Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (15): 2988-2998.doi: 10.3864/j.issn.0578-1752.2016.15.013

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Responses of Soil Organic Carbon, Organic Nitrogen and Nitrogen Supply Capacity to Long-Term Nitrogen Fertilization Practices in Dryland Soil

WANG Hui1, LIU Jin-shan1, HUI Xiao-li1, DAI Jian1, WANG Zhao-hui1, 2   

  1. 1College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and Agro- environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi
    2Northwest A&F University/State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi
  • Received:2016-03-08 Online:2016-08-01 Published:2016-08-01

Abstract: 【Objective】The purpose of this study is to reveal the response of soil organic carbon, organic nitrogen and soil N mineralization to different N application rates and their relationships, and then to evaluate soil N supply capacity in dryland soil. 【Method】A ten-year-old winter wheat (Triticum aestivum L.) field experiment with N application rates (0 (N0), 160 (N160) and 320 (N320) kg·hm-2, plus 100 kg P2O5·hm-2) in the experiment farm of Northwest A&F University, Yangling, Shaanxi Province was conducted to determine soil organic carbon (SOC), N (SON), microbial biomass C (MBC) and biomass N (MBN) and a laboratory incubation method was used to determine the capacity of soil nitrogen (N) mineralization. 【Result】Compared with N0 treatment, N fertilization treatments (N160 and N320) significantly increased SOC at 0-10, 10-20, 20-40 and 0-40 cm soil depths, and they had different effects in the stages of wheat pre-sowing and harvest; N160 and N320 treatments also significantly increased SON at 0-10 cm soil depth, and N320 treatment only increased SON at 0-40 cm soil depth; N fertilization treatments (N160 and N320) did not change MBN and MBC concentrations at 0-10 and 10-20 cm depths, while N320 treatment significantly increased MBN concentrations at 20-40 and 0-40 cm depths. In 0-10 cm soil depth, the amount of cumulative mineralized N and potentially mineralizable N (N0) had a significant positive correlation with N fertilizer rates and SON, while N mineralization rate constant (k) had a negative correlation with them. In 10-20 cm soil depth, during the whole incubation process, the amount of cumulative mineralized N in different N treatments was significantly higher than that in N0 treatment, with the increment of 27.3% (N160) and 35.2% (N320), respectively, and there was a significant positive correlation between cumulative mineralized N and SON, SOC as well as N rates. The potentially mineralizable N (N0) significantly increased with the increment of N fertilizer application rate, while the N mineralization rate constant (k) decreased. In 20-40 cm soil depth, the amount of cumulative mineralized N increased with the treatment of N320 and had a significant positive correlation with soil MBC and SON. 【Conclusion】Applying a reasonable rate of N fertilizer is one of the effective practices to improve the soil organic N and organic C concentrations in the dryland of Loess Plateau, and can also increase the soil potentially mineralizable N, reduce the N mineralization rate, thus improve soil N supply capacity.

Key words: soil nitrogen mineralization, potentially mineralizable nitrogen, microbial biomass carbon and nitrogen, organic carbon and nitrogen, Loess Plateau

[1]    赵护兵, 王朝辉, 高亚军, 王辉. 渭北旱塬农户冬小麦养分资源投入调查与分析. 麦类作物学报, 2013, 33(1): 146-150.
ZHAO H B, WANG Z H, GAO Y J, WANG H. Survey analysis on nutrients resource inputting in winter wheat in Weibei dryland area. Journal of Triticeae Crops, 2013, 33(1): 146-150. (in Chinese)
[2]    袁新民, 同延安, 杨学云, 李晓林, 张福锁. 施用磷肥对土壤NO3--N累积的影响. 植物营养与肥料学报, 2000, 6(4): 397-403.
YUAN X M, TONG Y A, YANG X Y, LI X L, ZHANG F S. Effect of phosphate on soil nitrate accumulation. Plant Nutrition Fertilizer Science, 2000, 6(4): 397-403. (in Chinese)
[3]    张宏, 周建斌, 王春阳, 董放, 李丽娟. 不同栽培模式及施氮对玉米-小麦轮作体系土壤肥力及硝态氮累积的影响. 中国生态农业学报, 2010, 18(4): 693-697.
ZHANG H , ZHOU J B, WANG C Y, DONG F, LI L J. Effect of cultivation pattern and nitrogen application rate on soil fertility and nitrate accumulation under maize-wheat rotation system. Chinese Journal of Eco-Agriculture, 2010, 18(4): 693-697. (in Chinese)
[4]    KHAN S A, MULVANEY R L, ELLSWORTH T R, BOAST C W. The myth of nitrogen fertilization for soil carbon sequestration. Journal of Environmental Quality, 2007, 36(6): 1821-1832.
[5]    GUO J H, LIU X J, ZHANG Y, SHEN J L, HAN W X, ZHANG W F, CHRISTIE P, GOULDING K W,VITOUSEK P M, ZHANG F S. Significant acidification in major Chinese croplands. Science, 2010, 327(5968): 1008-1010.
[6]    王艳杰, 邹国元, 付桦, 刘宏斌. 土壤氮素矿化研究进展. 中国农学通报, 2005, 21(10): 203-208.
WANG Y J, ZOU G Y, FU H, LIU H B. Development and advance of soil nitrogen mineralization. Chinese Agricultural Science Bulletin, 2005, 21(10): 203-208. (in Chinese)
[7]    田茂洁. 土壤氮素矿化影响因子研究进展. 西华师范大学学报(自然科学版), 2004, 25(3): 298-303.
TIAN M J. Review on the contributing factors to mineralization of soil nitrogen. Journal of China West Normal University (Natural Science Edition), 2004, 25(3): 298-303. (in Chinese)
[8]    肖巧琳, 罗建新. 土壤有机质及其矿化影响因子研究进展. 湖南农业科学, 2009(2): 74-77.
XIAO Q L, LUO J X. Review on the contributing factors to mineralization of soil organic matter. Hunan Agricultural Sciences, 2009(2): 74-77. (in Chinese)
[9]    REICH P B, GOWER S T. Nitrogen mineralization and productivity in 50 hardwood and conifer stands on diverse soils. Ecology, 1997, 78(2): 335-347.
[10]   STEVENSON F J. Nitrogen in Agricultural Soils. Madison, Wisconsin, USA: American Society of Agronomy, 1982.
[11]   巨晓棠, 边秀举, 刘学军, 张福锁, 毛达如. 旱地土壤氮素矿化参数与氮素形态的关系. 植物营养与肥料学报, 2000, 6(3): 251-259.
JU X T, BIAN X J, LIU X J, ZHANG F S, MAO D R. Relationship between soil nitrogen mineralization parameter with several nitrogen forms. Plant Nutrition and Fertilizer Science, 2000, 6(3): 251-259. (in Chinese)
[12]   鲁彩艳, 牛明芬, 陈欣, 史亦, 石险峰. 不同施肥制度培育土壤氮矿化势与供氮潜力. 辽宁工程技术大学学报, 2007, 26(5): 773-775.
LU C Y, NIU M F, CHEN X, SHI Y, SHI X F. Nitrogen mineralization potemials of meadow brown soil in different fertilization practice. Journal of Liaoning Technical University, 2007, 26(5): 773-775. (in Chinese)
[13]   邵兴芳, 徐明岗, 张文菊, 黄敏, 周显, 朱平. 长期有机培肥模式下黑土碳与氮变化及氮素矿化特征. 植物营养与肥料学报, 2014, 20(2): 326-335.
SHAO X F, XU M G, ZHANG W J, HUANG M, ZHOU X, ZHU P. Changes of soil carbon and nitrogen and characteristics of nitrogen mineralization under long-term manure fertilization practices in black soil. Plant Nutrition and Fertilizer Science, 2014, 20(2): 326-335. (in Chinese)
[14]   MOHANTY S, NAYAK A K, KUMAR A, TRIPATHI R, SHAHID M, BHATTACHARYYA P. Carbon and nitrogen mineralization kinetics in soil of rice–rice system under long term application of chemical fertilizers and farmyard manure. European Journal of Soil Biology, 2013, 58: 113-121.
[15]   闫德智, 王德建. 稻麦轮作条件下施用氮肥对土壤供氮能力的影响. 土壤通报, 2005, 36(2): 190-193.
YAN D Z, WANG D J. Effects of applications of n fertilizer on soil nitrogen supplying capacities under the conditions of rice and wheat rotation. Chinese Journal of Soil Science, 2005, 36(2): 190-193. (in Chinese)
[16]   鲍士旦. 土壤农化分析. 三版. 北京: 中国农业出版社, 2005.
BAO S D. Soil and Agricultural Chemical Analysis. 3rd ed. Beijing: China Agriculture Press, 2005. (in Chinese)
[17]   BROOKES P C, KRAGT J F, POWLSON D S, JENKINSON D S, BROOKES P C, KRAGT J F. Chloroform fumigation and the release of soil nitrogen: The effects of fumigation time and temperature. Soil Biology and Biochemistry, 1985, 17(6): 831-835.
[18]   VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 1987, 19(6): 703-707.
[19]   杨绒, 赵满兴, 周建斌. 过硫酸钾氧化法测定溶液中全氮含量的影响条件研究. 西北农林科技大学学报(自然科学版), 2005, 33(12): 107-111.
YANG R, ZHAO M X, ZHOU J B. Effects of different conditions on the determination of total nitrogen in solution by persulfate oxidation method. Journal of Northwest A&F University (Natural Science Edition), 2005, 33(12): 107-111. (in Chinese)
[20]   STANFORD G, SMITH S J. Nitrogen mineralization potentials of soils. Soil Science Society of America Journal, 1972, 36(3): 465-472.
[21]   GUNTIÑAS M E, LEIRÓS M C, TRASAR-CEPEDA C, GIL-SOTRES F. Effects of moisture and temperature on net soil nitrogen mineralization: A laboratory study. European Journal of Soil Biology, 2012, 48: 73-80.
[22]   骆坤, 胡荣桂, 张文菊, 周宝库, 徐明岗, 张敬业, 夏平平. 黑土有机碳、氮及其活性对长期施肥的响应. 环境科学, 2013, 34(2): 676-684.
LUO K, HU R G, ZHANG W J, ZHOU B K, XU M G, ZHANG J Y, XIA P P. Response of black soil organic carbon, nitrogen and its availability to long-term fertilization. Environmental Science, 2013, 34(2): 676-684. (in Chinese)
[23]   赵丽娟, 韩晓增, 王守宇, 刘鸿翔, 李海波, 苗淑杰, 王风. 黑土长期施肥及养分循环再利用的作物产量及土壤肥力变化: 有机碳组分的变化. 应用生态学报, 2006, 17(5): 817-821.
ZHAO L J, HAN X Z, WANG S Y, LIU H X, LI H B, MIAO S J, WANG F. Changes of crop yield and soil fertility under long-term fertiliza tion and nutrients-recycling and reutilization on a black soil Ⅳ: Soil organic carbon and its fractions. Chinese Journal of Applied Ecology, 2006, 17(5): 817-821. (in Chinese)
[24]   DAI J, WANG Z, LI F, HE G, WANG S, LI Q. Optimizing nitrogen input by balancing winter wheat yield and residual nitrate-N in soil in a long-term dryland field experiment in the Loess Plateau of China. Field Crops Research, 2015, 181: 32-41.
[25]   孟磊, 丁维新, 蔡祖聪, 钦绳武. 长期定量施肥对土壤有机碳储量和土壤呼吸影响. 地球科学进展, 2005, 20(6): 687-692.
MENG L, DING W X, CAI Z C, QIN S W. Storage of soil organic C and soil respiration as effected by long-term quantitative fertilization. Advances in Earth Science, 2005, 20(6): 687-692. (in Chinese)
[26]   肖伟伟, 范晓晖, 杨林章, 孙波. 长期定位施肥对潮土有机氮组分和有机碳的影响. 土壤学报, 2009, 46(2): 274-280.
XIAO W W, FAN X H, YANG L Z, SUN B. Effects of long term fertilization on organic nitrogen fractions and organic carbon in fluvoaquic soil. Acta Pedologica Sinica, 2009, 46(2): 274-280. (in Chinese)
[27]   Yang X Y, Ren W D, Sun B H, Zhang S L. Effects of contrasting soil management regimes on total and labile soil organic carbon fractions in a loess soil in China. Geoderma, 2012, (s177/178): 49-56.
[28]   郝晓晖, 胡荣桂, 吴金水, 汤水荣, 罗希茜. 长期施肥对稻田土壤有机氮、微生物生物量及功能多样性的影响. 应用生态学报, 2010, 21(6): 1477-1484.
HAO X H, HU R G, WU J S, TANG S R, LUO X X. Effects of long2term fertilization on paddy soils organic nitrogen, microbial biomass, and microbial functional diversity. Chinese Journal of Applied Ecology, 2010, 21(6): 1477-1484. (in Chinese)
[29]   郝小雨, 马星竹, 高中超, 陈苗苗, 周宝库. 长期施肥下黑土活性氮和有机氮组分变化特征. 中国农业科学, 2015, 48(23): 4707-4716.
HAO X Y, MA X Z, GAO Z C, CHEN M M, ZHOU B K. Variation characteristics of fractions of active nitrogen and organic nitrogen under different long-term fertilization practices in black soil. Scientia Agricultura Sinica, 2015, 48(23): 4707-4716. (in Chinese)
[30]   臧逸飞, 郝明德, 张丽琼. 26年长期施肥对土壤微生物量碳、氮及土壤呼吸的影响研究. 生态学报, 2015, 35(5): 1-10.
ZANG Y F, HAO M D, ZHANG L Q. Effects of wheat cultivation and fertilization on soil microbial biomass carbon, soil microbial biomass nitrogen and soil basal respiration in 26 years. Acta Ecologica Sinica, 2015, 35(5): 1-10. (in Chinese)
[31]   王晶, 解宏图, 张旭东, 朱平, 王陆玲. 施肥对黑土土壤微生物生物量碳的作用研究. 中国生态农业学报, 2004, 12(2): 118-120.
WANG J, XIE H T, ZHANG X D, ZHU P, WANG L L. Effect of fertilization on soil microbial biologic carbon in black soil. Chinese Journal of Eco-Agriculture, 2004, 12(2): 118-120. (in Chinese)
[32]   王楠, 王帅, 高强, 赵兰坡, 田特, 张晋京. 施氮水平对不同肥力土壤微生物学特性的影响. 水土保持学报, 2014, 4: 148-152.
WANG N, WANG S, GAO Q, ZHAO L P, TIAN T, ZHANG J J. Effect of nitrogen application levels on microbiological characteristics of soils with different fertility basics. Journal of Soil and Water Conservation, 2014, 4: 148-152. (in Chinese)
[33]   肖新, 朱伟, 肖靓, 邓艳萍, 赵言文, 汪建飞. 适宜的水氮处理提高稻基农田土壤酶活性和土壤微生物量碳氮. 农业工程学报, 2013, 29(21): 91-98.
XIAO X, ZHU W, XIAO L, DENG Y P, ZHAO Y W, WANG J F. Suitable water and nitrogen treatment improves soil microbial biomass carbon and nitrogen and enzyme activities of paddy field. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(21): 91-98. (in Chinese)
[34]   侯化亭, 张丛志, 张佳宝, 陈效民. 不同施肥水平及玉米种植对土壤微生物生物量碳氮的影响. 土壤, 2012, 44(1): 163-166.
HOU H T, ZHANG C Z, ZHANG J B, CHEN X M. Effects of fertilization and maize growing on soil microbial biomass carbon and nitrogen. Soils, 2012, 44(1): 163-166. (in Chinese)
[35]   徐阳春, 沈其荣. 有机肥和化肥长期配合施用对土壤及不同粒级供氮特性的影响. 土壤学报, 2004, 41(1): 87-92.
XU Y C, SHEN Q R. Influence of long-term combined application of manure and fertilizer on supplying characteristics of nitrogen in soil and soil particle fractions. Acta Pedologica Sinica, 2004, 41(1): 87-92. (in Chinese)
[36]   谢驾阳, 王朝辉, 李生秀. 施氮对不同栽培模式旱地土壤有机碳氮和供氮能力的影响. 西北农林科技大学学报(自然科学版), 2009, 37(11): 187-192.
XIE J Y, WANG Z H, LI S X. Effects of different surface mulching on soil organic nitrogen accumulation and mineralization in dryland of northwestern China. Journal of Northwest A&F University (Natural Science Edition), 2009, 37(11): 187-192. (in Chinese)
[37]   ZHANG J, QIN J, YAO W, BI L, LAI T, YU X. Effect of long-term application of manure and mineral fertilizers on nitrogen mineralization and microbial biomass in paddy soil during rice growth stages. Plant Soil and Environment, 2009, 55(3): 101-109.
[38]   张玉玲, 张玉龙, 虞娜, 姬景红. 长期不同施肥措施水稻土可矿化氮与微生物量氮关系的研究. 水土保持学报, 2008, 21(4): 117-121.
ZHANG Y L, ZHANG Y L, YU N, JI J H. Study on relationship between soil mineralizable nitrogen and microbial biomass nitrogen in paddy soil under long-term fertilization. Journal of Soil and Water Conservation, 2008, 21(4): 117-121. (in Chinese)
[39]   王媛, 周建斌, 杨学云. 长期不同培肥处理对土壤有机氮组分及氮素矿化特性的影响. 中国农业科学, 2010, 43(6): 1173-1180.
WANG Y, ZHOU J B, YANG X Y. Effects of different long-term fertilization on the fractions of organic nitrogen and nitrogen mineralization in soils. Scientia Agricultura Sinica, 2010, 43(6): 1173-1180. (in Chinese)
[1] LOU YiBao,KANG HongLiang,WANG WenLong,SHA XiaoYan,FENG LanQian,NIE HuiYing,SHI QianHua. Vertical Distribution of Vegetation Roots and Its Influence on Soil Erosion Resistance of Gully Heads on the Gullied Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(1): 90-103.
[2] ZHANG XueLin, WU Mei, HE TangQing, ZHANG ChenXi, TIAN MingHui, LI XiaoLi, HOU XiaoPan, HAO XiaoFeng, YANG QingHua, LI ChaoHai. Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(4): 729-742.
[3] XU FangLei,ZHANG Jie,LI Yang,ZHANG WeiWei,BO QiFei,LI ShiQing,YUE ShanChao. Effects of Fertilization Methods on Ammonia Volatilization of Spring Maize in Dry Farming on the Loess Plateau [J]. Scientia Agricultura Sinica, 2022, 55(12): 2360-2371.
[4] LIU Xing,CAO HongXia,LIAO Yang,ZHOU ChenGuang,LI HuangTao. Effects of Drip Irrigation Methods on Photosynthetic Characteristics, Yield and Irrigation Water Use of Apple [J]. Scientia Agricultura Sinica, 2021, 54(15): 3264-3278.
[5] MA HongMei,CAO HanBing,XIE YingHe,LI TingLiang,LIU Kai,ZHANG QiRu,JIANG LiWei,CAO Jing,SHAO JingLin,WU WenYue,LI WenQi. Evaluation on Fertilizer Application and Its Economic-Environmental Benefits Associated with Fertilizer Reduction Potential for Dryland Wheat in Loess Plateau of Southern Shanxi Province [J]. Scientia Agricultura Sinica, 2021, 54(13): 2804-2817.
[6] LIU Kai,XIE YingHe,LI TingLiang,MA HongMei,ZHANG QiRu,JIANG LiWei,CAO Jing,SHAO JingLin. Effects of Nitrogen Reduction and Film Mulching on Wheat Yield and Nutrient Absorption and Utilization in Loess Plateau [J]. Scientia Agricultura Sinica, 2021, 54(12): 2595-2607.
[7] ZHANG Lu,ZHANG ShuiQing,REN KeYu,LI JunJie,DUAN YingHua,XU MingGang. Soil Ecoenzymatic Stoichiometry and Relationship with Microbial Biomass in Fluvo-Aquic Soils with Various Fertilities [J]. Scientia Agricultura Sinica, 2020, 53(20): 4226-4236.
[8] DENG HaoLiang,ZHANG HengJia,XIAO Rang,ZHANG YongLing,TIAN JianLiang,LI FuQiang,WANG YuCai,ZHOU Hong,LI Xuan. Effects of Different Covering Planting Patterns on Soil Moisture, Temperature Characteristics and Maize Yield in Semi-Arid Region of the Loess Plateau [J]. Scientia Agricultura Sinica, 2020, 53(2): 273-287.
[9] WANG Li,WANG ZhaoHui,GUO ZiKang,TAO ZhenKui,ZHENG MingJun,HUANG Ning,GAO ZhiYuan,ZHANG XinXin,HUANG TingMiao. Differences of Main Nutrient Concentration in Wheat Grain Between Typical Locations of the Loess Plateau [J]. Scientia Agricultura Sinica, 2020, 53(17): 3527-3540.
[10] ZHANG Qi,WANG ShuLan,WANG Hao,LIU PengZhao,WANG XuMin,ZHANG YuanHong,LI HaoYu,WANG Rui,WANG XiaoLi,LI Jun. Effects of Subsoiling and No-Tillage Frequencies on Soil Aggregates and Carbon Pools in the Loess Plateau [J]. Scientia Agricultura Sinica, 2020, 53(14): 2840-2851.
[11] JIAO YaPeng,QI Peng,WANG XiaoJiao,WU Jun,YAO YiMing,CAI LiQun,ZHANG RenZhi. Effects of Different Nitrogen Application Rates on Soil Organic Nitrogen Components and Enzyme Activities in Farmland [J]. Scientia Agricultura Sinica, 2020, 53(12): 2423-2434.
[12] WANG WenXin,WANG WenLong,GUO MingMing,WANG TianChao,KANG HongLiang,YANG Bo,ZHAO Man,CHEN ZhuoXin. Effects of Natural Vegetation Restoration on Characteristics of Soil Aggregate and Soil Erodibility of Gully Heads in Gully Region of the Loess Plateau [J]. Scientia Agricultura Sinica, 2019, 52(16): 2845-2857.
[13] YU Qi,LI Jun,ZHOU Dong,WANG ShuLan,WANG Hao,LI Ao,ZHANG YuanHong,NING Fang,WANG XiaoLi,WANG Rui. Effects of No-Tillage/Subsoiling Rotational Tillage System on Increasing Soil Water Storage and Crop Yield Under Different Precipitation Patterns of Winter Wheat in the Loess Plateau [J]. Scientia Agricultura Sinica, 2019, 52(11): 1870-1882.
[14] MA QingXia,WANG ZhaoHui,HUI XiaoLi,ZHANG Xiang,ZHANG YueYue,HOU SaiBin,HUANG Ning,LUO LaiChao,ZHANG ShiJun,DANG HaiYan. Optimization of Phosphorus Rate and Soil Available Phosphorus Based on Grain Yield and Nutrient Contents in Dryland Wheat Production [J]. Scientia Agricultura Sinica, 2019, 52(1): 73-85.
[15] LI Ting, LI ShiQing, ZHAN Ai, LIU JianLiang. Effects of Film Mulching, Nitrogen Fertilizer, Plant Density and Its Interaction on Nitrogen Accumulation, Translocation and Production Efficiency of Spring Maize on Dryland of Loess Plateau [J]. Scientia Agricultura Sinica, 2018, 51(8): 1504-1517.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!