Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (12): 2417-2427.doi: 10.3864/j.issn.0578-1752.2015.12.015

• STORAGE·FRESH-KEEPING·PROCESSING • Previous Articles     Next Articles

Rheologic Properties of ‘Huahong’ Apple Pulp and Their Principal Component Analysis

YANG Ling, ZHANG Cai-xia, KANG Guo-dong, TIAN Yi, CONG Pei-hua   

  1. Research Institute of Pomology, Chinese Academy of Agricultural Science/Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture, Xingcheng 125100, Liaoning
  • Received:2014-12-30 Online:2015-06-16 Published:2015-06-16

Abstract: 【Objective】 An experiment was carried out to study the changes of rheological properties (including stress relaxation property and creep property) of ‘Huahong’ apple pulp during storage, analyze the correlation among rheological parameters, aiming to predict and evaluate ‘Huahong’ apple fruit quality by rheological method, and also improve the fruit quality evaluation system.【Method】 Through an experiment on ‘Huahong’ apple pulp’s creep and relaxation properties, creep models including the four components Burger’s model and the three components Maxwell stress relaxation model were established. The changes of stress relaxation and creep parameters during storage were acquired, and the correlation among these parameters were analyzed. The main stress relaxation and creep parameters were analyzed by Principal Component Analysis (PCA) using SPSS software.Result The creep parameters of initial elastic coefficient E1, delayed elasticity coefficient E2, and viscosity coefficient η1 and η2 decreased constantly, and there was a significant positive correlation between each two parameters among these ones. The creep value increased slowly, and the creep was significantly and negatively correlated with the above four creep parameters. The delay time τ increased slowly, the maximum hardness of work increased first and then decreased, the values of the two parameters had a poor correlation with the other five creep parameters. The variation of relaxation parameters of the elastic modulus E0, balance elastic modulus Ee, the decay modulus E1, viscosity factor η, hardness, stress and total work decreased first, and than increased slight and finally decreased, there was a significant positive correlation among these seven parameters. The relaxation time was not consistent with the above seven relaxation parameters and had a poor correlation with them. The creep and relaxation parameters were analyzed by Principal Components Analysis, extract the first principal component of 10 variables was sufficient, and the contribution rate was 88.828%. The first principal component ‘rheological factors’ F1 decreased with the fruit texture soft and edible quality decreased during storage. 【Conclusion】 The ‘Huahong’ apple pulp has compression visco elastic mechanical properties. The four elements Burger’s model and Maxwell model could be well fitted the creep and relaxation model of ‘Huahong’ apple. They could be used as a method to characterize the rheological changes of ‘Huahong’ apple during storage, and could reflect the change of flesh texture.

Key words: ‘Huahong&rsquo, apple, pulp, rheological properties, stress relaxation, creep, principal components analysis

[1]    满书铎, 牛健哲, 丛佩华. 秦贺兰. 苹果晚熟新品种“华红”的选育. 中国果树, 1999(1): 13-14.
Man S D, Niu J Z, Cong P H, Qin H L. Breeding of late maturing varieties of ‘Huahong’ apple. China fruits, 1999(1): 13-14. (in Chinese)
[2]    贾晓辉, 夏玉静, 王文辉, 佟伟, 姜云, 王志华. 采收成熟度结合 1-MCP对苹果采后品质和生理效应的影响. 中国食品学报, 2014, 14(8): 197-203.
Jia X H, Xia Y J, Wang W H, Tong W, Jiang Y, Wang Z H. Effects of harvest maturity combined with 1-MCP on quality of postharvest apple and physiological. Journal of Chinese Institute of Food Scicence and Technology, 2014, 14(8): 197-203. (in Chinese)
[3]    周宇英, 唐伟强. 食品流变特性研究的进展. 粮油加工与食品机械, 2001, 8: 7-9.
Zhou Y Y, Tang W Q. Progress in the study of rheological properties of food. Food and Mchinery, 2001, 8: 7-9. (in Chinese)
[4]    李瀚茹, 潘君拯. 农业流变学导论. 北京: 中国农业出版社, 1990.
Li H R, Pan J C. Introduction to Agricultural Rheology. Beijing: China Agriculture Press, 1990. (in Chinese)
[5]    李里特. 食品物性学. 北京: 中国农业出版社, 2001.
Li L T. Physical Properties of Foods. Beijing: Chinese Agricultural Press, 2001. (in Chinese)
[6]    Grzemski P, Bohdziewicz J. Rheological properties of fruit of the selected cultivars of plum. Inzynieria Rolnicza, 2012, 137(2): 45-55.
[7]    李小昱, 王为, 孙骊, 冯国华. 苹果流变特性的研究Ⅰ蠕变特性的试验与研究. 西北农业大学学报, 1991, 19(3): 70-74.
Li X Y, Wang W, Sun L, Feng G H. A study on rheological characteristics of appleⅠ. testing creep properties. Acta University Agricultural Borcali-occidentalis, 1991, 19(3): 70-74. (in Chinese)  
[8]    李小昱, 王为, 孙骊, 冯国华. 苹果流变特性的研究Ⅱ. 松弛特性的试验与研究. 西北农业大学学报, 1991, 19(4): 103-106.
Li X Y, Wang W, Sun L, Feng G H. A study on rheological characteristics of appleⅡ. Experiments of apple relaxation propertics. Acta University Agricultural Borcali–occidentalis, 1991, 19(4): 103-106. (in Chinese)
[9]    孙骊, 鞠建伟, 吴竞爽, 仇农学. 苹果贮存的接触面积和蠕变特性. 西北农业大学学报, 1996, 24(1): 104-106.
Sun L, Ju J W, Wu J S, Qiu N X. The contact area and the creep properties of apple storage. The Journal of Northwest Agriculture University, 1996, 24(1): 104-106. (in Chinese)
[10]   Abbott J A, Affeldt H A, Li L D. Firmness measurement of stored ‘delicious’apples by sensory method, Mangess-Taylor, and sonic propagation. Journal of the American Society for Hoticultural Science, 1992, 117(4): 590.
[11]   Wu T X, Abbot J A. Firmness and force relaxation characteristics of tomatoes stored intact or as slices. Postharvest Biology and Technology, 2002, 24: 59-68.
[12]   陈萃仁, 应铁进, 朱宇平, 钱冬梅. 草莓果实的流变特性及其在贮藏过程中的变化规律. 浙江农业大学学报, 1994, 20(2): 160-164.
Chen C R, Ying T J, Zhu Y P, Qing D M. Study on rheologic properties of the strawberry flesh and their changes during storage. Journal of Zhe-jiang Agricultural University, 1994, 20(2): 160-164. (in Chinese)
[13]   陈萃仁, 应铁进, 钱冬梅. 杨梅果实的力学特性及其贮藏过程中变化规律的试验研究. 食品科学, 1994, 10: 56-60.
Chen C R, Ying T J, Qian D M. Experimental study on mechanical characteristics and changes of Chinese bayberry fruit during storage. Food Science, 1994, 10: 56-60. (in Chinese)
[14]   Ballabio D, Consonni V, Costa F. Relationships between apple texture and rheological parameters by means of multivariate analysis. Chemometrics and Intelligent Laboratory Systems, 2012, 111(1): 28-33.
[15]   杨晓清. 河套蜜瓜流变特性及储运损伤控制的研究[D]. 呼和浩特: 内蒙古农业大学, 2006.
Yang X Q. The rheological properties of melon and transportation damage control[D]. Hohhot: Inner Mongolia Agricultural University, 2006. (in Chinese)
[16]   王芳. 西瓜压缩及蠕变特性的研究[D]. 呼和浩特: 内蒙古农业大学, 2008.
Wang F. Study on compression and creep characteristics of watermelon[D]. Hohhot: Inner Mongolia Agricultural University, 2008. (in Chinese)
[17]   Dijkink B H, Langelaan H C. Miling properties of peas in relation to texture analysis PaⅡeffect of pea genotype, Journal of Food Engineering, 2002, 51: 105-111.
[18]   Lau M H, Tang J, Swanson B G. Kinetics of textural and color changes in green asparagus during thennal treatments. Journal of Food Engineering, 2001, 45: 231-236.
[19]   Alvarez M D, Canet W L. A comparison of various the rheological properties for modeling the kinetics of thermal softening of patato tissue (c v. Monalisa) by water cooking and pressure steaming. International Journal of Food Science and Technology, 2002, 37: 41-55.
[20]   Alvarez M D, Canet W, Tortosa M E. Kinetics of thermal softening of potato tissue (cv. Monalisa) by water heating. Europe Food Research Technology, 2001, 212(5): 588-596.
[21]   Rizvi A F, Tong C H. Fractional conversion for determining texture degradation kinetics of vegetables. Journal of Food Science, 1997, 62(1): 1-6.
[22]   李小昱, 朱俊平, 王为, 王耀忠. 苹果蠕变特性与静载损伤机理的研究. 西北农业大学学报, 1997, 25(6): 64-68.
Li X Y, Zhu J P, Wang W, Wang Yao Z. Study on creep properties of apple and static damage mechanism. Jourmal of Northwest Agriculture University, 1997, 25(6): 64-68. (in Chinese)
[23]   Cenkow S, Biclew J, Britton M G. A single kemel creep and recovery test. Transactions of the ASAE, 1991, 34(4): 2484-2490.
[24]   陆秋君, 王俊, 何喜玲. 常温贮藏中番茄应力松弛特性试验. 农业机械学报, 2005, 36(7): 77-88.
Lu Q J, Wang J, He X L. Experimental study on intact tomato's stress-relaxation during storing at normal temperature. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(7): 77-88. (in Chinese)
[25]   Nussinovitch A, Peleg A. A modified maxwell and a nonexponential model for characterization of the stress relaxation of agar and alginate gels. Journal of Food Science, 1989, 54(4): 1013-1016.
[26]   Tang J M. Characterization of gellan gels using stress relaxation. Journal of Food Engineering, 1998, 38: 279-295.
[27]   Herrero A M. Stress relaxation test for monitoring post mortem textural changes of ice-stored cod. Journal of Food Science, 2004, 69(4): 178-182.
[28]   胡小松, 丁双阳. 桃采后呼吸和乙烯释放规律及多效哇的影响. 北京农业大学学报, 1993, 19: 53-60.
Hu X S, Ding S Y. The rule of respiration and ethylene release of postharvest peach and the effect of pachlobutrazol. Journal of Beijing Agriculture University, 1993, 19: 53-60. (in Chinese)
[29]   张新华, 杨洪强, 李富军. 苹果果实超弱发光、乙烯释放和呼吸跃变对 1- MCP 的响应. 中国食品学报, 2006, 6(2): 63-66.
Zhang X H, Yang H Q, Li F J. The response of the ultra weak luminescence fruit, ethylene release and respiration climacteric of apple to 1-MCP. Journal of Chinese Institute of Food Science and Technology, 2006, 6(2): 63-66. (in Chinese)
[30]   唐海波. ‘红香脆’与‘新世界’苹果贮藏期间相关生理指标变化的研究[D]. 杨凌: 西北农林科技大学, 2008.
Tang H B. Study on physiological index change of ‘Xinshijie’ and ‘Hongxiangcui’ apple during storage time[D]. Yangling: Northwest Agricultural and Forest University, 2008. (in Chinese)
[31]   张锋, 龚新明, 马书尚, 张继澍, 关军锋. 1-MCP和贮藏温度对秦阳苹果采后生理与品质的影响. 西北农林科技大学学报: 自然科学版, 2009, 37(10): 115-124.
Zhang F, Gong X M, Ma S S, Zhang J S, Guan J F. Effect of 1-MCP storage and temperature on the quality and postharvest physiology of Qinyang Apple. Journal of Northwest A&F University: National Science Edition, 2009, 37(10): 115-124. (in Chinese)
[32]   赵学笃, 陈远生, 张守勤. 农业物料学. 北京: 机械工业出版社, 1987: 20-54.
Zhao X D, Chen Y S, Zhang S Q. Agricultural Material Science. Beijing: China Machine Press, 1987: 20-54. (in Chinese)
[33]   李里特. 食品物性学. 北京: 中国农业出版社, 2001: 235-241.
Li L T. Physical Properties of Foods. Beijing: China Agriculture Press, 2001: 235-241. (in Chinese)
[34]   黄邦彦, 杨谦. 果蔬采后生理与储藏保鲜. 北京: 中国农业出版社, 1988.
Huang B Y, Yang Q. Postharvest Physiology and Storage of Fruits and Vegetables. Beijing: China Agriculture Press, 1988. (in Chinese)
[35]   任仲博, 饶景萍. 果品蔬菜储藏运销学. 西安: 陕西科学技术出版社, 1999.
Ren Z B, Rao J P. Storage of fruits and vegetables. Xi’an: Shaanxi Science and Technology Press, 1999. (in Chinese)
[36]   吴洪华. 梨的流变特性及其质地评价研究[D]. 南京: 江苏大学, 2005.
Wu H H. Studies on rheological properties and texture evaluation of pear[D]. Nanjing: Jiangshu University, 2005. (in Chinese)
[37]   何喜玲. 不同预处理对果蔬贮藏中物理机械特性的影响研究[D]. 杭州: 浙江大学, 2005.
He X L. Studies of different treatments on mechanical property of fruit and vegetables during their srorage[D]. Hangzhou: Zhejiang University, 2005. (in Chinese)
[38]   魏建梅. 苹果果实质地品质发育及采后调控的生理和分子基础[D]. 杨凌: 西北农林科技大学, 2009.
Wei J M. Study on physiological and molecular mechanism of fruit texture development and post-harvest regulation of apple [D]. Yangling: Northwest Agricultural and Forest University, 2009. (in Chinese)
[39]   张鹏龙, 陈复生, 杨宏顺, 李里特, 宫保文, 王留留. 果实成熟软化过程中细胞壁降解研究进展. 食品科技, 2010, 35(11): 62-66.
Zhang P L, Chen F S, Yang H S, Li L T, Gong B W, Wang L L. Research advances on cell wall disassembly in fruit ripening and softening.Food Technology, 2010, 35(11): 62-66. (in Chinese)
[40]   李宏建, 刘志, 王宏, 徐贵轩, 宋哲, 何明莉, 张春波. 苹果果实组织结构与果实失重率和硬度变化的关系. 果树学报, 2013, 30(5): 753-758.
Li H J, Liu Z, Wang H, Xu G X, Song Z, He M L, Zhang C B. Study on the relationship between tissue structure and firmness, weight-lose rate of apple. Journal of Fruit Science, 2013, 30(5): 753-758. (in Chinese)
[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] WANG Ji,ZHANG Xin,HU JingRong,YU ZhiHui,ZHU YingChun. Analysis of Lipolysis and Oxidation Ability of Fermentation Strains in Sterilized Pork Pulp [J]. Scientia Agricultura Sinica, 2022, 55(9): 1846-1858.
[3] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[4] LU Xiang, GAO Yuan, WANG Kun, SUN SiMiao, LI LianWen, LI HaiFei, LI QingShan, FENG JianRong, WANG DaJiang. Analysis of Aroma Characteristics in Different Cultivated Apple Strains [J]. Scientia Agricultura Sinica, 2022, 55(3): 543-557.
[5] GAO XiaoQin,NIE JiYun,CHEN QiuSheng,HAN LingXi,LIU Lu,CHENG Yang,LIU MingYu. Geographical Origin Tracing of Fuji Apple Based on Mineral Element Fingerprinting Technology [J]. Scientia Agricultura Sinica, 2022, 55(21): 4252-4264.
[6] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[7] XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency [J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612.
[8] SONG BoWen,YANG Long,PAN YunFei,LI HaiQiang,LI Hao,FENG HongZu,LU YanHui. Effects of Agricultural Landscape on the Population Dynamic of Grapholitha molesta Adults in Apple Orchards in Southern Xinjiang [J]. Scientia Agricultura Sinica, 2022, 55(1): 85-95.
[9] Di WU,JiaYu WANG,XiaoZhi TANG,QiuHui HU. Influence of Exogenous Protein Addition on Whole Wheat Dough Properties and Bread Quality Characteristics [J]. Scientia Agricultura Sinica, 2021, 54(6): 1258-1269.
[10] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[11] WANG YaHui, LIU XiaoHong, YONG MingLi, XIONG AiSheng, SU XiaoJun. Analysis of Changes in Phenolic Acids of Luffa cylindrica Pulp During Browning Based on Metabolomics [J]. Scientia Agricultura Sinica, 2021, 54(22): 4869-4879.
[12] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[13] LI ZiTeng,CAO YuHan,LI Nan,MENG XiangLong,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Molecular Variation and Phylogenetic Relationship of Apple Scar Skin Viroid in Seven Cultivars of Apple [J]. Scientia Agricultura Sinica, 2021, 54(20): 4326-4336.
[14] SONG ChunHui,CHEN XiaoFei,WANG MeiGe,ZHENG XianBo,SONG ShangWei,JIAO Jian,WANG MiaoMiao,MA FengWang,BAI TuanHui. Identification of Candidate Genes for Waterlogging Tolerance in Apple Rootstock by Using SLAF-seq Technique [J]. Scientia Agricultura Sinica, 2021, 54(18): 3932-3944.
[15] SUN Qing,ZHAO YanXia,CHENG JinXin,ZENG TingYu,ZHANG Yi. Fruit Growth Modelling Based on Multi-Methods - A Case Study of Apple in Zhaotong, Yunnan [J]. Scientia Agricultura Sinica, 2021, 54(17): 3737-3751.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!