Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (18): 3666-3675.doi: 10.3864/j.issn.0578-1752.2015.18.010

• HORTICULTURE • Previous Articles     Next Articles

Genetic Analysis and QTL Mapping of Wax Powder on the Surface of Cucumber Fruit

TIAN Gui-li, ZHANG Sheng-ping, SONG Zi-chao, ZHANG Song, CUI Jin-ying, MIAO Han, GU Xing-fang   

  1. Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2015-03-15 Online:2015-09-16 Published:2015-09-16

Abstract: 【Objective】Cucumber (Cucumis sativus L.) is an important world vegetable in the world and its output was over  65 000 million kilos in 2012. For many years, plant breeders have focused their attentions on improving fruit quality, especially in flavor, nutrition, and appearance of cucumber. Several researches on the traits to affecting the appearance quality of cucumber fruit have been reported. However, up to now the amount of wax on the surface of the fruit has received little attention. Wax powder is one of the important fruit appearance quality traits in cucumber. The inheritance and QTL mapping will help to understand the molecular mechanism of wax powder formation, lay a foundation for the fine mapping and gene cloning, and provide a theoretical basis for selecting cucumber lines with little wax powder.【Method】In this study, six generations were developed from the cross between cucumber lines with heavy wax powder ‘PI183697’ and light wax powder ‘1101’ under different environmental conditions of Hainan and Beijing. The amount of wax powder on the fruit surface was measured quantitatively with colour meter (CM-700 d).2-3 cucumbers in each individual and five parts on each cucumber were selected for measurement, and then the calculated average values were used to estimate the inheritance. For the genetic analysis, 1 288 SSR markers were tested and 128 that were found to be polymorphic between ‘PI183697’ and ‘1101’ were used for linkage analysis of F2 populations. A linkage group was constructed by using JoinMap4.0 with minimum LOD 3.0, and QTL detection for wax powder was conducted with MapQTL4.0.【Result】Genetic analysis showed that the trait of wax powder in ‘PI183697’ was inherited quantitatively. The mixed major gene plus polygene inheritance model of plant quantitative traits was applied to the six generations for genetic analysis. The result showed that the trait of wax powder on cucumber fruit surface was controlled by one additive major gene plus additive-dominant polygene (D-2 model) in the joint analysis of six generations. Linkage maps from two F2 populations containing seven chromosomes and 128 SSR markers were constructed and seven QTLs relating to wax powder were identified. One QTL locus on Chr.1, Chr.3 and Chr.5, respectively, and four loci on Chr.6 were detected, which were WP1.1, WP3.1, WP5.1, WP6.1, WP6.2, WP6.3 and WP6.4. The QTL loci WP5.1 and WP6.2 were detected in two seasons, having LOD scores of 7.70, 4.81, 4.21, and 6.69, and R2 of 14.9%, 12.4%, 8.0% and 16.7%, respectively. 【Conclusion】The inheritance of wax powder is quantitative and controlled by one additive major gene plus additive-dominant polygene (D-2 model). According to QTL mapping, the QTL loci WP5.1 and WP6.2 were repeatedly detected. Thus it was predicted that the major QTL loci may be located on Chr.5 and Chr.6.

Key words: cucumber (Cucumis sativus L.), wax powder, linkage map, QTL

[1]    沈琼, 魏珉, 任仲海, 崔健, 王秀峰. 黄瓜果实表面蜡粉形成及影响因素研究进展. 山东农业科学, 2012, 44(3): 50-53.
Shen Q, Wei M, Ren Z H, Cui J, Wang X F. Research progress of bloom formationon cucumber fruit surface and influence factors. Shandong Agricultural Sciences, 2012, 44(3): 50-53. (in Chinese)
[2]    董邵云. 黄瓜果皮光泽性状的遗传机制与基因定位[D]. 北京: 中国农业科学院, 2013.
Dong S Y. Genetic mechanism and gene mapping of glossy fruit skin in cucumber [D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[3]    张红梅, 金海军, 余纪柱. 不同南瓜砧木对嫁接黄瓜生长和果实品质的影响. 内蒙古农业大学学报: 自然科学版, 2007, 28(3) : 177-183.
Zhang H M, Jin H J, Yu J Z. Effects of different pumpkin rootstocks on growth and fruit quality of grafted cucumber. Journal of Inner Mongolia Agricultural University: Natural Science Edition, 2007, 28(3) : 177-183. (in Chinese)
[4]    Hayash T, Suzuk T, Oosawa K. Correlation between occurrence of bloom on cucumber fruit and air temperature in a plastic film greenhouse. Proceedings of the Second International Symposium on Cucurbits, 2001: 29-33.
[5]    高彦魁, 陈普红, 李欣, 赵志军, 王丽萍.不同基因型砧木对黄瓜产量和果实品质的影响. 长江蔬菜, 2008, 18: 48-50.
Gao Y K, Chen P H, Li X, Zhao Z J, Wang L P. Effects of different genotypes rootstock on yield and fruit quality of cucumber. Journal of Changjiang Vegetables, 2008, 18: 48-50. (in Chinese)
[6]    韩旭. 黄瓜蜡粉性状遗传及少蜡粉砧木特性. 中国蔬菜, 1997, 5: 51-53.
Han X. Inheritance of wax powder in cucumber and the characteristics of rootstock with less wax powder. China Vegetables (in Chinese), 1997, 5: 51-53.
[7]    黎炎, 李文嘉, 王益奎. 节瓜果皮蜡粉遗传的初步研究. 中国蔬菜, 2005(9): 25-26.
Li Y, Li W J, Wang Y K. The preliminary inheritance study of wax powder on Chieh-qua. China Vegetables, 2005(9): 25-26. (in Chinese)
[8]    张曦. 大白菜蜡粉基因的精细定位及表达分析[D]. 沈阳: 沈阳农业大学, 2013.
Zhang X. Fine mapping and gene expression of wax gene in Chinese cabbage (Brassica rapa L. ssp. pekinensis) [D]. Shenyang: Shenyang Agricultural University, 2013. (in Chinese)
[9]    盖钧镒, 章元明, 王建康. 植物数量性状遗传体系. 北京: 科学出版社, 2003.
Gai J Y, Zhang Y M, Wang J K. Genetic System of Quantitative Traits in Plants. Beijing: Science Press, 2003. (in Chinese)
[10]   Huang S W, Li R Q, Zhang Z H, Li L, Gu X F, Fan W, Lucas W J, Wang X W, Xie B Y, Ni P X, Ren Y Y, Zhu H M, Li J, Lin K, Jin W W, Fei Z J, Li G C, Staub J, Kilian A, van der Vossen EAG, Wu Y, Guo J, He J, Jia ZJ, Ren Y, Tian G, Lu Y, Ruan J, Qian W B, Wang M W, Huang Q F, Li B, Xuan Z L, Cao J, San A, Wu Z G, Zhang J B, Cai Q L, Bai Y Q, Zhao B W, Han Y H, Li Y, Li X F, Wang S H, Shi Q X, Liu S Q, Cho W K, Kim J Y, Xu Y, Heller-Uszynska K, Miao H, Cheng Z C, Zhang S P, Wu J, Yang Y H, Kang H X, Li M, Liang H Q, Ren X L, Shi Z B, Wen M, Jian M, Yang H L, Zhang G J , Yang Z T, Chen R, Liu S F, Li J W, Ma L J, Liu H, Zhou Y, Zhao J, Fang X D, Li G Q, Fang L, Li YR, Liu D Y, Zheng H K, Zhang Y, Qin N, Li Z, Yang G H, Yang S, Bolund L, Kristiansen K, Zheng H C, Li S C, Zhang X Q, Yang H M, Wang J, Sun R F, Zhang B X, Jiang S Z, Wang J, Du Y C, Li S G. The genome of the cucumber, Cucumis sativus L.. Nature Genetics, 2009, 41: 1275-1281.
[11]   王宏建, 吴越, 谷维, 孙晓丹, 秦智伟. 改进的CTAB法提取黄瓜DNA. 黑龙江农业科学, 2006(5): 124-125.
Wang H J, Wu Y, Gu W, Sun X D, Qin Z W. Extraction of DNA from cucumber by improved CTAB method. Heilongjiang Agricultural Sciences, 2006(5): 124-125. (in Chinese)
[12]   van Ooijen J W. Accuracy of mapping quantitative trait loci in autogamous species. Theoretical and Applied Genetics, 1992, 84: 803-811.
[13]   van Ooijen J, Voorrips R. JoinMap3.0, Software for Calculation of Genetic Linkage Maps. Wageningen: Plant Research International, 2001.
[14]   苗晗, 顾兴芳, 张圣平, 张忠华, 黄三文, 王烨, 程周超, 张若纬, 穆生奇, 李曼, 张振贤, 方智远. 黄瓜果实相关性状QTL定位分析. 中国农业科学, 2011, 44(24): 5031-5040.
Miao H, Gu X F, Zhang S P, Zhang Z H, Huang S W, Wang Y, Cheng Z C, Zhang R W, Mu S Q, Li M, Zhang Z X, Fang Z Y. Mapping QTLs for fruit-associated traits in Cucumis sativus L.. Scientia Agricultura Sinica, 2011, 44(24): 5031-5040. (in Chinese)
[15]   Qi J J, Liu X, Shen D, Miao H, Xie B Y, Li X X, Zeng P, Wang S H, Shang Y, Gu X F, Du Y C, Li Y, Lin T, Yuan J H, Yang X Y, Chen J F, Chen H M, Xiong X Y, Huang K, Fei Z J, Mao L Y, Tian L, Städler T, Renner S S, Kamoun S, Lucas W, Zhang Z H, Huang S W. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nature Genetics,2013, 45: 1510-1515.
[16]   Miao H, Zhang S P, Wang X W, Zhang Z H, Li M, Mu S Q, Cheng Z C, Zhang R W, Huang S W, Xie B Y, Fang Z Y, Zhang Z X, Weng Y Q, Gu X F. A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits. Euphytica, 2011, 182: 167-176.
[17]   Cavagnaro P F, Senalik D A, Yang L M, Simon P P, Harkins T T, Kodira C D, Huang S W, Weng Y Q. Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.) BMC Genomics, 2010, 11: 569-587.
[18]   Weng Y Q, Johnson V, Staub J E, Huang S W. An extended microsatellite genetic map of cucumber, Cucumis sativus L.. HortScience, 2010, 45: 880-886.
[19]   Zhang W W, Pan J S, He H L, Zhang C, Li Z, Zhao J L, Yuan X J, Zhu L H, Huang S W, Cai Run. Construction of a high density integrated genetic map for cucumber (Cucumis sativus L.). Theoretical and Applied Genetics, 2012, 124(2): 249-259.
[20]   Zhang W W, He H, Yuan G, Du H, Yuan L H, Li Z, Yao D Q, Pan J S, Cai R. Identification and mapping of molecular markers linked to the tuberculate fruit gene in the cucumber (Cucumis sativus L.). Theoretical and Applied Genetics, 2010, 120(3): 645-654.
[21]   刘书林, 顾兴芳, 苗晗, 王烨, Yiqun Weng, Todd C Wehner, 张圣平. 黄瓜黑色果刺基因染色体定位及候选基因分析. 中国农业科学, 2014, 47(1): 122-132.
Liu S L, Gu X F, Miao H, Wang Y, Weng Y Q, Wehner T C, Zhang S P. Molecular mapping and candidate gene analysis of black fruit spine gene in cucumber (Cucumis sativus L.). Scientia Agricultura Sinica, 2014, 47(1): 122-132. (in Chinese)
[22]   董邵云, 苗晗, 张圣平, 刘苗苗, 王烨, 顾兴芳. 黄瓜白色果皮基因遗传规律及定位研究. 西北植物学报, 2012, 32(11): 2177-2181.
Dong S Y, Miao H, Zhang S P, Liu M M, Wang Y, Gu X F. Genetic analysis and gene mapping of white fruit skin in cucumber (Cucumis sativus L.). Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(11): 2177-2181. (in Chinese)
[23]   董邵云, 苗晗, 张圣平, 王烨, 王敏, 刘书林, 顾兴芳. 黄瓜果皮光泽性状的遗传分析及基因定位研究. 园艺学报, 2013, 40(2): 247-254.
Dong S Y, Miao H, Zhang S P, Wang Y, Wang M, Liu S L, Gu X F. Genetic analysis and gene mapping of glossy fruit skin in cucumber. Acta Horticulturae Sinica, 2013, 40(2): 247-254. (in Chinese)
[24]   Yang X Q, Zhang W W, Li Y, He H, Bie B B, Ren G L, Zhao J L, Wang Y L, Nie J T, Pan J S, Cai R. High-resolution mapping of the dull fruit skin gene D in cucumber (Cucumis sativus L..) Molecular Breeding, 2014, 33(1): 15-22.
[25]   武喆, 李蕾, 张婷, 张停林, 李季, 娄群峰, 陈劲枫. 黄瓜单性结实性状的QTL定位. 中国农业科学, 2015, 48(1): 112-119.
Wu Z, Li L, Zhang T, Zhang T L, Li J, Lou Q F, Chen J F. QTL mapping for parthenocarpy in cucumber. Scientia Agricultura Sinica, 2015, 48(1): 112-119. (in Chinese)
 
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[3] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[4] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[5] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[6] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[7] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[8] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[9] GUO ShuQing,SONG Hui,CHAI ShaoHua,GUO Yan,SHI Xing,DU LiHong,XING Lu,XIE HuiFang,ZHANG Yang,LI Long,FENG BaiLi,LIU JinRong,YANG Pu. QTL Analysis for Growth Period and Panicle-Related Traits in Foxtail Millet [J]. Scientia Agricultura Sinica, 2022, 55(15): 2883-2898.
[10] HAO Jing,LI XiuKun,CUI ShunLi,DENG HongTao,HOU MingYu,LIU YingRu,YANG XinLei,MU GuoJun,LIU LiFeng. QTL Mapping for Traits Related to Seed Number Per Pod in Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2022, 55(13): 2500-2508.
[11] MENG XinHao,DENG HongTao,LI Li,CUI ShunLi,Charles Y. CHEN,HOU MingYu,YANG XinLei,LIU LiFeng. QTL Mapping for Lateral Branch Angle Related Traits of Cultivated Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2021, 54(8): 1599-1612.
[12] ZHANG YaDong,LIANG WenHua,HE Lei,ZHAO ChunFang,ZHU Zhen,CHEN Tao,ZHAO QingYong,ZHAO Ling,YAO Shu,ZHOU LiHui,LU Kai,WANG CaiLin. Construction of High-Density Genetic Map and QTL Analysis of Grain Shape in Rice RIL Population [J]. Scientia Agricultura Sinica, 2021, 54(24): 5163-5176.
[13] LUO JiangTao,ZHENG JianMin,DENG QingYan,LIU PeiXun,PU ZongJun. The Genetic Contribution of the Important Breeding Parent Chuanmai 44 to Its Derivatives [J]. Scientia Agricultura Sinica, 2021, 54(20): 4255-4264.
[14] WANG Ling,CAI Yi,WANG GuiChao,WANG Di,SHENG YunYan. Specific Length Amplified Fragment (SFLA) Sequencing Mapping Construction and QTL Analysis of Fruit Related Traits in Muskmelon [J]. Scientia Agricultura Sinica, 2021, 54(19): 4196-4206.
[15] QU KeXin,HAN Lu,XIE JianGuo,PAN WenJing,ZHANG ZeXin,XIN DaWei,LIU ChunYan,CHEN QingShan,QI ZhaoMing. Mapping QTL for Soybean Fatty Acid Composition Based on RIL and CSSL Population [J]. Scientia Agricultura Sinica, 2021, 54(15): 3168-3182.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!