Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (13): 2524-2533.doi: 10.3864/j.issn.0578-1752.2016.13.008

;

• PLANT PROTECTION • Previous Articles     Next Articles

Analysis of Physiological Characteristics with Response to Bemisia tabaci B Biotype in Different Resistant Varieties of Tomato

CAI Chong, XU Ying-ying, CUI Xu-hong   

  1. College of Life Sciences, China Jiliang University/Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, Hangzhou 310018
  • Received:2015-11-04 Online:2016-07-01 Published:2016-07-01

Abstract: 【Objective】The objective of this study is to clarify the physiological characteristic changes inside the leaves of tomato between the resistance and the susceptible cultivars under the stresses of Bemisia tabaci B biotype, and to provide a reference for the breeding and popularization of tomato varieties resistant to B. tabaci.【Method】 An experiment was carried out under artificial climate conditions. The resistant variety (Hongshengnv, HSN) and the susceptible variety (Huangshengguo, HSG) were infested by B. tabaci B biotype in a no-choice way. The contents variation of the secondary metabolic materials (i.e., sucrose esters, gallic acid, caffeic acid, ferulic acid, benzoic acid, salicylic acid, lignin), the changes of some protective enzymes activities (i.e., POD, CAT, PPO, LOX) and trypsin proteinase inhibitor activity (TI), the value variation of two photosynthetic parameters (i.e., Fv/Fm, Fv/Fo), the changes of cell membrane lipid peroxidation (i.e. H2O2 content, production rate, MDA content and electric conductivity (EC)), were determined all together at the same time.【Result】There were marked differences in the contents of the SE, phenolic acids, lignin, H2O2, and MDA between the HSN and the HSG. Meanwhile, the differences of the activities of TI and protective enzymes, the values of Fv/Fo, were also significant between these two varieties. However, the value differences of these parameters, such as Fv/Fm, production rate, and EC, were not obvious. The two varieties showed different responses to the infestation of B. tabaci B biotype. For example, after 9 h, the contents of sucrose esters, phenolic acids, and lignin as well as the activities of protective enzymes increased all together. However, there were considerable raises as to its extent with comparing HSN to the HSG. Photosynthesis was inhibited in the leaves, confirmed by the observation of reducing of the activities of TI and photosynthetic parameter values. There were reducing to lower intensities with comparing the HSN to the HSG. More active oxygen, MDA and EC found in the latter indicated that HSG cell had been damaged greatly.【Conclusion】There were different responses to the stresses of B. tabaci B biotype as to tomato of different resistant varieties. Higher variation of secondary metabolic materials contents and protective enzymes activities were observed in the resistant variety. Meanwhile, the photosynthetic parameter values, active oxygen content, cell membrane lipid peroxidation, as well as the TI activities changed more dramatically in the susceptible variety.

Key words: Lycopersicon esculentum, resistant varieties, Bemisia tabaci B biotype, stress, physiological characteristics

[1]    陈奕磊, 崔旭红, 蔡冲, 曹凤勤. B型烟粉虱对番茄不同品种光合特征和防御酶活性的影响. 中国农业科学, 2011, 44(17): 3547-3556.
Chen Y L, Cui X H, Cai C, Cao F Q. Effect of Bemisia tabaci (Gennadius) B-biotype on photosynthetic characteristics and activity of defense enzyme in different varieties of tomato. Scientia Agricultura Sinica, 2011, 44(17): 3547-3556. (in Chinese)
[2]    郭建英, 杨洋, 丛林, 陈婷, 万方浩. 不同寄主植物对B型烟粉虱发育适合度的影响. 应用昆虫学报, 2011, 48(1): 43-47.
Guo J Y, Yang Y, Cong L, Chen T, Wan F H. Development fitness of Bemisia tabaci B-biotype feeding on different host plants. Chinese Journal of Applied Entomology,2011, 48(1): 43-47. (in Chinese)
[3]    沈媛, 杜予州, 张莉, 郁伟, 陈军. B型烟粉虱对不同棉花品种的选择性及适生性. 植物保护学报, 2009, 36(4): 335-342.
Shen Y, Du Y Z, Zhang L, Yu W, Chen J. Selectivity and fitness of Bemisia tabaci B-biotype to different varieties of cotton. Acta Phytophylacica Sinica,2009, 36(4): 335-342. (in Chinese)
[4]    赵建伟, 何玉仙, 翁启勇, 吴咚咚. 寄主植物对B型烟粉虱选择行为和生物学参数的影响. 应用生态学报, 2009, 20(9): 2249-2254.
Zhao J W, He Y X, Weng Q Y, Wu D D. Effects of host plants on selection behavior and biological parameters of Bemisia tabaci Gennadius biotype B. Chinese Journal of Applied Ecology, 2009, 20(9): 2249-2254. (in Chinese)
[5]    Mansaray A, Sundufu A J. Effect of three bean species on the development and reproduction of a population of the parasitoid, Encarsia bimaculata, on the whitefly, Bemisia tabaci. Journal of Insect Science, 2010, 10: Article 28.
[6]    Júnior A L B, Campos Z R, Lourenção A L, Campos A R. Adult attractiveness and oviposition preference of Bemisia tabaci (Genn.) (Homoptera: Aleyrodidae) B-biotype in cotton genotypes. Scientia Agricola,2007, 64(2): 147-151.
[7]    庞保平, 高俊平, 周晓榕, 王娟. 南美斑潜蝇寄主选择性与植物次生化合物及叶毛的关系. 昆虫学报, 2006, 49(5): 810-815.
Pang B P, Gao J P, Zhou X R, Wang J. Relationship between host plant preference of Liriomyza huidobrensis (Blanchard) (Diptera: Agromyzidae) and secondary plant compounds and trichomes of host foliage. Acta Entomologica Sinica, 2006, 49(5): 810-815. (in Chinese)
[8]    韩靖玲, 庞保平, 高书晶, 高俊平, 武威. 南美斑潜蝇对不同黄瓜品种的寄主选择性. 昆虫知识, 2005, 42(6): 660-663.
Han J L, Pang B P, Gao S J, Gao J P, Wu W. Host plant selectivity of Liriomyza huidobrensison on different varieties of cucumbers. Chinese Bulletin of Entomology, 2005, 42(6): 660-663. (in Chinese)
[9]    黄保宏, 邹运鼎, 毕守东, 骆鹏飞, 王其连. 朝鲜球坚蚧对8种寄主植物的产卵和取食选择性及其机制. 植物保护学报, 2008, 35(1): 12-18.
Huang B H, Zou Y D, Bi S D, Luo P F, Wang Q L. Selectivity and mechanism of Didesmococcus koreanus Borchs on eight host plants. Acta Phytophylacica Sinica, 2008, 35(1): 12-18. (in Chinese)
[10]   秦秋菊, 高希武. 昆虫取食诱导的植物防御反应. 昆虫学报, 2005, 48(1): 125-134.
Qin Q J, Gao X W. Plant defense responses induced by insect herbivory. Acta Entomologica Sinica, 2005, 48(1): 125-134. (in Chinese)
[11]   Leszczynski B, Warcho J, Niraz S. The influence of phenolic compounds on the preference of winter wheat cultivars by cereal aphids. Insect Science & Application, 1985, 6(2): 157-158.
[12]   陈建明, 俞晓平, 程家安. 植物耐虫性的研究方法. 植物学通报, 2005, 22(4): 449-455.
Chen J M, Yu X P, Cheng J A. Study methods of plant tolerance to insect pests. Chinese Bulletin of Botany, 2005, 22(4): 449-455. (in Chinese)
[13]   宗娜, 阎云花, 王琛柱. 昆虫对植物蛋白酶抑制素的诱导及适应机制. 昆虫学报, 2003, 46(4): 533-539.
Zong N, Yan Y H, Wang C Z. Plant proteinase inhibitor: induction and adaptation in insects. Acta Entomologica Sinica, 2003, 46(4): 533-539. (in Chinese)
[14]   姚忠达, 白建保, 徐佩佩, 程新胜. 茉莉酸甲酯对烟叶表面腺毛密度及蔗糖酯含量的影响. 中国烟草科学, 2011, 32(2): 71-75.
Yao Z D, Bai J B, Xu P P, Cheng X S. Effects of methyl jasmonate induced trichome density and sucrose ester content in tobacco leaves. Chinese Tobacco Science, 2011, 32(2): 71-75. (in Chinese)
[15]   邓文红, 沈应柏, 李镇宇, 蒋湘宁. 虫害与熏蒸对马尾松苗木针叶酚酸含量的影响. 北京林业大学学报, 2010, 32(1): 39-43.
Deng W H, Shen Y B, Li Z Y, Jiang X N. Effects of insect-damaged, MeJA and terpenes treatment on the induction of phenolic acid in needles of Pinus massoniana seedlings. Journal of Beijing Forestry University, 2010, 32(1): 39-43. (in Chinese)
[16]   余朝阁, 黄欣阳, 李天来, 刘志恒. 钙对化学诱抗剂诱导番茄叶片木质素合成的影响. 植物营养与肥料学报, 2013, 19(6): 1445-1449.
Yu C G, Huang X Y, Li T L, Liu Z H. Effect of calcium on lignin synthesis induced by chemical elicitors. Journal of Plant Nutrition and Fertilizer, 2013, 19(6): 1445-1449. (in Chinese)
[17]   Uchida A, Jagendorf A T, Hibino T, Takabe T, Takabe T. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Science, 2002, 163: 515-523.
[18]   Health R L, Packer L. Photoperoxidation in isolated chloroplasts.  I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 1968, 125: 189-198.
[19]   王爱国, 罗广华. 植物的超氧物自由基与羟胺反应的定量关系. 植物生理学通讯, 1990, 26(6): 55-57.
Wang A G, Luo G H. Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants. Plant Physiology Communication, 1990, 26(6): 55-57. (in Chinese)
[20]   蔡冲, 陈昆松, 贾惠娟, 张玉, 胡亚东, 丁建国. 乙酰水杨酸对采后玉露桃果实成熟衰老进程和乙烯生物合成的影响. 果树学报, 2004, 21(1): 1-4.
Cai C, Chen K S, Jia H J, Zhang Y, Hu Y D, Ding J G. Effects of acetylsalicylic acid on the postharvest senescence process and ethylene biosynthesis of yulu peach fruit. Journal of Fruit Science, 2004, 21(1): 1-4. (in Chinese)
[21]   Sarmento R A, Lemos F, Bleeker P M, Schuurink R C, Pallini A, Oliveira M G, Lima E R, Kant M, Sabelis M W, Janssen A. A herbivore that manipulates plant defence. Ecology Letters, 2011, 14(3): 229-236.
[22] Kant M R, Ament K, Sabelis M W, Haring M A, Schuurink R C. Differential timing of spider mite-induced direct and indirect defenses in tomato plants. Plant Physiology, 2004, 135(1): 483-495.
[23]   Kakade M L, Rackis J J, Mcghee J E, Puski G. Determination of trypsin-inhibitor activity of soy products-collaborative analysis of an improved procedure. Cereal Chemistry, 1974, 51: 376-382.
[24]   Bradford M M. A rapid and sensitive method for the quantiation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72: 248-254.
[25]   Kennedy G G. Tomato, pests, parasitoids, and predators: tritrophic interactions involving the genus Lycopersicon. Annual Review of Entomology, 2003, 48(1): 51-72.
[26]   Sánchez-Peña P, Oyama K, Núñez-Farfán J, Fornoni J, Hernandez-Verdugo S, Marquez-Guzman J, Garzón- Tiznado J A. Sources of resistance to whitefly (Bemisia spp.) in wild populations of Solanum lycopersicum var. cerasiforme (Dunal) spooner G.J. Anderson et R.K. Jansen in Northwestern Mexico. Genetic Resources and Crop Evolution, 2006, 53(4): 711-719.
[27]   Schilmiller A L, Last R L, Pichersky E. Harnessing plant trichome biochemistry for the production of useful compounds. The Plant Journal, 2008, 54(4): 702-711.
[28]   Kang J H, Shi F, Jones A D, Marks M D, Howe G A. Distortion of trichome morphology by the hairless mutation of tomato affects leaf surface chemistry. Journal of Experimental Botany, 2010, 61(4): 1053-1064.
[29]   Le Roux V, Dugravot S, Campan E, Dubois F, Vincent C, Giordanengo P. Wild Solanum resistance to aphids: antixenosis or antibiosis? Journal of Economic Entomology, 2008, 101(2): 584-591.
[30]   Simmons A T, Gurr G M. Trichomes of lycopersicon species and their hybrids: effects on pests and natural enemies. Agricultural and Forest Entomology, 2005, 7(4): 265-276.
[31]   Neal J J, Tingey W M, Steffens J C. Sucrose esters of carboxylic acids in glandular trichomes of Solanum berthaultii deter settling and probing by green peach aphid. Journal of Chemical Ecology, 1990, 16(2): 487-497.
[32]   李延科, 张淑芬, 杨锦宗. 蔗糖酯活性杀虫剂的研究进展. 现代化工, 2002, 22(增刊): 47-50.
Li Y K, Zhang S F, Yang J Z. Advances in insecticidal sucrose esters. Modern Chemical Industry, 2002, 22(Suppl.): 47-50. (in Chinese)
[33]   Buta G J, Lusby W R, Neal J W, Waters R M, Pittarelli G W. Sucrose esters from Nicotiana gossei active against the greenhouse whitefly Trialeuroides vaporarorium. Phytochemistry, 1993, 32(4): 859-864.
[34]   Alon M, Malka O, Eakteiman G, Elbaz M, Ben Zvi M M, Vainstein A, Morin S. Activation of the phenylpropanoid pathway in Nicotiana tabacum improves the performance of the whitefly Bemisia tabaci via reduced jasmonate signaling. PloS One, 2013, 8(10): e76619.
[35]   胡留成, 崔巍, 汪霞, 娄永根. 斜纹夜蛾幼虫诱导的油菜抗虫性及其与茉莉酸信号途径的关系. 昆虫学报, 2010, 53(9): 1001-1008.
Hu L C, Cui W, Wang X, Lou Y G. Herbivore resistance induced by Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) and its relation to the JA signaling pathway in Chinese cabbage (Brassica campestris L.). Acta Entomologica Sinica, 2010, 53(9): 1001-1008. (in Chinese)
[36]   Makoi J H J R, Ndakidemi P A. Biological, ecological and agronomic significance of plant phenolic compounds in rhizosphere of the symbiotic legumes. African Journal of Biotechnology, 2007, 6(12): 1358-1368.
[37]   Classen D, Arnason J T, Serratos J A, Lambert J D H, Nozzolillo C, Philogène B J R. Correlation of phenolic acid content of maize to resistance to Sitophilus zeamais, the maize weevil, in CIMMYT’s collections. Journal of Chemical Ecology, 1990, 16(2): 301-315.
[38]   胡远, 韩颖, 赵欣, 杨晓琴, 黄永, 罗盘, 蔡青年. 小麦不同抗蚜品种中3种酚酸类化合物的含量变化及其作用评价. 应用与环境生物学报, 2008, 14(6): 753-756.
Hu Y, Han Y, Zhao X, Yang X Q, Huang Y, Luo P, Cai Q N. Dynamics and effect evaluation of three phenolic compound contents in wheat varieties with different resistances to Sitobion avenae. Chinese Journal of Applied and Environmental Biology, 2008, 14(6): 753-756. (in Chinese)
[39]   Dixon R A, Paiva N L. Stress-induced phenylpropanoid metabolism. The Plant Cell, 1995, 7: 1085-1097.
[40]   任琴, 胡永建, 李镇宇, 金幼菊. 受害马尾松木质素含量及其过氧化物酶活性. 生态学报, 2007, 27(11): 4895-4899.
Ren Q, Hu Y J, Li Z Y, Jin Y J. Content variation of lignin and peroxidase activities from damaged pinus massioniana. Acta Ecologica Sinica, 2007, 27(11): 4895-4899. (in Chinese)
[41]   Macedo M L R, Mello G C, Freire M G M, Novello J    C, Marangoni S, de Matos D G G. Effect of a trypsin  inhibitor form Dimorphandra mollis seeds on the development of Callosobruchus maculates. Plant Physiology and Biochemistry, 2002, 40: 891-898.
[42]   Tamhane V A, Giri A P, Sainani M N, Gupta V S. Diverse forms of PinII family proteinase inhibitors from Capsicum annuum adversely affect the growth and development of Helicoverpa armigera. Gene, 2007, 403: 29-38.
[43]   Ryan C A. Protease inhibitor in plants: genes for improving defenses against pest and pathogens. Annual Review of Phytopathology, 1990, 28: 425-449.
[1] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[2] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[3] MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202.
[4] SUI XinYi,ZHAO XiaoGang,CHEN PengYu,LI YaLing,WEN XiangZhen. Cloning of Alternative Splice Variants of LsPHYB in Lettuce and Its Expression Patterns Under Heat Stress [J]. Scientia Agricultura Sinica, 2022, 55(9): 1822-1830.
[5] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[6] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[7] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[8] HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980.
[9] LI Ning,LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen,SUN DaiZhen. Identification of Wheat Circular RNAs Responsive to Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(23): 4583-4599.
[10] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[11] REN Yifang,YANG ZhangPing,LING Fenghua,XIAO LiangWen. Risk Zoning of Heat Stress Risk Zoning of Dairy Cows in Jiangsu Province and Its Characteristics Affected by Climate Change [J]. Scientia Agricultura Sinica, 2022, 55(22): 4513-4525.
[12] XU Ke,FAN ZhiLong,YIN Wen,ZHAO Cai,YU AiZhong,HU FaLong,CHAI Qiang. Coupling Effects of N-fertilizer Postponing Application and Intercropping on Maize Photosynthetic Physiological Characteristics [J]. Scientia Agricultura Sinica, 2022, 55(21): 4131-4143.
[13] LI Gang,BAI Yang,JIA ZiYing,MA ZhengYang,ZHANG XiangChi,LI ChunYan,LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[14] SU Qian,DU WenXuan,MA Lin,XIA YaYing,LI Xue,QI Zhi,PANG YongZhen. Cloning and Functional Analyses of MsCIPK2 in Medicago sativa [J]. Scientia Agricultura Sinica, 2022, 55(19): 3697-3709.
[15] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!