Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (23): 4593-4605.doi: 10.3864/j.issn.0578-1752.2016.23.012

• HORTICULTURE • Previous Articles     Next Articles

Cloning and Expression Analysis of Ten MADS-box Genes in Peach (Prunus persica var. nectarina ‘Luxing’)

LI Hui-feng1, JIA Hou-zhen1, DONG Qing-long2, RAN Kun1, WANG Hong-wei1   

  1. 1Shandong Institute of Pomology, Tai’an 271000, Shandong
    2College of Horticulture, Northwest A & F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, Shaanxi
  • Received:2016-04-26 Online:2016-12-01 Published:2016-12-01

Abstract: 【Objective】The aim of this study is to characterize the novel peach (Prunus persica var. nectarina ‘Luxing’) MADS-box genes (PpMADSs) involved in regulation of vegetative and reproductive growth. The transcriptional levels of PpMADSs in different tissues were determined to provide a basis for studying the related function of PpMADSs in flower development, fruit development and ripening.【Method】The full-length cDNA sequences of PpMADSs form ‘Luxing’ peach were isolated by homologous alignment and RT-PCR confirmation, the obtained cDNA sequences and the deduced amino acid sequences were analyzed with bioinformatics methods; the expression levels of PpMADSs were detected in stem, leaf, sepal, ovary, stamen, petal, 7 stages of flower development and 5 stages of fruit development using RT-PCR.【Result】The sequencing results showed that ten cDNAs (designated as PpMADS11, 12, 19, 20, 21, 22, 28, 29, 30 and 31; GenBank accession No. KU559577, KU559578, KU559585, KU559586, KU559587, KU559588, KU559594, KU559595, KU559596 and KU559597) contained open reading frame (ORF) of 522, 279, 1 065, 828, 723, 600, 636, 534, 750 and 480 bp, respectively. The results of phylogenetic analysis revealed that PpMADS11, 12, and 19 belong to AP3, AGL17 and MIKC* subgroups, respectively; and PpMADS20, 21 and 22 belong to Mα group; PpMADS28, 29, 30 and 31 belong to Mγ group. The results of subcellular localization prediction showed that all PpMADS proteins were located in the nucleus. The results of promoter analysis indicated that there were multiple putative cis-acting elements involved in light responsiveness, defense and stress responsiveness, MYB binding site was involved in drought-inducibility, heat stress responsiveness, low-temperature responsiveness, fungal elicitor responsive element, wound-responsive element, anaerobic induction element, gibberellin-responsive element, auxin-responsive element, MeJA-responsiveness, abscisic acid responsiveness, salicylic acid responsiveness and ethylene-responsive element. Semi RT-PCR and qRT-PCR results showed that PpMADS11was expressed in stem, leaf, sepal, ovary, stamen, petal and during flower and fruit development. PpMADS12 was expressed in stem, leaf, sepal, ovary, stamen, petal and during flower development. PpMADS19 was expressed in sepal, stamen, petal and during flower development ( except bud stage). All members in Mα and Mγ groups were expressed in stem, leaf, sepal, ovary, stamen, petal and during flower development, some members were expressed during fruit development.【Conclusion】These results indicated that ten PpMADS genes have crucial regulatory roles in ‘Luxing’ peach vegetative growth, flower and fruit development processes.

Key words: ‘Luxing&rsquo, peach, MADS-box, transcription factor, gene cloning, expression analysis

[1] RIECHMANN J L, MEYEROWITZ E M. MADS domain proteins in plant development. Biological Chemistry, 1997, 378(10): 1079-1101. [2] MESSENGUY F, DUBOIS E. Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene, 2003, 316: 1-21. [3] 刘菊华, 徐碧玉, 张静, 金志强. MADS-box转录因子的相互作用及对果实发育和成熟的调控. 遗传, 2010, 32(9): 893-902. LIU J H, XU B Y, ZHANG J, JIN Z Q. The interaction of MADS-box transcription factors and manipulating fruit development and ripening. Hereditas, 2010, 32(9): 893-902. (in Chinese) [4] KAUFMANN K, MELZER R, THEISSEN G. MIKC-type MADS- domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene, 2005, 347(2): 183-198. [5] HENSCHEL K, KOFUJI R, HASEBE M, SAEDLER H, MUNSTER T, THEISSEN G. Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Molecular Biology and Evolution, 2002, 19(6): 801-814. [6] TIAN Y, DONG Q L, JI Z R, CHI F M, CONG P H, ZHOU Z S. Genome-wide identification and analysis of the MADS-box gene family in apple. Gene, 2015, 555(2): 277-290. [7] WEIGEL D, MEYEROWITZ E M. The ABCs of floral homeotic genes. Cell, 1994, 78(2): 203-209. [8] MA H, DEPAMPHILIS C. The ABCs of floral evolution. Cell, 2000, 101(1): 5-8. [9] IRELAND H S, YAO J L, TOMES S, SUTHERLAND P W, NIEUWENHUIZEN N, GUNASEELAN K, WINZ R A, DAVID K M, SCHAFFER R J. Apple SEPALLATA1/2-like genes control fruit flesh development and ripening. The Plant Journal, 2013, 73(6): 1044-1056. [10] FUJISAWA M, SHIMA Y, NAKAGAWA H, KITAGAWA M, KIMBARA J, NAKANO T, KASUMI T, ITO Y. Transcriptional regulation of fruit ripening by tomato FRUITFULL homologs and associated MADS box proteins. The Plant Cell, 2014, 26(1): 89-101. [11] FERRANDIZ C, LILJEGREN S J, YANOFSKY M F. Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science, 2000, 289(5478): 436-438. [12] VREBALOV J, RUEZINSKY D, PADMANABHAN V, WHITE R, MEDRANO D, DRAKE R, SCHUCH W, GIOVANNONI J. A MADS-box gene necessary for fruit ripening at the tomato ripening- inhibitor (rin) locus. Science, 2002, 296(5566): 343-346. [13] ITO Y, KITAGAWA M, IHASHI N, YABE K, KIMBARA J, YASUDA J, ITO H, INAKUMA T, HIROI S, KASUMI T. DNA-binding specificity, transcriptional activation potential, and the rin mutation effect for the tomato fruit-ripening regulator RIN. The Plant Journal, 2008, 55(2): 212-223. [14] MARA C D, IRISH V F. Two GATA transcription factors are downstream effectors of floral homeotic gene action in Arabidopsis. Plant Physiology, 2008, 147(2): 707-718. [15] KAUFMANN K, MUIÑO J M, JAUREGUI R, AIROLDI C A, SMACZNIAK C, KRAJEWSKI P, ANGENENT G C. Target genes of the MADS transcription factor SEPALLATA3: Integration of developmental and hormonal pathways in the Arabidopsis flower. PLOS Biology, 2009, 7(4): 854-875. [16] WELLS C E, VENDRAMIN E, TARODO S J, VERDE I, BIELENBERG D G. A genome-wide analysis of MADS-box genes in peach [Prunus persica (L.) Batsch]. BMC Plant Biology, 2015, 15(1): 41. [17] 王传增, 余贤美, 董庆龙, 张安宁, 刘伟, 董飞, 王淑珍, 王长君. 桃已知 MADS-box转录因子的生物信息学及花发育表达分析. 核农学报, 2015, 29(5): 849-858. WANG C Z, YU X M, DONG Q L, ZHANG A N, LIU W, DONG F, WANG S Z, WANG C J. Bioinformatic and expression analysis on the known MADS-box transcription factors at different development stages of flower in peach. Journal of Nuclear Agricultural Sciences, 2015, 29(5): 849-858. (in Chinese) [18] SUI S, LUO J, MA J,ZHU Q, LEI X, LI M. Generation and analysis of expressed sequence tags from Chimonanthus praecox (Wintersweet) flowers for discovering stress-responsive and floral development- related genes. Comparative and Functional Genomics, 2012, doi:10. 1155/2012/134596. [19] 马婧, 孙文婷, 王晶, 眭顺照, 李名扬. 蜡梅胚胎晚期丰富蛋白基因CpLEA的克隆及表达分析. 园艺学报, 2014, 41(8): 1663-1672. MA J, SUN W T, WANG J, MU S Z, LI M Y. Cloning and expression analysis of a late embryogenesis abundant protein gene CpLEA from Chimonanthus praecox. Acta Horticulturae Sinica, 2014, 41(8): 1663-1672. (in Chinese) [20] 谷彦冰, 冀志蕊, 迟福梅, 乔壮, 徐成楠, 张俊祥, 董庆龙, 周宗山. 苹果WRKY基因家族生物信息学及表达分析. 中国农业科学, 2015, 48(16): 3221-3238. GU Y B, JI Z R, CHI F M, QIAO Z, XU C N, ZHANG J X, DONG Q L, ZHOU Z S. Bioinformatics and expression analysis of the WRKY gene family in apple. Scientia Agricultura Sinica, 2015, 48(16): 3221-3238. (in Chinese) [21] 谷彦冰, 冀志蕊, 迟福梅, 乔壮, 徐成楠, 张俊祥, 周宗山, 董庆龙. 桃WRKY基因家族全基因组鉴定和表达分析. 遗传, 2016, 38(3): 254-270. GU Y B, JI Z R, CHI F M, QIAO Z, XU C N, ZHANG J X, ZHOU Z S, DONG Q L. Genome-wide identification and expression analysis of the WRKY gene family in peach. Hereditas (Beijing), 2016, 38(3): 254-270. (in Chinese) [22] PAENICOVÁ L, DE-FOLTER S, KIEFFER M, HORNER D S, FAVALLI C, BUSSCHER J, COOK H E, INGRAM R M, KATER M M, DAVIES B, ANGENENT G C, COLOMBO L. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: New openings to the MADS world. The Plant Cell, 2003, 15(7): 1538-1551. [23] ARORA R, AGARWAL P, RAY S, SINGH A K, SINGH V P, TYAGI A K, KAPOOR S. MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics, 2007, 8(1): 242. [24] VERDE I, ABBOTT A G, SCALABRIN S, JUNG S, SHU S, MARRONI F, ZHEBENTYAYEVA T, DETTORI M T, GRIMWOOD J, CATTONARO F, ZUCCOLO A, ROSSINI L, JENKINS J, VENDRAMIN E, MEISEL L A, DECROOCQ V, SOSINSKI B, PROCHNIK S, MITROS T, POLICRITI A, CIPRIANI G, DONDINI L, FICKLIN S, GOODSTEIN D M, XUAN P, DEL FABBRO C, ARAMINI V, COPETTI D, GONZALEZ S, HORNER D S, FALCHI R, LUCAS S, MICA E, MALDONADO J, LAZZARI B, BIELENBERG D, PIRONA R, MICULAN M, BARAKAT A, TESTOLIN R, STELLA A, TARTARINI S, TONUTTI P, ARÚS P, ORELLANA A, WELLS C, MAIN D, VIZZOTTO G, SILVA H S, ALAMINI F, SCHMUTZ J, MORGANTE M, ROKHSAR M D. The high -quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetica, 2013, 45(5): 487-493. [25] PUIG J, MEYNARD D, KHONG G N, PAULUZZI G, GUIDERDONI E, GANTET P. Analysis of the expression of the AGL17-like clade of MADS-box transcription factors in rice. Gene Expression Patterns, 2013, 13(5): 160-170. [26] WEI B, ZHANG R, GUO J, LIU D, LI A, FAN R, MAO L, ZHANG X. Genome-wide analysis of the MADS-box gene family in Brachypodium distachyon. PLoS ONE, 2014, 9(1): e84781. [27] DUAN W, SONG X, LIU T, HUANG Z, REN J, HOU X, LI Y. Genome-wide analysis of the MADS-box gene family in Brassica rapa (Chinese cabbage). Molecular Genetics and Genomics, 2015, 290(1): 239-255. [28] JACK T, BROCKMAN L L, MEYEROWITZ E M. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell, 1992, 68(4): 683-697. [29] CHANG Y, KAO N, LI J, HSU W, LIANG Y, WU J, YANG C. Characterization of the possible roles for B class MADS box genes in regulation of perianth formation in orchid. Plant Physiology, 2010, 152(2): 837-853. [30] XIAO H, WANG Y, LIU D, WANG W, LI X, ZHAO X, XU J, ZHAI W, ZHU L. Functional analysis of the rice AP3 homologue OsMADS16 by RNA interference. Plant Molecular Biology, 2003, 52(5): 957-966. [31] ZAHN L M, LEEBENS-MACK J, MA H, THEISSEN, G. To B or not to B a flower: the role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms. Journal of Heredity, 2005, 96(3): 225-240. [32] AMBROSE B A, LERNER D R, CICERI P, PADILLA C M, YANOFSKY M F, SCHMIDT R J. Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Molecular Cell, 2000, 5(3): 569-579. [33] ROQUE E, SERWATOWSKA J, CRUZ ROCHINA M, WEN J, MYSORE K S, YENUSH L, BELTRÁN J P, CAÑAS L A. Functional specialization of duplicated AP3-like genes in Medicago truncatula. The Plant Journal, 2013, 73(4): 663-675. [34] HU L, LIU S. Genome-wide analysis of the MADS-box gene family in cucumber. Genome, 2012, 55(3): 245-256. [35] DÍAZ-RIQUELME J, LIJAVETZKY D, MARTÍNEZ-ZAPATER J M, CARMONA M J. Genome-wide analysis of MIKCC-type MADS box genes in grapevine. Plant Physiology, 2009, 149(1): 354-369. [36] ADAMCZYK B J, FERNANDEZ D E. MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis. Plant Physiology, 2009, 149(4): 1713-1723. [37] LIU Y, CUI S, WU F, YAN S, LIN X, DU X, CHONG K, SCHILING S, THEIßEN G, MENG Z. Functional conservation of MIKC*-type MADS box genes in Arabidopsis and rice pollen maturation. The Plant Cell, 2013, 25(4): 1288-1303. [38] PORTEREIKO M F, LLOYD A, STEFFEN J G, PUNWANI J A, OTSUGA D, DREWS G N. AGL80 is required for central cell and endosperm development in Arabidopsis. The Plant Cell, 2006, 18(8): 1862-1872. [39] KANG I H, STEFFEN J G, PORTEREIKO M F, LLOYD A, DREWS G N. The AGL62 MADS domain protein regulates cellularization during endosperm development in Arabidopsis. The Plant Cell, 2008, 20(3): 635-647. [40] XU Z, ZHANG Q, SUN L, DU D, CHENG T, PAN H, YANG W, WANG J. Genome-wide identification, characterization and expression analysis of the MADS-box gene family in Prunus mume. Molecular Genetics and Genomics, 2014, 289(5): 903-920. [41] SHU Y, YU D, WANG D, GUO D, GUO C. Genome-wide survey and expression analysis of the MADS-box gene family in soybean. Molecular Biology Reports, 2013, 40(6): 3901-3911.
[1] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[2] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[3] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[4] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[5] LI YuZe,ZHU JiaWei,LIN Wei,LAN MoYing,XIA LiMing,ZHANG YiLi,LUO Cong,HUANG Gui Xiang,HE XinHua. Cloning and Interaction Protein Screening of RHF2A Gene from Xiangshui Lemon [J]. Scientia Agricultura Sinica, 2022, 55(24): 4912-4926.
[6] ZHANG Jie,JIANG ChangYue,WANG YueJin. Functional Analysis of the Interaction Between Transcription Factors VqWRKY6 and VqbZIP1 in Regulating the Resistance to Powdery Mildew in Chinese Wild Vitis quinquangularis [J]. Scientia Agricultura Sinica, 2022, 55(23): 4626-4639.
[7] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[8] HAO Yan,LI XiaoYing,YE Mao,LIU YaTing,WANG TianYu,WANG HaiJing,ZHANG LiBin,XIAO Xiao,WU JunKai. Characteristics of Volatile Components in Peach Fruits of 21shiji and Jiucui and Their Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(22): 4487-4499.
[9] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[10] PANG HaoWan,FU QianKun,YANG QingQing,ZHANG YuanYuan,FU FengLing,YU HaoQiang. Maize Transcription Factor ZmEREB93 Negatively Regulates Kernel Development [J]. Scientia Agricultura Sinica, 2022, 55(19): 3685-3696.
[11] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[12] SHEN ZhiJun, TIAN Yu, CAI ZhiXiang, XU ZiYuan, YAN Juan, SUN Meng, MA RuiJuan, YU MingLiang. Evaluation of Brown Rot Resistance in Peach Based on Genetic Resources Conserved in National Germplasm Repository of Peach in Nanjing [J]. Scientia Agricultura Sinica, 2022, 55(15): 3018-3028.
[13] QU Cheng,WANG Ran,LI FengQi,LUO Chen. Cloning and Expression Profiling of Gustatory Receptor Genes BtabGR1 and BtabGR2 in Bemisia tabaci [J]. Scientia Agricultura Sinica, 2022, 55(13): 2552-2561.
[14] TAN FengLing,ZHAN Ping,WANG Peng,TIAN HongLei. Effects of Thermal Sterilization on Aroma Quality of Flat Peach Juice Based on Sensory Evaluation and GC-MS Combined with OPLS-DA [J]. Scientia Agricultura Sinica, 2022, 55(12): 2425-2435.
[15] ZHANG Li,ZHANG Nan,JIANG HuQiang,WU Fan,LI HongLiang. Molecular Cloning and Expression Pattern Analysis of NPC2 Gene Family of Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(12): 2461-2471.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!