Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (1): 27-34.doi: 10.3864/j.issn.0578-1752.2016.01.003
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
SU Wen-jin1, ZHAO Ning2, LEI Jian1, WANG Lian-jun1, CHAI Sha-sha1, YANG Xin-sun1
[1] 陆漱韵, 刘庆昌, 李惟基. 甘薯育种学. 北京: 中国农业出版社, 1998: 74.
Lu S Y, Liu Q C, Li W J. Sweetpotato Breeding. Beijing: China Agriculture Press, 1998: 74. (in Chinese)
[2] 夏春丽, 于永利, 张小燕. 甘薯的营养保健作用及开发利用. 食品工程, 2008(3): 28-31.
Xia C L, Yu Y L, Zhang X Y. Nutrition and utilization of sweetpotato. Food Engineering, 2008(3): 28-31. (in Chinese)
[3] Buteler M I, Jarret R L, Labonte D R. Sequence characterization of microsatellites in diploid and polyploid Ipomoea. Theoretical and Applied Genetics, 1999, 99(1/2): 123-132.
[4] Cervantes-Flores J C, Sosinski B, Pecota K V, Mwanga R O M, Catignani G L, Truong V D, Watkins R H, Ulmer M R, Yencho G C. Identification of QTL for dry-matter, starch, and β-carotene content in sweetpotato.Molecular Breeding, 2011, 28(2): 201-216.
[5] Elameen A, Fjellheim S, Larsen A, Rognli O, Sundheim L, Msolla S, Masumba E, Mtunda K, Klemsdal S. Analysis of genetic diversity in a sweetpotato germplasm collection from tanzania as revealed by AFLP.Genetic Resources and Crop Evolution, 2008, 55(3): 397-408.
[6] Liu D G, Zhao N, Zhai H, Yu X X, Jie Q, Wang L J, He S Z, Liu Q C. AFLP fingerprinting and genetic diversity of main sweetpotato varieties in China.Journal of Integrative Agriculture, 2012, 11(9): 1424-1433.
[7] Zhang D P, Cervantes J, Huamán Z, Carey E, Ghislain M. Assessing genetic diversity of sweet potato cultivars from tropical America using AFLP. Genetic Resources and Crop Evolution, 2000, 47(6): 659-665.
[8] Gichuki S T, Berenyi M, Zhang D P, Hermann M, Schmidt J, Glössl J, Burg K. Genetic diversity in sweetpotato in relationship to geographic sources as assessed with RAPD markers. Genetic Resources and Crop Evolution, 2003, 50(4): 429-437.
[9] Jarret R L, Austin D F. Genetic diversity and systematic relationships in sweetpotato and related species as revealed by RAPD analysis.Genetic Resources and Crop Evolution, 1994, 41(3): 165-173.
[10] Zhao N, Yu X X, Jie Q, Li H, Li H, Hu J, Zhai H, He S Z, Liu Q C. A genetic linkage map based on AFLP and SSR markers and mapping of QTL for dry-matter content in sweetpotato. Molecular Breeding, 2013, 32(4): 807-820.
[11] Fajardo D S, Bonte D R L, Jarret R L. Identifying and selecting for genetic diversity in papua new guinea sweetpotato. Genetic Resources and Crop Evolution, 2002, 49(5): 463-470.
[12] 李强, 刘庆昌, 翟红, 马代夫, 王欣, 李雪琴, 王玉萍. 中国甘薯主要亲本遗传多样性的ISSR分析. 作物学报, 2008, 34(6): 972-977.
Li Q, Liu Q C, Zhai H, Ma D F, Wang X, Li X Q, Wang Y P. Genetic diversity in main parents of sweetpotato in China as revealed by ISSR markers. Acta Agronomica Sinica, 2008, 34(6): 972-977. (in Chinese)
[13] Jarret R L, Bowen N. Simple sequence repeats (SSRs) for sweetpotato germplasm characterization. Plant Genetic Resources Newsletter 1994, 100: 9-11.,
[14] Wang Z Y, Li J, Luo Z X, Huang L F, Chen X L, Fang B P, Li Y J, Chen J Y, Zhang X J. Characterization and development of est-derived SSR markers in cultivated sweetpotato. BMC Plant Biology, 2011, 11(1): 1-9.
[15] Yang X S, Su W J, Wang L J, Lei J, Chai S S, Liu Q C. Molecular diversity and genetic structure of 380 sweetpotato accessions as revealed by SSR markers.Journal of Integrative Agriculture, 2015(4): 633-641.
[16] Zhang Y X, Wang L H, Xin H G, Li D H, Ma C X, Ding X, Hong W G, Zhang X R. Construction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing.BMC Plant Biology,2013, 13(1): 1-12.
[17] Sun X W, Liu D Y, Zhang X F, Li W B, Liu H, Hong W G, Jiang C B, Guan N, Ma C X, Zeng H P. SLAF-seq: An efficient method of large-scale de novo snp discovery and genotyping using high-throughput sequencing.Plos One, 2013, 8(3): e58700.
[18] Xun X, Pan S, Cheng S, Zhang B, Mu D, Ni P, Zhang G, Yang S, Li R, Wang J, Orjeda G, Guzman F, Torres M, Lozano R, Ponce O, Martinez D, De la Cruz G, Chakrabarti S K, Patil V U, Skryabin K G, Kuznetsov B B, Ravin N V, Kolganova T V, Beletsky A V, Mardanov A V, Di Genova A, Bolser D M, Martin D M, Li G, Yang Y, Kuang H, Hu Q, Xiong X, Bishop G J, Sagredo B, Mejía N, Zagorski W, Gromadka R, Gawor J, Szczesny P, Huang S, Zhang Z, Liang C, He J, Li Y, He Y, Xu J, Zhang Y, Xie B, Du Y, Qu D, Bonierbale M, Ghislain M, Herrera M R, Giuliano G, Pietrella M, Perrotta G, Facella P, O'Brien K, Feingold S E, Barreiro L E, Massa G A, Diambra L, Whitty B R, Vaillancourt B,Lin H, Massa A N, Geoffroy M, Lundback S, DellaPenna D, Buell C R, Sharma S K, Marshall D F, Waugh R, Bryan G J, Destefanis M, Nagy I, Milbourne D, Thomson S J, Fiers M, Jacobs J M, Nielsen K L, Sønderkær M, Iovene M, Torres G A, Jiang J, Veilleux R E, Bachem C W, de Boer J, Borm T, Kloosterman B, van Eck H, Datema E, Hekkert B T, Goverse A, van Ham R C, Visser R G. Genome sequence and analysis of the tuber crop potato. Nature, 2011, 475(7355): 189-195.
[19] Wei Q Z, Wang Y Z, Qin X D, Zhang Y X, Zhang Z T, Wang J, Li J, Lou Q F, Chen J F. An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragment (SLAF) sequencing. BMC Genomics, 2014, 15: 1158.
[20] Li B, Tian L, Zhang J Y, Huang L, Han F X, Yan S R, Wang L Z, Zheng H K, Sun J M. Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing (SLAF-seq) and its application to QTL analysis for isoflavone content in Glycine max. BMC Genomics, 2014, 15: 1086.
[21] Zhang Y X, Wang L H, Xin H G, Li D H, Ma C X, Ding X, Hong W G, Zhang X R. Construction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Plant Biology, 2013, 13(17): 2636-2646.
[22] Huang S, Ding J, Deng D, Tang W, Sun H, Liu D, Zhang L, Niu X, Zhang X, Meng M, Yu J, Liu J, Han Y, Shi W, Zhang D, Cao S, Wei Z, Cui Y, Xia Y, Zeng H, Bao K, Lin L, Min Y, Zhang H, Miao M, Tang X, Zhu Y, Sui Y, Li G, Sun H, Yue J, Sun J, Liu F, Zhou L, Lei L, Zheng X, Liu M, Huang L, Song J, Xu C, Li J, Ye K, Zhong S, Lu B R, He G, Xiao F, Wang H L, Zheng H, Fei Z, Liu Y. Draft genome of the kiwifruit actinidia chinensis. Nature Communications, 2013, 4: 2640.
[23] 陈士强, 秦树文, 黄泽峰, 戴毅, 张璐璐, 高营营, 高勇, 陈建民. 基于SLAF-seq技术开发长穗偃麦草染色体特异分子标记. 作物学报, 2013, 39(4): 727-734.
Chen S Q, Qin S W, Huang Z F, Dai Y, Zhang L L, Gao Y Y, Gao Y, Chen J M. Development of specific molecular markers for Thinopyrum elongatum chromosome using SLAF-seq technique. Acta Agronomica Sinica, 2013, 39(4): 727-734. (in Chinese)
[24] Chen W, Yao J B, Chu L, Li Y, Guo X M, Zhang Y S. The development of specific SNP markers for chromosome 14 in cotton using next-generation sequencing. Plant Breeding, 2014, 133(2): 256-261.
[25] Zhang J, Zhang J P, Liu W H, Han H M, Lu Y Q, Yang X M, Li X Q, Li L H. Introgression of Agropyron cristatum 6P chromosome segment into common wheat for enhanced thousand-grain weight and spike length. Theoretical and Applied Genetics, 2015, 128(9): 1827-1837.
[26] Zhu Y F, Yin Y F, Yang K Q, Li J H, Sang Y L, Huang L, Fan S. Construction of a high-density genetic map using specific length amplified fragment markers and identification of a quantitative trait locus for anthracnose resistance in walnut (Juglans regia L.). BMC Genomics, 2015, 16(1): 1-13.
[27] Cai C, Cheng F Y, Wu J, Zhong Y, Liu G. The first high-density genetic map construction in Tree Peony (Paeonia Sect. Moutan) using Genotyping by Specific-Locus Amplified Fragment Sequencing. Plos One, 2015, 10(5): e0128584.
[28] Ma J Q, Huang L, Ma C L, Jin J Q, Li C F, Wang R K, Zheng H K, Yao M Z, Chen L. Large-scale SNP discovery and genotyping for constructing a high-density genetic map of tea plant using Specific- Locus Amplified Fragment Sequencing (SLAF-seq). Plos One, 2015, 10(6): e0128798. |
[1] | WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718. |
[2] | ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582. |
[3] | TU YunJie,JI GaiGe,ZHANG Ming,LIU YiFan,JU XiaoJun,SHAN YanJu,ZOU JianMin,LI Hua,CHEN ZhiWu,SHU JingTing. Screening of Wnt3a SNPs and Its Association Analysis with Skin Feather Follicle Density Traits in Chicken [J]. Scientia Agricultura Sinica, 2022, 55(23): 4769-4780. |
[4] | CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840. |
[5] | LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483. |
[6] | MA XueMeng,YU ChengMin,SAI XiaoLing,LIU Zhen,SANG HaiYang,CUI BaiMing. PSORA: A Strategy Based on High-Throughput Sequence for Analysis of T-DNA Insertion Sites [J]. Scientia Agricultura Sinica, 2022, 55(15): 2875-2882. |
[7] | DUAN YaRu,GAO MeiLing,GUO Yu,LIANG XiaoXue,LIU XiuJie,XU HongGuo,LIU JiXiu,GAO Yue,LUAN Feishi. Map-Based Cloning and Molecular Marker Development of Watermelon Fruit Shape Gene [J]. Scientia Agricultura Sinica, 2022, 55(14): 2812-2824. |
[8] | FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091. |
[9] | FAN WenJing,LIU Ming,ZHAO Peng,ZHANG QiangQiang,WU DeXiang,GUO PengYu,ZHU XiaoYa,JIN Rong,ZHANG AiJun,TANG ZhongHou. Screening of Sweetpotato Varieties Tolerant to Low Nitrogen at Seedling Stage and Evaluation of Different Nitrogen Efficiencies [J]. Scientia Agricultura Sinica, 2022, 55(10): 1891-1902. |
[10] | PeiPei ZHU,YiJia LUO,Wen XIANG,MingLei ZHANG,JianXia ZHANG. Rescue and Molecular Marker Assisted-Selection of the Cold-Resistant Seedless Grape Hybrid Embryo [J]. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228. |
[11] | XI Ling, WANG YuQi, YANG Xiu, ZHU Wei, CHEN GuoYue, WANG Yi, QIN Peng, ZHOU YongHong, KANG HouYang. Evaluation of Resistance to Stripe Rust and Molecular Detection of Resistance Gene(s) in 243 Common Wheat Landraces from the Yunnan Province [J]. Scientia Agricultura Sinica, 2021, 54(4): 684-695. |
[12] | DU Yu,ZHU ZhiWei,WANG Jie,WANG XiuNa,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,CHEN HuaZhi,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Construction and Annotation of Ascosphaera apis Full-Length Transcriptome Utilizing Nanopore Third-Generation Long-Read Sequencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(4): 864-876. |
[13] | WANG Xin,LI Qiang,CAO QingHe,MA DaiFu. Current Status and Future Prospective of Sweetpotato Production and Seed Industry in China [J]. Scientia Agricultura Sinica, 2021, 54(3): 483-492. |
[14] | CHEN DouDou, GUAN LiPing, HE LiangLiang, SONG YinHua, ZHANG Peng, LIU SanJun. Commonality Identification of Molecular Markers Linked to Seedless Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(22): 4880-4893. |
[15] | SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584. |
|