewed meat from the Chinese yellow-feather chicken breed. International Journal of Food Properties, 2018,20(S3):S2579-S2595.
[18] ZHONG C, NAKANISHI M, GENG J T, OKAZAKI E, ·CAO M J, WENG W Y, OSAKO K . Comparison of non‑volatile taste‑active components in fish sauce produced from lizardfish Saurida wanieso viscera under different conditions. Food Science and Technology, 2015,81(3):581-590.
[19] ROTZOLL N, DUNKEL A, HOFMANN T . Quantitative studies, Taste reconstitution, and omission experiments on the key taste compounds in morel mushrooms ( Morchella deliciosa Fr.). Journal of Agricultural and Food Chemistry, 2006,54(7):2705-2711.
[20] 黄艳青, 陆建学, 龚洋洋, 刘志东, 黄洪亮, 唐保军, 王帅杰, 盛文权 . 南极磷虾酶解液特性分析. 食品工业科技, 2019,40(5):23-30.
HUANG Y Q, LU J X, GONG Y Y, LIU Z D, HUANG H L, TANG B J, WANG S J, SHENG W Q . Characteristics of Antarctic Krill Protein enzyme-hydrolysates. Science and Technology of Food Industry, 2019,40(5):23-30. (in Chinese )
[21] MEYER S, DUNKEL A, HOFMANN T . Sensomics-assisted elucidation of the Tastant code of cooked crustaceans and taste reconstruction experiments. Journal of Agricultural and Food Chemistry, 2016,64(5):1164-1175.
[22] LIU C L, PAN D D, YE Y F, CAO J X . ¹H NMR and multivariate data analysis of the relationship between the age and quality of duck meat. Food Chemistry, 2013,141(2):1281-1286.
[23] KAZALA E C, LOZEMAN F J, MIR P S, LAROCHE A, BAILEY D R, WESELAKE R J . Relationship of fatty acid composition to intramuscular fat content in beef from crossbred Wagyu cattle. Journal of Animal Science, 1999,77(7):1717.
[24] SIERRA V, GUERRERO L, FERNÁNDEZ-SUÁREZ V, MARTÍNEZ A, CASTRO P, OSORO K, RODRÍGUEZ-COLUNGA M J, COTO-MONTES A, OLIVÁN M . Eating quality of beef from biotypes included in the PGI " TerneraAsturiana" showing distinct physicochemical characteristics and tenderization pattern. Meat Science, 2010,86(2):343-351.
[25] HUFF L E, ZHANG W, LONERGAN S M . Biochemistry of postmortem muscles-lessons on mechanisms of meat tenderization. Meat Science, 2010,86(1):184-195.
[26] MOTTRAM D S . Flavour formation in meat and meat products: a review. Food Chemistry, 1998,62(4):415-424.
[27] MEINERT L, SCHÄFER A, BJERGEGAARD C, ASLYNG M D, BREDIE W L P . Comparison of glucose, glucose 6-phosphate, ribose, and mannose as flavour precursors in pork; the effect of monosaccharide addition on flavour generation. Meat Science, 2009,81(3):419-425.
[28] RITOTA M, CASCIANI L, FAILLA S, VALENTINI S . HRMAS- NMR spectroscopy and multivariate analysis meat characterisation. Meat Science, 2012,92(4):754-761.
[29] 袁华根 . 鸡肉汤香味成分鉴定及日龄、性别和酮体部位对鸡肉风味的影响[D]. 南京: 南京农业大学, 2007.
YUAN H G . Identification of chicken broth aroma component and the effects of age, gender and carcass part to flavor of chicken[D]. Nanjing: Nanjing Agricultural University, 2007. (in Chinese )
[30] 曹仲文, 张晓燕, 周晓燕 . 电子舌对鸡汤和人工勾兑高汤及其混合样品的识别. 食品与机械, 2015,31(1):14-17.
CAO Z W, ZHANG X Y, ZHOU X Y . Discrimination of soup-stock by electronic tongue. Food and Machinery, 2015,31(1):14-17. (in Chinese )
[31] KHAN M I, JO C, TARIQ M R . Meat flavor precursors and factors influencing flavor precursors-A systematic review. Meat Science, 2015,110:278-284.
[32] RESCONI V C, ESCUDERO A, CAMPO , MARÍA M . The development of aromas in ruminant meat. Molecules, 2013,18(6):6748-6781.
[33] SASAKI K, MOTOYAMA M, MITSUMOTO M . Changes in the amounts of water-soluble umami-related substances in porcine longissimus and biceps femoris muscles during moist heat cooking. Meat Science, 2007,77(2):167-172.
[34] 马建爽, 常文环, 张姝, 郑爱娟, 刘国华, 蔡辉益 . 甜菜碱对肉鸡生长性能、脂质代谢及肌肉风味品质的影响. 动物营养学报, 2015,27(1):185-195.
MA J S, CHANG W H, ZHANG S, ZHENG A J, LIU G H, CAI H Y . Effects of betaine on growth performance, lipid metabolism and flavor quality in muscle of broilers. Chinese Journal of Animal Nutrition, 2015,27(1):185-195. (in Chinese )
[35] JUNG S, BAE Y S, KIM H J, JAYASENA D D, LEE J H, PARK H B, HEO K N, JO C . Carnosine, anserine, creatine, and inosine 5′- monophosphate contents in breast and thigh meats from 5 lines of Korean native chicken. Poultry Science, 2013,92(12):3275-3282.
[36] JIN Y, ZHANG Y, JIN Y, DENG Y, ZHAO Y Y . Impact of high hydrostatic pressure on non-volatile and volatile compounds of squid muscles. Food Chemistry, 2016,194:12-19.
[37] WYSS M, KADDURAHDAOUK R . Creatine and creatinine metabolism. Physiological Reviews, 2000,80(3):1107-1213.
[38] DEMANT T W, RHODES E C . Effects of creatine supplementation on exercise performance. Sports Medicine, 1999,28(1):49-60.
[39] NISSEN P M, YOUNG J F . Creatine monohydrate and Glucose supplementation to slow- and fast-growing chickens changes the postmortem pH in pectoralis major. Poultry Science, 2006,85(6):1038-1044.
[40] YOUNG J F, BERTRAM H C, ROSENVOLD K, LINDAHL G, OKSBJERG N . Dietary creatine monohydrate affects quality attributes of Duroc but not Landrace pork. Meat Science, 2005,70(4):717-725.
[41] KOHEN R, YAMAMOTO Y, CUNDY K C, AMES B N . Antioxidant activity of carnosine, homocarnosine, and anserine present in muscles and brain. Proceedings of the National Academy of Sciences, 1988,85(9):3175-3179.
[42] PEIRETTI P G, MEDANA C, VISENTIN S, GIANCOTTI V, ZUNINO V, MEINERI G . Determination of carnosine, anserine, homocarnosine, pentosidine and thiobarbituric acid reactive substances contents in meat from different animal species. Food Chemistry, 2011,126(4):1939-1947.
[43] PEIRETTI P G, MEDANA C, VISENTIN S, DAL BELLO F, MEINERI G . Effect of cooking method on carnosine and its homologues, pentosidine and thiobarbituric acid-reactive substance contents in beef and turkey meat. Food Chemistry, 2012,132(1):80-85.
[44] JAYASENA D D, JUNG S, BAE Y S, PARK H B, LEE J H, JO C . Comparison of the amounts of endogenous bioactive compounds in raw and cooked meats from commercial broilers and indigenous chickens. Journal of Food Composition and Analysis, 2015,37:20-24.
[45] CHRISTMAN A A . Factors affecting anserine and carnosine levels in skeletal muscles of various animals. International Journal of Biochemistry, 1976,7(9):519-527.
[46] YEUM K J, ORIOLI M, REGAZZONI L, CARINI M, RASMUSSEN H, RUSSELL R M, ALDINI G . Profiling histidine dipeptides in plasma and urine after ingesting beef, chicken or chicken broth in humans. Amino Acids, 2010,38(3):847-858.
[47] HERCULANO B, TAMURA M, OHBA A, SHIMATANI M, KUTSUNA N, HISATSUNE T . β-Alanyl-L-Histidine rescues cognitive deficits caused by feeding a high fat diet in a transgenic mouse model of Alzheimer's disease. Journal of Alzheimers Disease, 2012,33(4):983-997.
[48] DASHDORJ D, AMNA T, HWANG I . Influence of specific taste- active components on meat flavor as affected by intrinsic and extrinsic factors: an overview. European Food Research and Technology, 2015,241(2):157-171.
[49] 池岸英, 吉宏武, 高加龙, 卢虹玉, 蓝尉冰, 孟凌玉 . 加热方式对凡纳滨对虾滋味成分的影响. 现代食品科技, 2012,28(7):776-779.
CHI A Y, JI H W, GAO J L, LU H Y, LAN W B, MENG L Y . Effects of different heating treatments on taste-active components of Litopenaeus vannamei. Modern Food Science and Technology, 2012,28(7):776-779. (in Chinese )
[50] KUBOTA S, ITOH K, NIIZEKI N, SONG X A . Organic taste active components in the hot-water extract of yellow tail muscles. Food Science and Technology Research, 2002,8(1):45-49.
[51] 丁耐克 . 食品风味化学. 北京: 中国轻工业出版社, 2002: 89-95.
DING N K . Food Flavor Chemistry. Beijing: China Light Industry Press, 2002: 89-95. (in Chinese)
[52] 陈怡颖, 丁奇, 赵静, 孙颖, 张玉玉, 孙宝国, 郑福平 . 鸡汤及鸡肉酶解液中游离氨基酸及呈味特性的对比分析. 食品科学, 2019,36(16):107-111.
CHEN Y Y, DING Q, ZHAO J, ZHANG Y Y, SUN B G, ZHENG F P . Comparison of free amino acids and taste characteristics in chicken soup and chicken enzymatic hydrolysate. Food Science, 2019,36(16):107-111. (in Chinese )
[53] DE KOCK H L, ZANDSTRA E H, SAYED N, WENTZEL-VILJOEN E . Liking, salt taste perception and use of table salt when consuming reduced-salt chicken stews in light of South Africa's new salt regulations. Appetite, 2016,96:383-390.
[1] SUN YongBo,WANG Ya,SA RENNA,ZHANG HongFu. Effects of Chronic Ammonia Stress on Serum Metabolites of Broilers Based on GC-MS [J]. Scientia Agricultura Sinica, 2020, 53(8): 1688-1698.
[2] YaoQun WU,ShaoKang CHEN,XiHui SHENG,XiaoLong QI,XiangGuo WANG,HeMin NI,Yong GUO,ChuDuan WANG,Kai XING. Differential Expression of mRNA and lncRNA in Longissimus Dorsi Muscle of Songliao Black Pig and Landrace Pig Based on High-Throughput Sequencing Technique [J]. Scientia Agricultura Sinica, 2020, 53(4): 836-847.
[3] LI ShuaiLan,SHEN Xiao,ZOU ZhengRong. Effect of Petroleum Ether Extract from Solidago canadensis on Liver of Pomacea canaliculata [J]. Scientia Agricultura Sinica, 2019, 52(15): 2624-2635.
[4] LI Ya-juan, WANG Dong-sheng, ZHANG Shi-dong, YAN Zuo-ting, YANG Zhi-qiang, DU Yu-lan, DONG Shu-wei, HE Bao-xiang. Plasma Metabolic Profiling Analysis of Dairy Cows with Laminitis Based on GC-MS [J]. Scientia Agricultura Sinica, 2016, 49(21): 4255-4264.
[5] LI Ying, XU Chuang, XIA Cheng, ZHANG Hong-you, SUN Ling-wei, XU Chu-chu. 1H NMR-Based Plasma Metabolic Profiling of Dairy Cows with Type I and Type II Ketosis [J]. Scientia Agricultura Sinica, 2015, 48(12): 2449-2459.
[6] SUN Ling-Wei, BAO Kai, LI Ying, LI Lan, ZHANG Hong-You, XIA Cheng, WU Ling. Plasma Metabolomics Study of Dairy Cows with Clinical and Subclinical Ketosis [J]. Scientia Agricultura Sinica, 2014, 47(8): 1588-1599.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!