Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (4): 717-726.doi: 10.3864/j.issn.0578-1752.2016.04.011

• STORAGE·FRESH-KEEPING·PROCESSING • Previous Articles     Next Articles

The Correlation Analysis Between Quality and Creep Property of ‘Fuji’ Apple

FANG Yuan, ZHAO Wu-qi, ZHANG Qing-an, GUO Yu-rong   

  1. College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119
  • Received:2015-07-09 Online:2016-02-16 Published:2016-02-16

Abstract: 【Objective】 The aim of this work was to study the feasibility of predicting the nutritional compositions and texture properties of ‘Fuji’ apples by analyzing the correlation between creep property of whole apple and texture, nutritional composition, respectively. 【Method】 The creep property, texture profile analysis and nutrition components of ‘Fuji’ apples in different storage time were measured in order to define the proper creep model and to explore the correlation between the indexes of texture profile analysis, nutrient components and the variables of creep property. Prediction models for ‘Fuji’ apples quality were constructed and verified based on the variables of creep property. 【Result】 The Burger’s model satisfactorily described the creep behavior of intact ‘Fuji’ apples and its coefficient of determination reached 0.982. Soluble solid content (SSC), titratable acidity, vitamin C content, hardness, cohesiveness, chewiness and resilience were significantly positively correlated (r=0.56-0.94) with the delayed elasticity coefficient E2 and the viscosity coefficient η1, respectively. Highly negative significant correlation (r=-0.40, r=-0.45) showed between soluble solid content, titratable acidity and viscosity coefficient η2, and vitamin C content had a significant negative correlation (r=-0.34) with viscosity coefficient η2. But there was no significant correlation between the adhesiveness, springiness and the variables of creep property. The correlation coefficients of models for predicting the soluble solid content, titratable acidity, vitamin C content, hardness, cohesiveness, chewiness and resilience of apple were 0.939, 0.922, 0.881, 0.917, 0.594, 0.857, and 0.584, respectively. Moreover all of the models have statistical significance (P<0.05). There was no significant difference between the predicted values of models and the measured data, and the correlation coefficients were 0.929, 0.917, 0.875, 0.920, 0.628, 0.824, and 0.633, respectively. 【Conclusion】 The variables of creep property showed close correlation with the parameters of texture profile analysis and the data of nutritional ingredients. The measured data were well fitted to the SSC prediction models, titratable acidity, vitamin C content, hardness and chewiness, which suggest that the creep property can be proposed for the reliable prediction of ‘Fuji’ apples quality.

Key words: ‘Fuji&rsquo, apple, creep, texture, nutritional composition, correlation

[1]    聂继云, 李志霞, 李海飞, 李静, 王昆, 毋永龙, 徐国锋, 闫震, 吴锡, 覃兴. 苹果理化品质评价指标研究. 中国农业科学, 2012, 45(14): 2895-2903.
Nie J Y, Li Z X, Li H F, LI J, Wang K, Wu Y L, Xu G F, Yan Z, Wu X, Qin X. Evaluation indices for apple physicochemical quality. Scientia Agricultura Sinica, 2012, 45(14): 2895-2903. (in Chinese)
[2]    杨玲, 肖龙, 王强, 张彩霞, 丛佩华, 田义. 质地多面分析(TPA)法测定苹果果肉质地特性. 果树学报, 2014, 31(5): 977-985.
Yang L, Xiao L, Wang Q, Zhang C X, Cong P H, Tian Y, Study on texture properties of apple flesh by using texture profile analysis. Journal of Fruit Science, 2014, 31(5): 977-985. (in Chinese)
[3]    Barritt B H. The apple world 2003-present situation and developments for produces and consumers. Compact Fruit Tree, 2003, 36(1): 15-18.
[4]    Aprikian O, Levrat-Verny M, Besson C, Busserolles J, Remesy C, Demigne C. Apple favourably affects parameters of cholesterol metabolism and of anti-oxidative protection In cholesterol fed-rats. Food Chemistry, 2001, 75: 445-452.
[5]    Carbonell L, Izquierdo L, Carbonell I, Costell E. Segmentation of food consumers according to their correlations with sensory attributes projected on preference spaces. Food Quality and Preference, 2008, 19: 71-78.
[6]    李小昱, 汪小芳, 王为, 张军. 基于机械特性BP神经网络的苹果贮藏品质预测. 农业工程学报, 2007, 23(5): 150-153.
Li X U, Wang X F, Wang W, Zhang J. Estimation of apple storage quality properties based on the mechanical properties with BP neural network. Transactions of the CSAE, 2007, 23(5): 150-153. (in Chinese)
[7]    李云飞, 殷涌光, 徐树来. 食品物性学. 北京: 中国轻工业出版社, 2009: 2-39.
Li Y F, Yin Y G, Xu S L. Physical Properties of Foods. Beijing: China Light Industry Press, 2009: 2-39. (in Chinese)
[8]    Fischer P, Pollard M, Emi P, Marti I, Padar S. Rheological approaches to food systems. Compets Rendus Physique, 2009, 10(8): 740-750.
[9]    李小昱, 朱俊平, 王为, 王耀忠. 苹果蠕变特性与静载损伤机理的研究. 西北农林科技大学学报: 自然科学版, 1997, 25(6): 67-71.
Li X Y, Zhu J P, Wang W, Wang Y Z. Study on creep properties of apple and static damage mechanism. Journal of Northwest A&F University: Natural Science Edition, 1997, 25(6): 67-71. (in Chinese)
[10]   李小昱, 王为, 孙骊, 冯国华. 苹果流变特性的研究Ⅰ. 蠕变特性的试验与研究. 西北农林科技大学学报: 自然科学版, 1991, 19(3): 70-74.
Li X Y, Wang W, Sun L, Feng G H. A study on rheological characteristics of appleⅠ. testing creep properties. Journal of Northwest A & F University: Natural Science Edition, 1991, 19(3): 70-74. (in Chinese)
[11]   孙骊, 鞠建伟, 吴竞爽, 仇农学. 苹果贮存的接触面积和蠕变特性. 西北农业大学学报, 1996, 24(1): 104-106.
Sun L, Ju J W, Wu J S, Qiu N X. The contact area and the creep properties of apple storage. The Journal of Northwest Agriculture University, 1996, 24(1): 104-106. (in Chinese)
[12]   陆秋君, 王俊, 黄会明, 周莹. 番茄整果在常温贮藏中的蠕变特性试验. 浙江大学学报: 农业与生命科学版, 2006, 02: 168-172.
Lu Q J, Wang J, Huang H M, Zhou Y. Study on the creep property of intact tomatoes stored at normal temperature. Journal of Zhejiang University: Agriculture & Life Science edition, 2006, 32(2): 168-172. (in Chinese)
[13]   Ballabio D, Consonni V, Costa F. Relationships between apple texture and rheological parameters by means of multivariate analysis. Chemometrics and Intelligent Laboratory Systems, 2012, 111(1): 28-33.
[14]   王芳. 西瓜压缩及蠕变特性的研究[D]. 呼和浩特: 内蒙古农业大学, 2008.
Wang F. Study on compression and creep characteristics of watermelon. Hohhot: Inner Mongolia Agricultural University, 2008. (in Chinese)
[15]   杨玲, 张彩霞, 康国栋, 田义, 丛佩华. ‘华红’苹果果肉的流变特性及其主成分分析. 中国农业科学, 2015, 48(12): 2417-2427.
Yang L, Zhang C, Kang G D, Tian Y, Cong P H. Rheologic properties of ‘Huahong’ apple pulp and their principal component analysis. Scientia Agricultura Sinica, 2015, 48(12): 2417-2427. (in Chinese)
[16]   杨晓清, 王春光. 果品静载流变特性的研究进展. 农业工程学报, 2005, 21(9): 178-182.
Yang X Q, Wang C G. Review of research advances in rheological properties of fruits under static loading. Transactions of the CSAE, 2005, 21(9): 178-182. (in Chinese)
[17]   赵学笃, 陈元生, 张守勤. 农业物料学. 北京: 机械工业出版社, 1987: 19-54.
Zhao X D, Chen Y S, Zhang S Q. Agricultural Material Science. Beijing: China Machine Press, 1987: 19-54. (in Chinese)
[18]   中华人民共和国农业部. 中华人民共和国农业行业标准, 苹果品质指标评价规范(NY/T 2316-2013), 2013.
Ministry of Agriculture of the People’s Republic of China. Agricultural industry standard of the people's Republic of China, Evaluation specification for quality indexes of apple, NY/T 2316-2013, 2013. (in Chinese)
[19]   国家质量监督检验检疫总局, 国家标准化委员会. 中华人民共和国国家标准, 食品中总酸的测定(GB/T 12456-2008), 2008.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Committee of China. The national standard of the People’s Republic of China. Determination of total acid in food, GB/T 12456-2008, 2008. (in Chinese)
[20]   国家标准化委员会. 中华人民共和国国家标准, 水果、蔬菜维生素C含量测定法(2,6-二氯靛酚滴定法) (GB/T 6195-1986), 1986.
Standardization Committee of China. The national standard of the People’s Republic of China. Determination of vitamin C in vegetables and fruits (2,6-dichloro-indophenol titration method), GB/T 6195-1986, 1986. (in Chinese)
[21]   Harker F R, Maindonald J, Murray S H, Gunson F A, Hallett I C, Walker S B. Sensory interpretation of instrumental measurements 1: texture of apple fruit. Postharvest Biology and Technology, 2002, 24(3): 225-239.
[22]   Costa F, Cappellin L, Longhi S, Guerra W, Magnago P, Porro D, Soukoulis C, Salvi S, Velasco R, Biasioli F, Gasperi F. Assessment of apple (Malus×domestica Borkh.) fruit texture by a combined acoustic–mechanical profiling strategy. Postharvest Biology and Technology, 2011. 61(1): 21-28.
[23]   孟庆君. 菊芋及其腌渍品的流变特性和质地评价研究[D]. 南京: 江苏大学, 2007.
Wu Q J. Studies on rheological properties and texture evaluation of jerusalem artichoke and pickled jerusalem artichoke tuber[D]. Nanjing: Jiangshu University, 2007. (in Chinese)
[24]   藏楠. 马铃薯蠕变特性的研究与仿真[D]. 呼和浩特: 内蒙古农业大学, 2006.
Zang N. Study and simulation on potato creep behavior[D]. Hohhot: Inner Mongolia Agricultural University, 2006. (in Chinese)
[25]   聂毓琴, 马洪顺, 韩志武. 薇菜压缩应力松弛与蠕变力学特性研究. 农业机械学报, 2005, 36(4): 89-91.
Nie Y Q, Ma H S, Han Z W. Research on Stress Relaxation and Creep Mechanics Behaviors of Osmunda Cinnamomea. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(4): 89-91. (in Chinese)
[26]   杨晓清, 王春光. 河套蜜瓜机械特性与静载损伤关系的研究. 农业工程学报, 2008, 24(3): 31-37.
Yang X Q, Wang C G. Creep properties of Hetao muskmelon under static loading. Transactions of the CSAE, 2008, 24(3): 202-207. (in Chinese)
[27]   潘晓倩, 申琳, 生吉萍. 苹果采后软化过程中糖类物质代谢的研究进展. 中国食物与营养, 2011, 11: 29-32.
Pan X Q, Shen L, Sheng J P. Research progress of sugar metabolism in the process of post-harvested apple softening. Food and Nutrition in China, 2011, 11: 29-32. (in Chinese)
[28]   Fischer R L, Bennett A B. Role of Cell-Wall Hydrolases in Fruit Ripening. Annual Review of Plant Physiolgy and Plant Molecular Biology, 1991, 42: 675-703.
[29]   Kilcast D. Texture in Food. Volume 2: Solid Foods. Cambridge: Woodhead Publishing Limited, 2004.
[30]   李里特. 食品物性学. 北京: 中国农业出版社, 2003: 235-241.
Li L T. Physical Properties of Foods. Beijing: China Agriculture Press, 2003: 235-241. (in Chinese)
[31]   潘秀娟, 屠康. 质构仪质地多面分析(TPA)方法对苹果采后质地变化的检测. 农业工程学报, 2005, 21( 3): 166-170.
Pan X J, Tu K. Comparison of texture properties of post-harvested apples using texture profile analysis. Transactions of the CSAE, 2005, 21(3): 166-170. ( in Chinese)
[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[3] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[4] LU Xiang, GAO Yuan, WANG Kun, SUN SiMiao, LI LianWen, LI HaiFei, LI QingShan, FENG JianRong, WANG DaJiang. Analysis of Aroma Characteristics in Different Cultivated Apple Strains [J]. Scientia Agricultura Sinica, 2022, 55(3): 543-557.
[5] XIANG YuTing, WANG XiaoLong, HU XinZhong, REN ChangZhong, GUO LaiChun, LI Lu. Lipase Activity Difference of Oat Varieties and Prediction of Low Lipase Activity Variety with High Quality [J]. Scientia Agricultura Sinica, 2022, 55(21): 4104-4117.
[6] GAO XiaoQin,NIE JiYun,CHEN QiuSheng,HAN LingXi,LIU Lu,CHENG Yang,LIU MingYu. Geographical Origin Tracing of Fuji Apple Based on Mineral Element Fingerprinting Technology [J]. Scientia Agricultura Sinica, 2022, 55(21): 4252-4264.
[7] DONG MingMing,ZHAO FanFan,GE JianJun,ZHAO JunLiang,WANG Dan,XU Lei,ZHANG MengHua,ZHONG LiWei,HUANG XiXia,WANG YaChun. Heritability Estimation and Correlation Analysis of Longevity and Milk Yield of Holstein Cattle in Xinjiang Region [J]. Scientia Agricultura Sinica, 2022, 55(21): 4294-4303.
[8] LIU Feng,JIANG JiaLi,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,ZHONG YingXin,DAI TingBo,CAO WeiXing,JIANG Dong. Analysis of American Soft Wheat Grain Quality and Its Suitability Evaluation According to Chinese Weak Gluten Wheat Standard [J]. Scientia Agricultura Sinica, 2022, 55(19): 3723-3737.
[9] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[10] JIANG XiaoTing,HUANG GaoXiang,XIONG XiaoYing,HUANG YunPei,DING ChangFeng,DING MingJun,WANG Peng. Effects of Seedlings Enriched with Zinc on Cadmium Accumulations and Related Transporter Genes Expressions in Different Rice Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(17): 3267-3277.
[11] SHEN Zhe,ZHANG RenLian,LONG HuaiYu,XU AiGuo. Research on Spatial Distribution of Soil Texture in Southern Ningxia Based on Machine Learning [J]. Scientia Agricultura Sinica, 2022, 55(15): 2961-2972.
[12] XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency [J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612.
[13] LI WenLi, YUAN JianLong, DUAN HuiMin, JIANG TongHui, LIU LingLing, ZHANG Feng. Comprehensive Evaluation of Potato Tuber Texture [J]. Scientia Agricultura Sinica, 2022, 55(12): 2278-2293.
[14] FENG JunJie,ZHAO WenDa,ZHANG XinQuan,LIU YingJie,YUAN Shuai,DONG ZhiXiao,XIONG Yi,XIONG YanLi,LING Yao,MA Xiao. DUS Traits Variation Analysis and Application of Standard Varieties of Lolium multiflorum Introduced from Japan [J]. Scientia Agricultura Sinica, 2022, 55(12): 2447-2460.
[15] ZHANG YuanYuan,LIU WenJing,ZHANG BinBin,CAI ZhiXiang,SONG HongFeng,YU MingLiang,MA RuiJuan. Characterization of the Lactone Volatile Compounds in Different Types of Peach (Prunus persica L.) Fruit and Evaluations of Their Contributions to Fruit Overall Aroma [J]. Scientia Agricultura Sinica, 2022, 55(10): 2026-2037.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!