Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (18): 3627-3634.doi: 10.3864/j.issn.0578-1752.2015.18.006
• PLANT PROTECTION • Previous Articles Next Articles
DING Zhao-xin, WANG Han-yi, CAO Li-juan, HAO Yan-tong, SHEN Xiao-hong, LIU Jing-guo
[1] Estruch J J, Warren G W, Mullins M A, Nye G J, Craig J A, Koziel M G. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against Lepidopteran insects. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93: 5389-5394.
[2] Lee M K, Walters F S, Hart H, Palekar N, Chen J S. The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab δ-endotoxin. Applied and Environmental Microbiology, 2003, 69(8): 4648-4657.
[3] Donovan W P, Donovan J C, Engleman J T. Gene knockout demonstrates that vip3A contributes to the pathogenesis of Bacillus thuringiensis toward Agrotis ipsilon and Spodoptera exigua. Journal of Invertebrate Pathology, 2001, 78(1): 45-51.
[4] Yu C G, Mullins M A, Warren G W, Koziel M G, Estruch J J. The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects. Applied and Environmental Microbiology, 1997, 63(2): 532-536.
[5] Chakroun M, Ferré J. In vivo and in vitro binding of Vip3Aa to Spodoptera frugiperda midgut and characterization of binding sites by 125I radiolabeling. Applied and Environmental Microbiology, 2014, 80(20): 6258-6265.
[6] 张彦, 梁革梅, 张丽丽, 魏纪珍. 棉铃虫幼虫取食Vip3Aa蛋白后的中肠组织病理变化. 昆虫学报, 2012, 55(7): 869-876.
Zhang Y, Liang G M, Zhang L L, Wei J Z. Pathological changes in midgut tissues of larvae of the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae), after feeding Vip3Aa protein. Acta Entomologica Sinica, 2012, 55(7): 869-876. (in Chinese)
[7] Liu J G, Yang A Z, Shen X H, Hua B G, Shi G L. Specific binding of activated Vip3Aa10 to Helicoverpa armigera brush border membrane vesicles results in pore formation. Journal of Invertebrate Pathology, 2011, 108(2): 92-97.
[8] Lee M K, Miles P, Chen J S. Brush border membrane binding properties of Bacillus thuringiensis Vip3A toxin to Heliothis virescens and Helicoverpa zea midguts. Biochemical and Biophysical Research Communications, 2006, 339(4): 1043-1047.
[9] Sena J A D, Hernández-Rodríguez C S, Ferré J. Interaction of Bacillus thuringiensis Cry1 and Vip3A proteins with Spodoptera frugiperda midgut binding sites. Applied and Environmental Microbiology, 2009, 75(7): 2236-2237.
[10] Caccia S, Chakroun M, Vinokurov K, Ferré J. Proteolytic processing of Bacillus thuringiensis Vip3A proteins by two Spodoptera species. Journal of Insect Physiology, 2014, 67: 76-84.
[11] Abdelkefi-Mesrati L, Boukedi H, Dammak-Karray M, Sellami- Boudawara T, Jaoua S, Tounsi S. Study of the Bacillus thuringiensis Vip3Aa16 histopathological effects and determination of its putative binding proteins in the midgut of Spodoptera littoralis. Journal of Invertebrate Pathology, 2010, 106(2): 250-254.
[12] Singh G, Sachdev B, Sharma N, Seth R, Bhatnagar R K. Interaction of Bacillus thuringiensis vegetative insecticidal protein with ribosomal S2 protein triggers larvicidal activity in Spodoptera frugiperda. Applied and Environmental Microbiology, 2010, 76(21): 7202-7209.
[13] Smith G P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science, 1985, 228: 1315-1317.
[14] 丁宁, 肖慧, 高巨, 许立新, 佘守章. 应用噬菌体展示技术筛选HMGB启动子结合蛋白. 中国病理生理杂志, 2010, 26(1): 28-31.
Ding N, Xiao H, Gao J, Xu L X, She S Z. Screening of binding proteins of HMGB1 promoter by phage display technique. Chinese Journal of Pathophysiology, 2010, 26(1): 28-31. (in Chinese)
[15] Fernández L E, Gómez I, Pacheco S, Arenas I, Gilla S S, Bravo A, Soberón M. Employing phage display to study the mode of action of Bacillus thuringiensis Cry toxins. Peptides, 2008, 29(2): 324-329.
[16] Gómez I, Oltean D, Gill S S, Bravo A, Soberón M. Mapping the epitope in cadherin-like receptors involved in Bacillus thuringiensis Cry1A toxin interaction using phage display. The Journal of Biological Chemistry, 2001, 276(31): 28906-28912.
[17] Guo C H, Zhao S T, Ma Y, Hu J J, Han X J, Chen J, Lu M Z. Bacillus thuringiensis Cry3Aa fused to a cellulase-binding peptide shows increased toxicity against the longhorned beetle. Applied Microbiology and Biotechnology, 2012, 93(3): 1249-1256.
[18] Wang Y, Zhang X, Zhang C, Liu Y, Liu X. Isolation of single chain variable fragment (scFv) specific for Cry1C toxin from human single fold scFv libraries. Toxicon, 2012, 60(7): 1290-1297.
[19] Wolfersberger M, Luethy P, Maurer A, Parenti P, Sacchi F V, Giordana B, Hanozet G M. Preparation and partial characterization of amino acid transporting brush border membrane vesicles from the larval midgut of the cabbage butterfly (Pieris brassicae). Comparative Biochemistry and Physiology A, 1987, 86(2): 301-308.
[20] Silva-Filha M H, Nielsen-LeRoux C, Charles J F. Identification of the receptor for Bacillus sphaericus crystal toxin in the brush border membrane of the mosquito Culex pipiens (Diptera: Culicidae). Insect Biochemistry and Molecular Biology, 1999, 29: 711-721.
[21] Pigott C R, Ellar D J. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiology and Molecular Biology Reviews, 2007, 71(2): 255-281.
[22] Pardo-López L, Soberón M, Bravo A. Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiology Reviews, 2013, 37(1): 3-22.
[23] Palma L, Muñoz D, Berry C, Murillo J, Caballero P. Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins, 2014, 6(12): 3296-3325. |
[1] | BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652. |
[2] | SHEN Qian,ZHANG SiPing,LIU RuiHua,LIU ShaoDong,CHEN Jing,GE ChangWei,MA HuiJuan,ZHAO XinHua,YANG GuoZheng,SONG MeiZhen,PANG ChaoYou. Construction of A Comprehensive Evaluation System and Screening of Cold Tolerance Indicators for Cold Tolerance of Cotton at Seedling Emergence Stage [J]. Scientia Agricultura Sinica, 2022, 55(22): 4342-4355. |
[3] | ZHONG YanPing,SHI LiSong,ZHOU Rong,GAO Yuan,HE YanQing,FANG Sheng,ZHANG XiuRong,WANG LinHai,WU ZiMing,ZHANG YanXin. Establishment of High Efficient Extraction and Detection Technology of Sesamin and Screening of High Sesamin Germplasm [J]. Scientia Agricultura Sinica, 2022, 55(11): 2109-2120. |
[4] | FAN WenJing,LIU Ming,ZHAO Peng,ZHANG QiangQiang,WU DeXiang,GUO PengYu,ZHU XiaoYa,JIN Rong,ZHANG AiJun,TANG ZhongHou. Screening of Sweetpotato Varieties Tolerant to Low Nitrogen at Seedling Stage and Evaluation of Different Nitrogen Efficiencies [J]. Scientia Agricultura Sinica, 2022, 55(10): 1891-1902. |
[5] | ZHAO Rui,ZHANG XuHui,ZHANG ChengYang,GUO JingLei,WANG Yu,LI HongXia. Evaluation and Screening of Nitrogen Efficiency of Wheat Germplasm Resources at Mature Stage [J]. Scientia Agricultura Sinica, 2021, 54(18): 3818-3833. |
[6] | YAN RuiRui, GAO Wa, SHEN BeiBei, ZHANG Yu, WANG Miao, ZHU XiaoYu, XIN XiaoPing. Index System for Quantitative Evaluation of Pasture Degradation in Meadow Grassland of Inner Mongolia [J]. Scientia Agricultura Sinica, 2021, 54(15): 3343-3354. |
[7] | ZHOU Zhe,BIAN ShuXun,ZHANG HengTao,ZHANG RuiPing,GAO QiMing,LIU ZhenZhen,YAN ZhenLi. Screening of ARF-Aux/IAA Interaction Combinations Involved in Apple Fruit Size [J]. Scientia Agricultura Sinica, 2021, 54(14): 3088-3096. |
[8] | BI QiuYan,DANG ZhiHong,ZHU WeiQi,GAO ZhanLin,HAN XiuYing,ZHAO JianJiang,WANG WenQiao,LU Fen,WU Jie. Identification of Major Pathogenic Fungi of Soybean in Hebei Province and Screening of Control Fungicides [J]. Scientia Agricultura Sinica, 2021, 54(1): 71-85. |
[9] | Jun LI,Xia-ying LI,Jing-qian WANG,Shanshan Zhai,Zi-yan CHEN,Hong-fei GAO,YunJing LI,Gang WU,Xiu-jie ZHANG,Yu-hua WU. Development and Application of Plasmid Reference Molecule for Genetically Modified Rapeseed Screening [J]. Scientia Agricultura Sinica, 2020, 53(7): 1322-1337. |
[10] | LIU JiaoJiao,WANG XueMin,MA Lin,CUI MiaoMiao,CAO XiaoYu,ZHAO Wei. Isolation, Identification, and Response to Abiotic Stress of MsWRKY42 Gene from Medicago sativa L. [J]. Scientia Agricultura Sinica, 2020, 53(17): 3455-3466. |
[11] | CHEN Ling,WANG JunJie,WANG HaiGang,CAO XiaoNing,LIU SiChen,TIAN Xiang,QIN HuiBin,QIAO ZhiJun. Screening of Broomcorn Millet Varieties Tolerant to Low Nitrogen Stress and the Comprehensive Evaluation of Their Agronomic Traits [J]. Scientia Agricultura Sinica, 2020, 53(16): 3214-3224. |
[12] | Fei QI,Shu LIN,MengFei SONG,MengRu ZHANG,ShuYan CHEN,NaiXin ZHANG,JinFeng CHEN,QunFeng LOU. Screening and Identification of Cucumber Mutant Resistant to Powdery Mildew [J]. Scientia Agricultura Sinica, 2020, 53(1): 172-182. |
[13] | YUAN YuHao, YANG QingHua, DANG Ke, YANG Pu, GAO JinFeng, GAO XiaoLi, WANG PengKe, LU Ping, LIU MinXuan, FENG BaiLi. Salt-Tolerance Evaluation and Physiological Response of Salt Stress of Broomcorn Millet (Panicum miliaceum L.) [J]. Scientia Agricultura Sinica, 2019, 52(22): 4066-4078. |
[14] | LIANG Ying,LI Yi,ZHANG LiuJuan,LIU XianJin,LU BaiYi. Discussion on the Definition and Screening Method of Characteristic Quality Indicators of Edible Agricultural Products [J]. Scientia Agricultura Sinica, 2019, 52(18): 3155-3162. |
[15] | HAO BaoCheng, SONG XiangDong, GAO Yan, WANG XueHong, LIU Yu, LI YuanXi, LIANG Yan, CHEN KeYuan, HU YuYao, XING XiaoYong, HU YongHao, LIANG JianPing. Mutagenesis and Screening of Endophytic Fungus Alternaria Section Undifilum oxytropis Producing Swainsonine from Locoweed [J]. Scientia Agricultura Sinica, 2019, 52(15): 2716-2728. |
|