Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (18): 3477-3488.doi: 10.3864/j.issn.0578-1752.2016.18.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Development of Wheat -Thinopyrum elongatum Translocation Lines Resistant to Fusarium Head Blight

Zhang Lu-lu 1, CHEN Shi-qiang 2, LI Hai-feng3, LIU Hui-ping1,4, DAI Yi1,4, GAO Yong1, CHEN Jian-min1   

  1. 1College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu
    2Lixiahe Region Agricultural Scientific Research Institute of Jiangsu, Yangzhou 225007, Jiangsu
    3Yangzhou Polytechnic College, Yangzhou 225012, Jiangsu
    4Jiangsu Provincial Key Lab for Agrobiology, Nanjing 210014
  • Received:2016-04-11 Online:2016-09-16 Published:2016-09-16

Abstract: 【Objective】The objective of this study was to transfer the chromosome 7E of Thinopyrum elongatum into cultivated common wheat (Triticum aestivam L.) to develop translocation lines resistant to Fusarium Head Blight (FHB) and thereby to provide new germplasm for improving FHB resistance in common wheat.【Method】The F2 seeds from the cross between Yangmai16 and DS7E(7B) were radiated using 60Co (at 30 000 rad), DS7E(7B) being a substitution line in which the chromosome 7B of Chinese Spring common wheat was substituted with the chromosome 7E of Th. elongatum. The survived M1 plants were harvested, after visual selection for agronomic traits. The M2 to M4 populations were selected for agronomic traits, FHB resistance under single drop injection with Fusarium graminearum, and molecular markers specific to the chromosome and chromosomal arm of 7E for Th. elongatum, followed by cytological confirmation for the presence of 7E chromosomes using Th. elongatum genomic DNA as probe by genomic in situ hybridization (GISH). 【Result】Thirteen M1 plants with varying degrees of FHB resistance were selected, and the corresponding M2 plants were examined for the presence of previously developed molecular markers specific to chromosome 7E . Seven plants were found to carry the long arm of 7E and 14 were found to carry the short arm of 7E. After selfing, 13 plants carrying markers specific to the long arm of 7E chromosome and 3 plants carrying markers specific to the short arm of 7E chromosome were identified out of 223 M3 plants. GISH analysis was conducted for the progenies (M4) derived from 12 M3 plants and it was found that the progenies from nine of the M3 lines were wheat-Th. elongatum translocation lines (2n=42), and those from two other M3 plants were chromosome addition lines with the short arm of 7E (2n=44). Continued selection led to the development of three translocation lines carrying the long arm of 7E, which were named as TW-7EL1, TW-7EL2 and TW-7EL3, respectively. A fourth line was a chromosome addition line with the short arm of 7E and was named as W-DA7ES. These four lines were derived from two different M1 plants. Evaluation of FHB resistance indicated that the translation lines were similar to Sumai 3 in FHB resistance, better than Chinese Spring and Yangmai 16, while the addition line was considerably poorer in FHB resistance.【Conclusion】Translocation lines with chromosome 7EL that are resistant to FHB were developed effectively and accurately by joint use of phenotypic selection, screening for chromosome-specific molecular markers to 7E, and genomic in situ hybridization. The chromosome 7EL of Th.elongatum carries FHB-resistant genes

Key words: wheat, Thinopyrum elongatum, fusarium head blight, translocation lines

[1]    Duveiller E, Mezzalama M, Murakami J, Lewis J, Ban T. Global fusarium networking. Cereal Research Communications, 2008, 36: 11-19.
[2]    姚金保, 陆维忠. 中国小麦抗赤霉病育种的研究进展. 江苏农业科学学报, 2000, 16(4): 242-248.
Yao J B, Lu W Z. Research advances in wheat breeding for scab resistance in China. Jiangsu Journal of Agricultural Sciences, 2000, 16(4): 242-248. (in Chinese)
[3]    Dvorak J, Edge M, Ross K. On the evolution of the adaptation of Lophopyrum elongatum to growth in saline environments. Proceedings of the National Academy of Sciences of the United States of America, 1988, 85(11): 3805-3809.
[4]    Zhong G Y, Dvorak J. Chromosomal control of the tolerance of gradually and suddenly imposed salt stress in the Lophopyrum elongatum and wheat, Triticum aestivum L.genomes. Theoretical and Applied Genetics, 1995, 90(2): 229-236.
[5]    Zhang X Y, Dong Y S, Wang R R C. Characterization of genomes and chromosomes in partial amphiploids of the hybrid Triticum aestivum × Thinopyrum ponticum by in situ hybridization, isozyme analysis, and RAPD. Genome, 1996, 39(6): 1062-1071.
[6]    刘树兵, 贾继增, 王洪刚, 孔令让, 周荣华. 利用生化及分子标记确定长穗偃麦草(Elytrigia elongatum, EE.2n=14)染色体与小麦染色体的部分同源性. 遗传学报, 1999, 26(1): 37-42.
Liu S B, Jia J Z, Wang H G. Kong L R, Zhou R H. Identification of homoeology between the Elytrigia elongatum (2n=14, EE) and wheat chromosomes using biochemical and molecular markers. Journal of Genetics and Genomics, 1999, 26(1): 37-42. (in Chinese)
[7]    刘登才, 郑有良, 王志容, 侯永翠, 兰秀锦, 魏育明. 影响小麦赤霉病抗性的Lophopyrum elongatum染色体定位. 四川农业大学学报, 2001, 19(3): 200-205.
Liu D C, Zheng Y L, Wang Z R, Hou Y C, Lan X J, Wei Y M. Distribution of chromosomes in diploid Lophopyrum elongatum (Host) A. Love that influences resistance to head scab of common wheat. Journal of Sichuan Agricultural University, 2001, 19(3): 200-205. (in Chinese)
[8]    Jauhar P P, Peterson T S, Xu S S. Cytogenetic and molecular characterization of a durum alien disomic addition line with enhanced tolerance to fusarium head blight. Genome, 2009, 52(5): 467-483.
[9]    Shen X, Ohm H. Fusarium head blight resistance derived from Lophopyrum elongatum  chromosome 7E and its augmentation with Fhb1 in wheat. Plant Breeding, 2006, 125(5): 424-429.
[10]   Wang J R, Wang L, Gulden S, Rocheleau H, Balcerzak M, Hattori J, Cao W, Han F, Zheng Y L, Fedak G, Quellet T. RNA profiling of fusarium head blight-resistant wheat addition lines containing the Thinopyrum elongatum chromosome 7E. Canadian Journal of Plant Pathology, 2010, 32(2): 188-214.
[11]   Zhang X L, Shen X R, Hao Y F, Cai J J, Ohm H W, Kong L  R. A genetic map of Lophopyrum ponticum chromosome 7E, harboring resistance genes to Fusarium head blight and leaf rust. Theoretical and Applied Genetics, 2011, 122(2): 263-270.
[12]   Rabinovich S V. Importance of wheat-rye translocations for breeding modern cultivars of Triticum aestivum L.. Euphytica, 1998, 100: 323-340.
[13]   Ren T H, Chen F, Yan B J, Zhang H Q, Ren Z L. Genetic diversity of wheat-rye 1BL.1RS translocation lines derived from different wheat and rye sources. Euphytica, 2012, 183(2): 133-146.
[14]   Driscoll C J, Anderson L M. Cytogenetic studies of transec-a wheat-rye translocation line. Canadian Journal of Genetics and Cytology, 1967, 9(2): 375-380.
[15]   Sears E R. Use of radiation to transfer alien chromosome segments to wheat. Crop Science, 1993, 33: 897-901.
[16]   Bie T D, Cao Y P, Chen P D. Mass production of intergeneric chromosomal translocations through pollen irradiation of Triticum durum-Haynaldia villosa amphiploid. Journal of Integrative Plant Biology, 2007, 49(11): 1619-1626.
[17]   陈升位, 陈佩度, 王秀娥. 利用电离辐射处理整臂易位系成熟雌配子诱导外源染色体小片段易位. 中国科学C辑(生命科学), 2008, 38(3): 215-220.
Chen S W, Chen P D, Wang X E. Radiating the mature female gamete of the whole arm translocation lines to establish small fragments translocation system. Chinese Science C Series(Life Science), 2008, 38(3): 215-220. (in Chinese)
[18]   Sears E R. An induced mutant with homoeologous pairing in common wheat. Canadian Journal of Genetics and Cytology, 1977, 19(4): 585-593.
[19]   Dubcovsky J, Lukaszewski A J, Echhaide M, Antonelli E F, Porter D R. Molecular characterization of two Triticum speltoides interstitial translocations carrying leaf rust and greenbug resistance genes. Crop Science, 1998, 381: 1655-1660.
[20]   Larkin P J, Scowcroft W R. Somaclonal variation-a novel source of variability from cell cultures for plant improvement. Theoretical and Applied Genetics, 1981, 60(4): 197-214.
[21]   Endo T R, Yamamoto M, Mukai Y. Structural changes of rye chromosome 1R induced by a gematocidal chromosome. Japanese Journal of Genetics, 1994, 69: 13-19.
[22]   Chen P D, Liu W X, Yuan J H, Wang X E, Zhou B, Wang S L, Zhang S Z, Feng Y G,Yang B J. Development and characterization of wheat-Leymus racemosus translocation lines with resistance to Fusarium head blight. Theoretical and Appllied Genetics, 2005, 111(5): 941-948.
[23]   刘文轩, 陈佩度, 刘大钧. 利用花粉辐射诱发普通小麦与大赖草染色体易位的研究. 遗传学报, 2000, 27(1): 44-49.
Liu W X, Chen P D, Liu D J. Studies of the developments of Triticum aestivum-Leymus racemosus translocation lines by pollen irradiation. Journal of Genetics and Genomics, 2000, 27(1): 44-49. (in Chinese)
[24]   杨漫宇, 符书兰, 陈晓明, 张怀琼, 唐宗祥, 任正隆. 小麦-黑麦小片段易位的快中子辐照诱导. 麦类作物学报, 2014, 34(5): 609-614.
Yang M Y, Fu S L, Chen X M, Zhang H Q, Tang Z X, Ren Z L. Creation of wheat-rye small-fragment translocation using fast neutron irradiation. Journal of Triticeae Crops, 2014, 34(5): 609-614. (in Chinese)
[25]   李文静, 葛群, 王仙, 唐雪琴, 徐杰, 唐宗祥, 任正隆, 傅体华. 普通小麦-中间偃麦草易位系08-738的鉴定. 麦类作物学报, 2014, 34(4): 443-448.
Li W J, Ge Q, Wang X, Tang X Q, Xu J, Tang Z X, Ren Z L, Fu T H. Identification of a translocation line 08-738 between common wheat-Thinopyrum intermedium. Journal of Triticeae Crops, 2014, 34(4): 443-448. (in Chinese)
[26]   Zhan H X, Zhang X J, Li G R, Pan Z H, Hu J, Li X, Chang Z J, Yang Z J, Qiao L Y, Jia J Q, Guo H J. Molecular characterization of a New Wheat-Thinopyrum intermedium translocation line with resistance to powdery mildew and stripe rust. International Journal of Molecular Sciences, 2015, 16: 2162-2173.
[27]   Ardalani S, Mirzaghaderi G, Badakhshan H. A robertsonian translocation from Thinopyrum bessarabicum into bread wheat confers high iron and zinc contents. Plant Breeding, 2016, doi:10.1111/pbr.12359)Online at 18 Mar 2016
[28]   嵇常宇. 小麦易位系的创造研究进展. 现代农业科技, 2013(13): 23-25.
Ji C Y. Research advances on creation of wheat translocation lines. Modern Agricultural Science and Technology, 2013(13): 23-25. (in Chinese)
[29]   Dvorak J. Meiotic pairing between single chromosomes of diploid Agropyron elongatum and decaploid A. elongatum in Triticum aestivum. Canadian Journal of Genetics and Cytology, 1975, 17: 329-336.
[30]   Shen X, Kong L, Ohm H. Fusarium head blight resistance in hexaploid wheat (Triticum aestivum)- Lophopyrum genetic lines and tagging of the alien chromatin by PCR markers. Theoretical and Applied Genetics, 2004, 108: 808-813.
[31]   Guo J, Zhang X, Hou Y, Cai J, Shen X, Zhou T, Xu H, Ohm H, Wang H, Li A, Han F, Wang H, Kong L. High?density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker?assisted selection. Theoretical and Applied Genetics, 2015, 128: 2301-2316.
[32]   王景雪, 孙毅, 高武军. 一种简便实用的植物总DNA提取方法. 山西大学学报(自然科学版), 2000, 23(3): 271-271.
Wang J X, Sun Y, Gao W J. A simple of practical method for plant total DNA. Journal of Shanxi University(Natural Science Edition), 2000, 23(3): 271-271. (in Chinese)
[33]   Chen S Q, Huang Z F, Dai Y, Qin S W, Gao Y Y, Zhang L L, Gao Y, Chen J M. The development of 7E chromosome-specific molecular markers for Thinopyrum elongatum based on SLAF-seq technology. PLoS One, 2013, 8(6): e65122.
[34]   Chen S Q, Gao Y, Zhu X, Zhang C, Cao W G, Fedak G, He Z T, Chen X L, Chen J M. Development of E-chromosome specific molecular markers for Thinopyrum elongatum in a wheat background. Crop Science, 2015, 55: 2777-2785.
[35]   秦树文, 戴毅, 陈士强, 张璐璐, 刘慧萍, 曹文广, Fedak George, 高勇, 陈建民. 基于TRAP的长穗偃麦草SCAR标记的开发及应用. 麦类作物学报, 2014, 34(12): 1595-1602.
Qin S W, Dai Y, Chen S Q, Zhang L L, Liu H P, Cao W G, Fedak G, Gao Y, Chen J M. Development and application of SCAR markers specific to Thinopyrum elongtatum by TRAP technology. Journal of Triticeae Crops, 2014, 34(12): 1595-1602. (in Chinese)
[36]   Gill B S, Friebe B, Endo T R. Standard karyotype and nomenclature system for description of chromosome bands and structural aberration in wheat. Genome, 1991, 34(5): 830-834.
[37]   Zhang P, Li W, Friebe B, Gill B S. Simultaneous painting of three genomes in hexaploid wheat by BAC-FISH. Genome, 2004, 47(5): 979-987.
[38]   Fu S, Lv Z, Qi B, Guo X, Li J, Liu B, Han F P. Molecular cytogenetic characterization of wheat-Thinopyrum elongatum addition, substitution and translocation lines with a novel source of resistance to wheat Fusarium head blight. Journal of Genetics and Genomics, 2012, 39: 103-110.
[39]   陈世强, 黄泽峰, 张勇, 葛江燕, 朱雪, 高勇, 陈建民. 中国春背景下长穗偃麦草抗赤霉病相关基因的染色体定位. 麦类作物学报, 2012, 32(5): 839-845.
Chen S Q, Huang Z F, Zhang Y, Ge J Y, Zhu X, Gao Y, Chen J M. Chromosomal location of genes associated with FHB resistance of Lophopyrum elongatum in Chinese Spring background. Journal of Triticeae Crops, 2012, 32(5): 839-845. (in Chinese)
[40]   Li H J, Guo B H, Zhang Y M, Li Y W, Du L Q, Li Y X, Jia X, Zhu Z Q. High efficient intergeneric chromosomal translocations between wheat (Triticum aestivum L.) and Dasypyrum villosum arising from tissue culture and irradiation. Acta Genetica Sinica, 2000, 27(6): 511-519.
[41]   刘文轩, 陈佩度, 刘大钧. 利用减数分裂期成株电离辐射选育小麦─大赖草易位系的研究. 植物学报, 1999, 41(5): 463-467.
Liu W X, Chen P D, Liu D J. Development of Triticum aestivum-Leymus translocation lines by irradiation adult plants at meiosis. Bulletin of Botany, 1999, 41(5): 463-467. (in Chinese)
[42]   Shirley B W, Hanley S, Goodman H M. Effects of ionizing radiation on a plant genome: analysis of two arabidopsis transparent testa mutations. The Plant Cell, 1992, 4(3): 333-347.
[43]   曲颖, 李文建, 周利斌, 王转子, 董喜存, 余丽霞, 刘青芳, 何金 玉. 重离子辐射植物的诱变效应研究及应用. 原子核物理评论, 2007, 24(4): 294-298.
Qu Y, Li W J, Zhou L B, Wang Z Z, Dong X C, Yu L X, Liu Q F, He J Y. Research and application of mutagenic effects in plants irradiated by heavy ion beams. Nuclear Physics Review, 2007, 24(4): 294-298. (in Chinese)
[44]   王林生. 利用电离辐射创造普通小麦外源染色体易位系. 生物学通报, 2009, 44(7): 1-3.
Wang L S. Creation of alien chromosome translocation lines of common wheat by irradiation. Bulletin of Biology, 2009, 44(7): 1-3. (in Chinese)
[45]   Qiu L, Tang Z X, Li M, Fu S L. Development of new PCR-based markers specific for chromosome arms of rye (Secale cereale L.). Genome, 2016, 59: 159-165.
[46]   Kim N S, Armstrong K, Knott D R. Molecular detection of Lophopyrum chromatinin wheat-Lophopyvum recombinants and their use in the physical mapping of chromosome 7D. Theoretical and Applied Genetics, 1993, 85(5): 561-567.
[47]   Zhang Q, Qi L, Wang X, Wang H, Lang S, Wang Y, Wang S, Chen P, Liu D. Development and characterization of a Triticum aestivum-Haynaldia villosa translocation line T4VS·4DL conferring resistance to wheat spindle streak mosaic virus. Euphytica, 2005, 145: 317-320.
[48]   Zhao W, Qi L, Gao X, Zhang G, Dong J, Chen Q, Friebe B, Gill B. Development and characterization of two new Triticum aestivumDasypyrum villosum Robertsonian translocation lines T1DS·1V#3L and T1DL·1V#3S and their effect on grain quality. Euphytica, 2010: 175: 343-350.
[49]   Qi L, Pumphrey M, Friebe B, Zhang P, Qian C, Bowden  R, Rouse M, Jin Y, Gill B. A novel Robertsonian translocation event leads to transfer of a stem rust resistance gene (Sr52) effective against race Ug99 from Dasypyrum villosum into bread wheat. Theoretical and Applied Genetics, 2011, 123: 159-167.
[50]   Qi Z, Du P, Qian B, Zhuang L, Chen H, Chen T, Shen J, Guo J, Feng Y, Pei Z. Characterization of a wheat–Thinopyrum bessarabicum (T2JS-2BS·2BL) translocation line. Theoretical and Applied Genetics, 2010, 121: 589-597.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[5] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[6] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[9] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[10] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[11] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[12] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[13] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[14] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[15] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!